首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The initial plasma clearance and organ distribution of alpha 1-acid glycoprotein and alpha 2-macroglobulin carrying different types of oligosaccharide, side chains was studied in rats. The differently glycosylated proteins were synthesized by rat hepatocytes in culture in the presence of tunicamycin (unglycosylated form), swainsonine (hybrid type), or 1-deoxymannojirimycin (high-mannose type). Deglycosylated glycoproteins (Asn-GlcNAc) were obtained by endoglucosaminidase H treatment of high-mannose-type glycoproteins. Ten minutes after intravenous injection 3% of complex type, 26% of hybrid type, 84% of high-mannose type. 64% of unglycosylated and 80% of deglycosylated alpha 1-acid glycoprotein disappeared from the plasma. The respective values for alpha 2-macroglobulin were 26%, 42%, 59% and 67%. When the clearance of total hepatic secretory proteins was examined, major differences between glycosylated and unglycosylated (glyco)proteins were found, particularly in the case of low-molecular-mass polypeptides. Whereas complex-type alpha 1-acid glycoprotein and alpha 2-macroglobulin showed no accumulation in various organs, hybrid-type alpha 1-acid glycoprotein and alpha 2-macroglobulin were present in spleen and liver. High-mannose-type alpha 1-acid glycoprotein and alpha 2-macroglobulin also accumulated mainly in spleen and liver. Spleen had the highest specific activity; liver, due to its larger organ mass, represented the major organ for the uptake of high-mannose-type glycoproteins. Competition experiments with mannan and GlcNAc-bovine-serum-albumin showed a mannose/GlcNAc receptor-mediated removal. Whereas unglycosylated alpha 1-acid glycoprotein was taken up by the kidney, unglycosylated alpha 2-macroglobulin was found in the spleen. Deglycosylated glycoproteins (Asn-GlcNAc) were removed from the plasma via two different mechanisms: firstly, clearance by the kidney similar to the unglycosylated glycoproteins; secondly, clearance by a mannose/GlcNAc receptor-mediated uptake mainly into the spleen. We conclude that N-linked oligosaccharide side chains are important for the plasma survival of hepatic secretory glycoproteins and that unphysiologically glycosylated forms are cleared by different mechanisms.  相似文献   

2.
The clearance of the rat acute-phase proteins alpha 2-macroglobulin, alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein with no, high-mannose, hybrid or complex type oligosaccharide side chains was determined in the isolated perfused rat liver. The differently glycosylated forms of the three proteins were obtained from rat hepatocyte primary cultures treated with different inhibitors of glycosylation. The complex type forms of the three proteins were essentially not cleared by the liver during 2 h of perfusion. Unglycosylated alpha 2-macroglobulin and alpha 1-acid glycoprotein decreased in the perfusate by about 50% after 2 h; unglycosylated alpha 1-proteinase inhibitor was not taken up by the liver. The high-mannose type forms of the three proteins were nearly totally cleared. After 2 h of perfusion 10%, 45% and 30% of the hybrid type forms of alpha 2-macroglobulin, alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, respectively, were cleared. The clearance rates of high-mannose and of hybrid type glycoproteins could be reduced to the rates of complex type glycoproteins by the addition of mannan to the perfusate. It is concluded that complex type glycosylation prevents the uptake of plasma glycoproteins by the liver.  相似文献   

3.
K Steube  V Gross  P C Heinrich 《Biochemistry》1985,24(20):5587-5592
The glycosidase endo-beta-N-acetylglucosaminidase F (endo F) from Flavobacterium meningosepticum was used for the deglycosylation of rat alpha 1-proteinase inhibitor (alpha 1 PI). alpha 1 PI containing three oligosaccharide side chains of the complex type was isolated from rat serum or from the medium of rat hepatocyte primary cultures. High-mannose-type alpha 1 PI or hybrid-type alpha 1 PI was isolated from the media of hepatocytes treated with 1-deoxymannojirimycin or swainsonine, respectively. The susceptibility of complex-type alpha 1 PI to endo F was studied in the presence of various detergents. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate and octyl glucopyranoside turned out to be most effective. In the absence of detergents, digestion of alpha 1 PI with high concentrations of endo F and/or long times of incubation led to the formation of alpha 1 PI with one and two oligosaccharide side chains. In the presence of 0.5% octyl glucopyranoside, the major cleavage products were unglycosylated alpha 1 PI and alpha 1 PI carrying one carbohydrate side chain. In contrast to the complex-type alpha 1 PI, the high-mannose type can be totally deglycosylated by endo F even in the absence of detergents. The susceptibility of the hybrid-type alpha 1 PI to endo F is between that of the complex and the high-mannose types.  相似文献   

