首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamin is essential for clathrin-dependent coated vesicle formation. It is required for membrane budding at a late stage during the transition from a fully formed pit to a pinched-off vesicle. Dynamin may also fulfill other roles during earlier stages of vesicle formation. We have screened about 16,000 small molecules and have identified 1, named here dynasore, that interferes in vitro with the GTPase activity of dynamin1, dynamin2, and Drp1, the mitochondrial dynamin, but not of other small GTPases. Dynasore acts as a potent inhibitor of endocytic pathways known to depend on dynamin by rapidly blocking coated vesicle formation within seconds of dynasore addition. Two types of coated pit intermediates accumulate during dynasore treatment, U-shaped, half formed pits and O-shaped, fully formed pits, captured while pinching off. Thus, dynamin acts at two steps during clathrin coat formation; GTP hydrolysis is probably needed at both steps.  相似文献   

2.
Dynamins induce membrane vesiculation during endocytosis and Golgi budding in a process that requires assembly-dependent GTPase activation. Brain-specific dynamin 1 has a weaker propensity to self-assemble and self-activate than ubiquitously expressed dynamin 2. Here we show that dynamin 3, which has important functions in neuronal synapses, shares the self-assembly and GTPase activation characteristics of dynamin 2. Analysis of dynamin hybrids and of dynamin 1-dynamin 2 and dynamin 1-dynamin 3 heteropolymers reveals that concentration-dependent GTPase activation is suppressed by the C-terminal proline/arginine-rich domain of dynamin 1. Dynamin proline/arginine-rich domains also mediate interactions with SH3 domain-containing proteins and thus regulate both self-association and heteroassociation of dynamins.  相似文献   

3.
Dynamin, the GTPase required for clathrin-mediated endocytosis, is recruited to clathrin-coated pits in two sequential phases. The first is associated with coated pit maturation; the second, with fission of the membrane neck of a coated pit. Using gene-edited cells that express dynamin2-EGFP instead of dynamin2 and live-cell TIRF imaging with single-molecule EGFP sensitivity and high temporal resolution, we detected the arrival of dynamin at coated pits and defined dynamin dimers as the preferred assembly unit. We also used live-cell spinning-disk confocal microscopy calibrated by single-molecule EGFP detection to determine the number of dynamins recruited to the coated pits. A large fraction of budding coated pits recruit between 26 and 40 dynamins (between 1 and 1.5 helical turns of a dynamin collar) during the recruitment phase associated with neck fission; 26 are enough for coated vesicle release in cells partially depleted of dynamin by RNA interference. We discuss how these results restrict models for the mechanism of dynamin-mediated membrane scission.  相似文献   

4.
Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline- inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles failed to bud in cells overexpressing mutant dynamin so that endocytosis via both transferrin (Tfn) and EGF receptors was potently inhibited. Coated pit assembly, invagination, and the recruitment of receptors into coated pits were unaffected. Other vesicular transport pathways, including Tfn receptor recycling, Tfn receptor biosynthesis, and cathepsin D transport to lysosomes via Golgi-derived coated vesicles, were unaffected. Bulk fluid-phase uptake also continued at the same initial rates as wild type. EM immunolocalization showed that membrane-bound dynamin was specifically associated with clathrin-coated pits on the plasma membrane. Dynamin was also associated with isolated coated vesicles, suggesting that it plays a role in vesicle budding. Like the Drosophila shibire mutant, HeLa cells overexpressing mutant dynamin accumulated long tubules, many of which remained connected to the plasma membrane. We conclude that dynamin is specifically required for endocytic coated vesicle formation, and that its GTP binding and hydrolysis activities are required to form constricted coated pits and, subsequently, for coated vesicle budding.  相似文献   

5.
Dynamin is a GTPase mechanoenzyme most noted for its role in vesicle scission during endocytosis, and belongs to the dynamin family proteins. The dynamin family consists of classical dynamins and dynamin-like proteins (DLPs). Due to structural and functional similarities DLPs are thought to carry out membrane tubulation and scission in a similar manner to dynamin. Here, we discuss the newly emerging roles for DLPs, which include vacuole fission and fusion, peroxisome maintenance, endocytosis and intracellular trafficking. Specific focus is given to the role of DLPs in the budding yeast Saccharomyces cerevisiae because the diverse function of DLPs has been well characterized in this organism. Recent insights into DLPs may provide a better understanding of mammalian dynamin and its associated diseases.  相似文献   