4.
Two different forms of alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein were found in primary cultures of rat hepatocytes. After a 2.5-h labeling period with [35S]methionine the high-mannose-type precursor of alpha 1-proteinase inhibitor (Mr 49000) and alpha 1-acid glycoprotein (Mr 39 000) and the mature-complex-type alpha 1-proteinase inhibitor (Mr 54 000) and alpha 1-acid glycoprotein (Mr 43 000-60 000) could be immunoprecipitated from the cells, but only the complex-type forms of the two glycoproteins were secreted into the hepatocyte media. When hepatocytes were incubated with the mannosidase I inhibitor 1-deoxymannojirimycin at a concentration of 4 mM, the 49 000-Mr form of alpha 1-proteinase inhibitor and the 39 000-Mr form of alpha 1-acid glycoprotein could be detected in the cells as well as in their media. Neither the secretion of alpha 1-proteinase inhibitor nor that of alpha 1-acid glycoprotein was impaired by 1-deoxymannojirimycin. While alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by control cells, were resistant to endoglucosaminidase H, alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by hepatocytes treated with 4 mM 1-deoxymannojirimycin, could be deglycosylated by endoglucosaminidase H. When the [3H]mannose-labeled oligosaccharides of alpha 1-proteinase inhibitor, secreted by 1-deoxymannojirimycin-treated hepatocytes, were cleaved off by endoglucosaminidase H and analyzed by Bio-Gel P-4 chromatography, they eluted at the position of Man9GlcNAc, indicating that mannosidase I had been efficiently inhibited. 1-Deoxymannojirimycin did not inhibit the synthesis or the cotranslational N-glycosylation of alpha 1-proteinase inhibitor or alpha 1-acid glycoprotein.  相似文献   

5.
The oligosaccharide side chains of a human anti-lipopolysaccharide IgM produced by a human-human-mouse heterohybridoma were analyzed at each of its five conserved N-glycosylation sites. This antibody also has a potential sixth N-glycosylation site in the variable region of its heavy chain which is not glycosylated. The oligosaccharides were released by digestion with various endo- and exoglycosidases and analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and fluorophore-assisted carbohydrate electrophoresis. The antibody has various complex- and hybrid-type oligosaccharide structures at Asn 171, various sialylated complex-type oligosaccharides at Asn 332 and 395, and high-mannose-type oligosaccharides at Asn 402 and 563. Of note is the presence in this human IgM of oligosaccharides containing N-glycolylneuraminic acid and N-acetylneuraminic acid in the ratio of 98:2 as determined using anion- exchange chromatography. Furthermore, we observed oligosaccharide structures containing Gal alpha (1,3)Gal that have not been reported as components of human glycoproteins.   相似文献   

6.
Immunoglobulin M is an especially important product of the immune system because it plays a critical role in early protection against infections. In this report, the glycosylation pattern of the protective murine monoclonal IgM 12A1 to Cryptococcus neoformans polysaccharide was analyzed by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Peptide mapping studies covering 88% of the deduced amino acid sequence indicated that of the six potential N-glycosylation sites in this antibody only five were utilized, as the tryptic peptide derived from monoclonal IgM 12A1 containing Asn-260 was recovered without carbohydrates. The oligosaccharide side chains of monoclonal IgM 12A1 were characterized at each of the N-glycosylation sites. Asn-166 possessed 20 monosialylated and nonsialylated, and fucosylated and nonfucosylated complex- and hybrid-type oligosaccharides and one high-mannose-type oligosaccharide. Thirteen oligosaccharides were attached to the site at Asn-401, including six complex-type, four hybrid-type, and three high-mannose-type oligosaccharides. Twelve hybrid-type oligosaccharides were attached to Asn-378, three of which had terminal sialic acids. Eleven hybrid-type oligosaccharides were attached to Asn-331, seven of which had terminal sialic acids. Only two high-mannose type oligosaccharides were attached to Asn-363. These results indicated great complexity in the structure and composition of oligosaccharides attached to individual IgM glycosylation sites.  相似文献   

7.
The effect of D-galactosamine on protein N-glycosylation was studied in rat hepatocyte primary cultures for alpha 1-antitrypsin (three complex type oligosaccharide chains) and alpha 1-acid glycoprotein (six complex type oligosaccharide chains). D-Galactosamine at a concentration of 4 mM inhibited partially de novo N-glycosylation leading to the formation of alpha 1-antitrypsin lacking one to two and of alpha 1-acid glycoprotein lacking one to five of its carbohydrate side chains. In addition D-galactosamine interfered with oligosaccharide processing, leading to the formation of some carbohydrate side chains remaining in an endoglucosaminidase H sensitive, i.e., not completely processed, form. D-Galactosamine impaired the secretion of alpha 1-antitrypsin and of alpha 1-acid glycoprotein but did not inhibit the secretion of the unglycosylated albumin. The inhibitory effect of D-galactosamine on de novo glycosylation as well as on oligosaccharide processing lasted for at least 24 h after it had been removed from the cells. D-Galactosamine impaired the glycosylation of alpha 1-antitrypsin only in hepatocytes, but not in human monocytes. Furthermore, D-galactosamine did not impair the N- and O-glycosylation of interleukin-6 in human monocytes and in MRC 5 fibroblasts. The results indicate that the effect of D-galactosamine on protein glycosylation is restricted to D-galactosamine metabolizing hepatocytes and is not exerted by the drug itself but by its metabolites.  相似文献   

8.
The glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine were used to inhibit oligosaccharide processing in primary cultures of rat hepatocytes. Their effect on the glycosylation of alpha 1-proteinase inhibitor (alpha 1PI) and alpha 1-acid glycoprotein (alpha 1AGP) was studied. Of the three glucosidase inhibitors examined, 1-deoxynojirimycin inhibited not only oligosaccharide trimming but also glycosylation de novo of newly synthesized proteins, resulting in the formation of alpha 1PI with two and three (normally carrying three) and alpha 1AGP with two to five (normally carrying six) oligosaccharide side chains. In the presence of the glucosidase inhibitors, glucosylated high-mannose-type oligosaccharides accumulated. Whereas most of the endoglucosaminidase-H-sensitive oligosaccharides formed in the presence of 1-deoxynojirimycin contained only one glucose residue, N-methyl-1-deoxynojirimycin and castanospermine led mainly to the formation of oligosaccharides with three glucose residues. None of the three glucosidase inhibitors completely prevented the formation of complex-type oligosaccharides. Thus, in their presence, alpha 1PI and alpha 1AGP with a mixture of both high-mannose and complex-type oligosaccharides were secreted.  相似文献   