6.
Dynamin, a ~100 kDa large GTPase, is known as a key player for membrane traffic. Recent evidence shows that dynamin also regulates the dynamic instability of microtubules by a mechanism independent of membrane traffic. As microtubules are highly dynamic during mitosis, we investigated whether the regulation of microtubules by dynamin is essential for cell cycle progression. Dynamin 2 intensely localized at the mitotic spindle, and the localization depended on its proline-rich domain (PRD), which is required for microtubule association. The deletion of PRD resulted in the impairment of cytokinesis, whereby the mutant had less effect on endocytosis. Interestingly, dominant-negative dynamin (K44A), which blocks membrane traffic but has no effect on microtubules, also blocked cytokinesis. On the other hand, the deletion of the middle domain, which binds to γ-tubulin, impaired the entry into mitosis. As both deletion mutants had no significant effect on endocytosis, dynamin 2 may participate in cell cycle progression by regulating the microtubules. These data suggest that dynamin may play a key role for cell cycle progression by two distinct pathways, membrane traffic and cytoskeleton.  相似文献   

7.
Regulating actin dynamics at membranes: a focus on dynamin   总被引:9,自引:0,他引:9  
Dynamin, the large guanosine triphosphatase, is generally considered to have a key role in deforming membranes to create tubules or vesicles. Dynamin, particularly dynamin2 isoforms, also are localized with actin filaments, often at locations where cellular membranes undergo remodeling. Perturbing dynamin function interferes with endocytic traffic and actin function. Thus, dynamin may regulate actin filaments coordinately with its activities that remodel membranes. This review will highlight recent observations that provide clues to mechanisms whereby dynamin might coordinate membrane remodeling and actin filament dynamics during endocytic traffic, cell morphogenesis and cell migration.  相似文献   

8.
Domain structure and intramolecular regulation of dynamin GTPase.   总被引:11,自引:0,他引:11       下载免费PDF全文
Dynamin is a 100 kDa GTPase required for receptor-mediated endocytosis, functioning as the key regulator of the late stages of clathrin-coated vesicle budding. It is specifically targeted to clathrin-coated pits where it self-assembles into 'collars' required for detachment of coated vesicles from the plasma membrane. Self-assembly stimulates dynamin GTPase activity. Thus, dynamin-dynamin interactions are critical in regulating its cellular function. We show by crosslinking and analytical ultracentrifugation that dynamin is a tetramer. Using limited proteolysis, we have defined structural domains of dynamin and evaluated the domain interactions and requirements for self-assembly and GTP binding and hydrolysis. We show that dynamin's C-terminal proline- and arginine-rich domain (PRD) and dynamin's pleckstrin homology (PH) domain are, respectively, positive and negative regulators of self-assembly and GTP hydrolysis. Importantly, we have discovered that the alpha-helical domain interposed between the PH domain and the PRD interacts with the N-terminal GTPase domain to stimulate GTP hydrolysis. We term this region the GTPase effector domain (GED) of dynamin.  相似文献   

9.
Burger KN  Demel RA  Schmid SL  de Kruijff B 《Biochemistry》2000,39(40):12485-12493
Dynamin is a large GTPase involved in the regulation of membrane constriction and fission during receptor-mediated endocytosis. Dynamin contains a pleckstrin-homology domain which is essential for endocytosis and which binds to anionic phospholipids. Here, we show for the first time that dynamin is a membrane-active molecule capable of penetrating into the acyl chain region of membrane lipids. Lipid penetration is strongly stimulated by phosphatidic acid (PA), phosphatidylinositol 4-phosphate, and phosphatidylinositol 4, 5-bisphosphate. Though binding is more efficient in the presence of the phosphoinositides, a much larger part of the dynamin molecule penetrates into PA-containing mixed-lipid systems. Thus, local lipid metabolism will dramatically influence dynamin-lipid interactions, and dynamin-lipid interactions are likely to play an important role in dynamin-dependent endocytosis. Our data suggest that dynamin is directly involved in membrane destabilization, a prerequisite to membrane fission.  相似文献   