9.
Cathepsin E (CE), a nonlysosomal, intracellular aspartic proteinase, exists in several molecular forms that are N-glycosylated with high-mannose and/or complex-type oligosaccharides. To investigate the role of N-glycosylation on the catalytic properties and molecular stability of CE, both natural and recombinant enzymes with distinct oligosaccharides were purified from different sources. An N-glycosylation minus mutant, that was constructed by site-directed mutagenesis (by changing asparagine residues to glutamine and aspartic acid residues at positions 73 and 305 in potential N-glycosylation sites of rat CE) and expressed in normal rat kidney cells, was also purified to homogeneity from the cell extracts. The kinetic parameters of the nonglycosylated mutant were found to be essentially equivalent to those of natural enzymes N-glycosylated with either high-mannose or complex-type oligosaccharides. In contrast, the nonglycosylated mutant showed lower pH and thermal stabilities than the glycosylated enzymes. The nonglycosylated mutant exhibited particular sensitivity to conversion to a monomeric form by 2-mercaptoethanol, as compared with those of the glycosylated enzymes. Further, the high-mannose-type enzymes were more sensitive to this agent than the complex-type proteins. A striking difference was found between the high-mannose and complex-type enzymes in terms of activation by ATP at a weakly acidic pH. At pH 5.5, the complex-type enzymes were stabilized by ATP to be restored to the virtual activity, whereas the high-mannose-type enzymes as well as the nonglycosylated mutant were not affected by ATP. These results suggest that N-glycosylation in CE is important for the maintenance of its proper folding upon changes in temperature, pH and redox state, and that the complex-type oligosaccharides contribute to the completion of the tertiary structure to maintain its active conformation in the weakly acidic pH environments.  相似文献   

10.
Lysosomal alpha-mannosidase is a broad specificity exoglycosidase involved in the ordered degradation of glycoproteins. The bovine enzyme is used as an important model for understanding the inborn lysosomal storage disorder alpha-mannosidosis. This enzyme of about 1,000 amino acids consists of five peptide chains, namely a- to e-peptides and contains eight N-glycosylation sites. The N(497) glycosylation site of the c-peptide chain is evolutionary conserved among LAMANs and is very important for the maintenance of the lysosomal stability of the enzyme. In this work, relying on an approach based on mass spectrometric techniques in combination with exoglycosidase digestions and chemical derivatizations, we will report the detailed structures of the N-glycans and their distribution within six of the eight N-glycosylation sites of the bovine glycoprotein. The analysis of the PNGase F-released glycans from the bovine LAMAN revealed that the major structures fall into three classes, namely high-mannose-type (Fuc(0-1)Glc(0-1)Man(4-9)GlcNAc(2)), hybrid-type (Gal(0-1)Man(4-5)GlcNAc(4)), and complex-type (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(3-5)) N-glycans, with core fucosylation and bisecting GlcNAc. To investigate the exact structure of the N-glycans at each glycosylation site, the peptide chains of the bovine LAMAN were separated using SDS-PAGE and in-gel deglycosylation. These experiments revealed that the N(497) and N(930) sites, from the c- and e-peptides, contain only high-mannose-type glycans Glc(0-1)Man(5-9)GlcNAc(2), including the evolutionary conserved Glc(1)Man(9)GlcNAc(2) glycan, and Fuc(0-1)Man(3-5)GlcNAc(2), respectively. Therefore, to determine the microheterogeneity within the remaining glycosylation sites, the glycoprotein was reduced, carboxymethylated, and digested with trypsin. The tryptic fragments were then subjected to concanavalin A (Con A) affinity chromatography, and the material bound by Con A-Sepharose was purified using reverse-phase high-performance liquid chromatography (HPLC). The tandem mass spectrometry (ESI-MS/MS) and the MALDI analysis of the PNGase F-digested glycopeptides indicated that (1) N(692) and N(766) sites from the d-peptide chain both bear glycans consisting of high-mannose (Fuc(0-1)Man(3-7)GlcNAc(2)), hybrid (Fuc(0-1) Gal(0-1)Man(4-5)GlcNAc(4)), and complex (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(4-5)) structures; and (2) the N(367) site, from the b-peptide chain, is glycosylated only with high-mannose structures (Fuc(0-1)Man(3-5)GlcNAc(2)). Taking into consideration the data obtained from the analysis of either the in-gel-released glycans from the abc- and c-peptides or the tryptic glycopeptide containing the N(367) site, the N(133) site, from the a-peptide, was shown to be glycosylated with truncated and high-mannose-type (Fuc(0-1)Man(4-5)GlcNAc(2)), complex-type (Fuc(0-1)Gal(0-1)Man(3)GlcNAc(5)), and hybrid-type (Fuc(0-1)Gal(0-1)Man(5)GlcNAc(4)) glycans.  相似文献   

11.
Clearance of rat C-reactive protein in vivo and by perfused liver.   总被引:1,自引:0,他引:1  
The clearance in vivo of rat C-reactive protein (CRP) was studied: (i) in the whole animal and (ii) by using a rat liver perfusion system. Rat CRP is a glycosylated serum protein containing a complex-type biantennary carbohydrate structure on each of its five subunits. The half-life of rat asialo CRP was approximately 5 min. More than 75% of the radioactivity associated with rat asialo CRP and asialo alpha 1-acid glycoprotein (AGP) was recovered in the liver. A small amount of radioactivity (0.8%) associated with rat CRP and rat asialo CRP was found in the lungs. Competitive inhibition of the clearance of 125I-labelled rat asialo CRP from the circulation by asialo AGP was dose dependent, and resulted in a corresponding decrease in the recovery of radioactivity associated with rat asialo CRP in the liver. This indicated that asialo AGP and rat asialo CRP were cleared by the hepatic asialoglycoprotein receptor. This observation was confirmed when the clearance of rat asialo CRP was studied using a rat liver perfusion system. Using this system, the clearance of rat asialo CRP and asialo AGP from the perfusate was inhibited by N-acetylgalactosamine, but not by phosphorylcholine, a ligand through which most of the CRP reactions are mediated. This study provides an example of a circulating serum glycoprotein containing a biantennary carbohydrate structure that is cleared by the asialoglycoprotein receptor.  相似文献   

12.
The threonine analog beta-hydroxynorvaline (Hnv) is an inhibitor of asparagine-linked glycosylation. In the presence of the analog hepatocytes synthesized immunoreactive alpha 1-acid glycoprotein with 0-6 oligosaccharide chains. Pulse-chase experiments were conducted to compare the rates of secretion of alpha 1-acid glycoprotein from untreated, tunicamycin-treated, and Hnv-treated cells. Partially glycosylated (1-5 oligosaccharide chains) and unglycosylated (tunicamycin-inhibited) molecules exited the cells more slowly than native alpha 1-acid glycoprotein. In addition, secretion of fully glycosylated (6 oligosaccharide chains) alpha 1-acid glycoprotein was retarded in Hnv-treated cells when compared to controls. The slowest rate of secretion was exhibited by the unglycosylated form from Hnv-treated cells. These results suggest that Hnv-induced changes either in the extent of glycosylation or in the peptide sequence of alpha 1-acid glycoprotein can interfere with its transport through the cell. The major intracellular forms of alpha 1-acid glycoprotein from control and Hnv-treated cells were endoglycosidase H-sensitive and contained Man9-8 GlcNAc2 oligosaccharide structures. The oligosaccharide chains on the secreted molecules from control and Hnv-treated cells were entirely of the endoglycosidase H-resistant, complex type.  相似文献   

13.
Recycling glycoproteins do not return to the cis-Golgi   总被引:7,自引:5,他引:2       下载免费PDF全文
Recycling of a number of glycoproteins along the site of action of mannosidase I (the distal endoplasmic reticulum/cis-Golgi) was followed in several different cell lines. Treatment of cells with 1-deoxymannojirimycin (dMM) produced high mannose oligosaccharides at positions otherwise occupied by complex-type oligosaccharides in these glycoproteins. Conversion of high-mannose-type oligosaccharides to complex oligosaccharides of proteins initially synthesized in the presence of dMM was used as a marker for recycling of glycoproteins along the site of action of dMM. In contrast to findings reported by Snider and Rogers (Snider, M. D., and O. C. Rogers. 1986. J. Cell Biol. 103:265-275), removal of dMM did not result in reconversion of high-mannose oligosaccharides to complex-type sugars, even after prolonged periods of culture. We conclude that surface glycoproteins do not recycle through the cis-medial Golgi elements.  相似文献   