10.
The dynamins are 100 kDa GTPases involved in the scission of endocytic vesicles from the plasma membrane [1]. Dynamin-1 is present in solution as a tetramer [2], and undergoes further self-assembly following its recruitment to coated pits to form higher-order oligomers that resemble 'collars' around the necks of nascent coated buds [1] [3]. GTP hydrolysis by dynamin in these collars is thought to accompany the 'pinching off' of endocytic vesicles [1] [4]. Dynamin contains a pleckstrin homology (PH) domain that binds phosphoinositides [5] [6], which in turn enhance both the GTPase activity [5] [7] [8] and self-assembly [9] [10] of dynamin. We recently showed that the dynamin PH domain binds phosphoinositides only when it is oligomeric [6]. Here, we demonstrate that interactions between the dynamin PH domain and phosphoinositides are important for dynamin function in vivo. Full-length dynamin-1 containing mutations that abolish phosphoinositide binding by its PH domain was a dominant-negative inhibitor of receptor-mediated endocytosis. Mutated dynamin-1 with both a defective PH domain and impaired GTP binding and hydrolysis also inhibited receptor-mediated endocytosis. These findings suggest that the role of the PH domain in dynamin function differs from that seen for other PH domains. We propose that high-avidity binding to phosphoinositide-rich regions of the membrane by the multiple PH domains in a dynamin oligomer is critical for dynamin's ability to complete vesicle budding.  相似文献   

11.
Previous data showed that complexin I, a SNARE regulatory protein, is localized in and/or around the acrosome and is necessary for the acrosome reaction in sperm. To understand how complexin I regulates the acrosome reaction, we used complexin-GST pulldown assays to identify interacting proteins. We showed that both complexins I and II bound mouse sperm dynamin 2. Dynamin 2 is a 100 kDa GTPase essential to many aspects of endocytosis but its potential role in exocytosis is unknown. Dynamin 2 is expressed in rat testis and widely expressed in other tissues; however, the function of dynamin 2 in germ cells is uncertain. Dynamin 2 protein was detected in mouse testis and was most abundant in or around the developing acrosome of spermatids. In addition, dynamin 2 was co-localized with complexin I in the acrosomal region of mammalian sperm. Its co-localization and interaction with complexin I suggest that dynamin 2 may play a role during acrosome formation and/or acrosomal exocytosis.  相似文献   

12.
Dynamin is a GTPase playing an essential role in ubiquitous intra cellular processes involving separation of vesicles from plasma membranes and membranes of cellular compartments. Recent experimental progress (. Cell. 93:1021-1029;. Cell. 94:131-141) has made it possible to attempt to understand the action of dynamin in physical terms. Dynamin molecules are shown to bind to a lipid membrane, to self-assemble into a helicoidal structure constricting the membrane into a tubule, and, as a result of GTP hydrolysis, to mediate fission of this tubule (). In a similar way, dynamin is supposed to mediate fission of a neck connecting an endocytic bud and the plasma membrane, i.e., to complete endocytosis. We suggest a mechanism of this "pinchase" action of dynamin. We propose that, as a result of GTP hydrolysis, dynamin undergoes a conformational change manifested in growth of the pitch of the dynamin helix. We show that this gives rise to a dramatic change of shape of the tubular membrane constricted inside the helix, resulting in a local tightening of the tubule, which is supposed to promote its fission. We treat this model in terms of competing elasticities of the dynamin helix and the tubular membrane and discuss the predictions of the model in relation to the previous views on the mechanism of dynamin action.  相似文献   

13.
Dynamin mediates various membrane fission events, including the scission of clathrin-coated vesicles. Here, we provide direct evidence for cooperative membrane recruitment of dynamin with the BIN/amphiphysin/Rvs (BAR) proteins, endophilin and amphiphysin. Surprisingly, endophilin and amphiphysin recruitment to membranes was also dependent on binding to dynamin due to auto-inhibition of BAR-membrane interactions. Consistent with reciprocal recruitment in vitro, dynamin recruitment to the plasma membrane in cells was strongly reduced by concomitant depletion of endophilin and amphiphysin, and conversely, depletion of dynamin dramatically reduced the recruitment of endophilin. In addition, amphiphysin depletion was observed to severely inhibit clathrin-mediated endocytosis. Furthermore, GTP-dependent membrane scission by dynamin was dramatically elevated by BAR domain proteins. Thus, BAR domain proteins and dynamin act in synergy in membrane recruitment and GTP-dependent vesicle scission.  相似文献   

14.
Dynamin - a member of the GTP-ase protein family - is essential for many intracellular membrane trafficking events in multiple endocytic processes. The unique biochemical features of dynamin - especially its propensity to assemble - enable severing the nascent vesicles from the membrane. The mechanism of dynamin's action is still a subject of debate - whether it functions as a mechanochemical enzyme or a regulatory GTPase. The GTPase domain of dynamin contains three GTP-binding motifs. This domain is very conservative across the species, including that recently cloned by us in the unicellular eukaryote Paramecium. Dynamin interacts with a number of partners such as endophilin and proteins involved in coordination of endocytosis with motor molecules. A growing body of evidence indicates that dynamin and dynamin-related proteins are involved both in pathology and protection against human diseases. The most interesting are dynamin-like Mx proteins exhibiting antiviral activity.  相似文献   