14.
In mammals, clearance of desialylated serum glycoproteins to the liver is mediated by a galactose-specific hepatic lectin, the 'asialoglycoprotein receptor'. In humans, serum glycoprotein glycans are usually capped with sialic acid, which protects these proteins against hepatic uptake. However, in most other species, an additional noncharged terminal element with the structure Galalpha1-->3Galbeta1-->4R is present on glycoprotein glycans. To investigate if alpha3-galactosylated glycoproteins, just like desialylated glycoproteins, could be cleared by the hepatic lectin, the affinities of alpha3-galactosylated compounds towards this lectin were determined using an in vitro inhibition assay, and were compared with those of the parent compounds terminating in Galbeta1-->4R. Diantennary, triantennary and tetraantennary oligosaccharides that form part of N-glycans were alpha3-galactosylated to completion by use of recombinant bovine alpha3-galactosyltransferase. Similarly, desialylated alpha1-acid glycoprotein (orosomucoid) was alpha3-galactosylated in vitro. The alpha3-galactosylation of a branched, Galbeta1-->4-terminated oligosaccharide lowered its affinity for the membrane-bound lectin on whole rat hepatocytes 50-250-fold, and for the detergent-solubilized hepatic lectin 7-50-fold. In contrast, alpha3-galactosylation of asialo-alpha1-acid glycoprotein caused only a minor decrease in affinity, increasing the IC50 from 5 to 15 nM. Fully alpha3-galactosylated alpha1-acid glycoprotein, intravenously injected into the mouse, was rapidly cleared from the circulation, with a clearance rate close to that of asialo-alpha1-acid glycoprotein (t1/2 of 0.42 min vs. 0.95 min). Its uptake was efficiently inhibited by pre-injection of an excess asialo-fetuin. Organ distribution analysis showed that the injected alpha1-acid glycoprotein accumulated predominantly in the liver. Taken together, these observations suggest that serum glycoproteins that are heavily alpha3-galactosylated will be rapidly cleared from the bloodstream via the hepatic lectin. It is suggested that glycosyltransferase expression in murine hepatocytes is tightly regulated in order to prevent undesired uptake of hepatocyte-derived, circulating glycoproteins.  相似文献   

15.
The oligosaccharide chains of microheterogeneous bovine pancreatic DNAases were characterized by the lectin-nitrocellulose sheet method. The active fractions of the DNAases from column chromatography showed four major and several minor spots on a two-dimensional polyacrylamide gel. They were transferred on to nitrocellulose sheets and treated with glycosidases (neuraminidase, endo-beta-N-acetyl glucosaminidase H or F, or peptide N-glycosidase F) and treated with peroxidase-coupled lectins (concanavalin A, Ricinus communis agglutinin or wheat-germ agglutinin). From the results, the most probable oligosaccharide types were proposed to be as follows: the four major spots contained components which had high-mannose type or hybrid-type oligosaccharides, such as those susceptible to endo-beta-N-acetylglucosaminidase H. In addition, spot 1 contained a complex-type biantennary oligosaccharide without sialic acid and spot 3 contained a tri- or tetra-antennary complex-type oligosaccharide with sialic acid. The component corresponding to spot 2 had a hybrid-type oligosaccharide chain with a 'bisecting' acetylglucosamine, linked 1-4 to the beta-mannose residue of the trimannosyl core, and the component corresponding to spot 4 had a high-mannose-type oligosaccharide chain.  相似文献   

16.
Tobacco-based transient expression was employed to elucidate the impact of differential targeting to subcellular compartments on activity and quality of gastric lipase as a model for the production of recombinant glycoproteins in plants. Overall N-linked glycan structures of recombinant lipase were analyzed and for the first time sugar structures of its four individual N-glycosylation sites were determined in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) on a trypsin digest without isolation or deglycosylation of the peptides. Three glycosylation sites contain both complex-type N-glycans and high-mannose-type structures, the fourth is exclusively linked to high-mannose glycans. Although the overall pattern of glycan structures is influenced by the targeting, our results show that the type of glycans found linked to a given Asn residue is largely influenced by the physico-chemical environment of the site. The transient tobacco system combined with MALDI-TOF-MS appears to be a useful tool for the evaluation of glycoprotein production in plants.  相似文献   