15.
Understanding the molecular mechanisms of agonist-induced trafficking of G-protein-coupled receptors is important because of the essential role of trafficking in signal transduction. We examined the role of the GTPases dynamin 1 and Rab5a in substance P (SP)-induced trafficking and signaling of the neurokinin 1 receptor (NK1R), an important mediator of pain, depression, and inflammation, by studying transfected cells and enteric neurons that naturally express the NK1R. In unstimulated cells, the NK1R colocalized with dynamin at the plasma membrane, and Rab5a was detected in endosomes. SP induced translocation of the receptor into endosomes containing Rab5a immediately beneath the plasma membrane and then in a perinuclear location. Expression of the dominant negative mutants dynamin 1 K44E and Rab5aS34N inhibited endocytosis of SP by 45 and 32%, respectively. Dynamin K44E caused membrane retention of the NK1R, whereas Rab5aS34N also impeded the translocation of the receptor from superficially located to perinuclear endosomes. Both dynamin K44E and Rab5aS34N strongly inhibited resensitization of SP-induced Ca(2+) mobilization by 60 and 85%, respectively, but had no effect on NK1R desensitization. Dynamin K44E but not Rab5aS34N markedly reduced SP-induced phosphorylation of extracellular signal regulated kinases 1 and 2. Thus, dynamin mediates the formation of endosomes containing the NK1R, and Rab5a mediates both endosomal formation and their translocation from a superficial to a perinuclear location. Dynamin and Rab5a-dependent trafficking is essential for NK1R resensitization but is not necessary for desensitization of signaling. Dynamin-dependent but not Rab5a-dependent trafficking is required for coupling of the NK1R to the mitogen-activated protein kinase cascade. These processes may regulate the nociceptive, depressive, and proinflammatory effects of SP.  相似文献   

16.
The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes.  相似文献   

17.
Dynamin is a GTPase involved in endocytosis and other aspects of membrane trafficking. A critical function in the presynaptic compartment attributed to the brain-specific dynamin isoform, dynamin-1, is in synaptic vesicle recycling. We report that dynamin-2 specifically interacts with members of the Shank/ProSAP family of postsynaptic density scaffolding proteins and present evidence that dynamin-2 is specifically associated with the postsynaptic density. These data are consistent with a role for this otherwise broadly distributed form of dynamin in glutamate receptor down-regulation and other aspects of postsynaptic membrane turnover.  相似文献   

18.
Dynamin spirals.     
Dynamin is an important component of membrane recycling at the plasma membrane and, potentially, within the cell. The role of dynamin in clathrin-mediated endocytosis has been based on numerous endocytosis assays, as well as on the discovery and gross characterization of the assembled spiral structure of dynamin. Recently, it has been shown that dynamin can also bind to liposomes and form helical tubes that constrict and vesiculate upon GTP addition. This suggests that dynamin is capable of and may be responsible for the pinching off of clathrin-coated vesicles from the plasma membrane during clathrin-mediated endocytosis.  相似文献   

19.
Vesicle release upon endocytosis requires membrane fission, catalyzed by the large GTPase dynamin. Dynamin contains five domains that together orchestrate its mechanochemical activity. Hydrogen–deuterium exchange coupled with mass spectrometry revealed global nucleotide‐ and membrane‐binding‐dependent conformational changes, as well as the existence of an allosteric relay element in the α2S helix of the dynamin stalk domain. As predicted from structural studies, FRET analyses detect large movements of the pleckstrin homology domain (PHD) from a ‘closed’ conformation docked near the stalk to an ‘open’ conformation able to interact with membranes. We engineered dynamin constructs locked in either the closed or open state by chemical cross‐linking or deletion mutagenesis and showed that PHD movements function as a conformational switch to regulate dynamin self‐assembly, membrane binding, and fission. This PHD conformational switch is impaired by a centronuclear myopathy‐causing disease mutation, S619L, highlighting the physiological significance of its role in regulating dynamin function. Together, these data provide new insight into coordinated conformational changes that regulate dynamin function and couple membrane binding, oligomerization, and GTPase activity during dynamin‐catalyzed membrane fission.  相似文献   

20.
The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号