17.
Application of a finger-printing method to the analysis of human milk oligosaccharides led to the finding that several oligosaccharides were missing in the milk of non-secretor or Lewis-negative individuals. This finding helped us in opening the door of elucidating the enzymatic basis of blood types in human. Based on these successful studies, a strategy to establish reliable techniques to elucidate the structures and functions of the N-linked sugar chains of glycoproteins was devised. It was to contrive enzymatic and chemical means to release quantitatively the N-linked sugar chains as oligosaccharides, and finger-print them by using appropriate methods to demonstrate the sugar pattern of a glycoprotein. These methods enabled us to determine that the N-linked sugar chains of glycoproteins can be classified into three subgroups: high mannose-type, complex-type, and hybrid-type. By comparative studies of the sugar patterns of a glycoprotein produced by different organs and different animals, occurrences of organ- and species-specific glycosylation were found in many glycoproteins. By comparative studies of the glycosylation patterns of the subunits constructing human chorionic gonadotropin and other glycoproteins, occurrence of site-directed N-glycosylation was also found, indicating that the processing and maturation of the N-linked sugar chains of a glycoprotein might be controlled by the structure of polypeptide moiety. Furthermore, these methods enabled us to elucidate the structural alteration of the sugar chains of a glycoprotein induced by diseased state of the producing cells, such as rheumatoid arthritis and malignancy. Recent studies of glycoproteins in the brain-nervous system through aging revealed that N-glycosylation of P(0) in the rat spinal cord is induced by aging. Therefore, glycobiology is expanding tremendously into fields such as pathological and gerontological research.  相似文献   

18.
We are interested in determining whether carbohydrates are important regulatory determinants in the intracellular transport and secretion of glycoproteins. In the present study, we have used swainsonine, an indolizidine alkaloid, to modify the structure of N-glycosidically linked complex oligosaccharides. By inhibiting Golgi mannosidase II, swainsonine prevents the trimming of GlcNAc(Man)5(GlcNAc)2 to GlcNAc-(Man)3(GlcNAc)2, resulting in the formation of hybrid-type oligosaccharides. We find, from pulse-chase experiments using [35S]methionine and immunoprecipitation of individual proteins from culture media, that swainsonine treatment (1 microgram/ml) accelerated the secretion of glycoproteins (transferrin, ceruloplasmin, alpha 2-macroglobulin, and alpha 1-antitrypsin) by decreasing the lag period by 10-15 min relative to untreated cultures. The enhanced secretion was specific for glycoproteins since the secretion of albumin, a nonglycoprotein, was unaffected. When alpha 1-antitrypsin was immunoprecipitated from the cell lysates, sodium dodecyl sulfate-polyacrylamide gel electrophoresis fluorographic analysis demonstrated that the conversion of the high-mannose precursor to the hybrid form in swainsonine-treated cells occurred more rapidly (by about 10 min) than the conversion to the complex form in control cells. Since both the hybrid and complex forms of alpha 1-antitrypsin are terminally sialylated by sialyltransferase in the trans-Golgi, these results suggest that swainsonine-modified glycoproteins traverse the Golgi more rapidly than their normal counterparts. Therefore, accelerated transport within this organelle may account for the decreased lag period of glycoprotein secretion in the swainsonine-treated cultures.  相似文献   

19.
Rats were given pulse injections of D-[14C]mannose and were killed at various times up to 60 min after injection. Rough, smooth, and Golgi fractions were prepared from liver, and alpha 1-acid glycoprotein was isolated from Lubrol extracts of the fractions. The kinetics of incorporation of D-[14C]mannose into total protein, Lubrol protein, and alpha 1-acid glycoprotein showed that proteins associated with rough fractions had particularly high specific radioactivities at early times of incorporation. One explanation for the kinetic data is that glycoproteins contain a high mannose content at early times of assembly of oligosaccharide chains. This idea was confirmed in the case of alpha 1-acid glycoprotein by isolation of a high mannose containing precursor species of alpha 1-acid glycoprotein from rough fractions of liver. This species contained 56 residues of hexose (mainly mannose) compared with 35 residues of hexose (roughly equal amounts of mannose and galactose) which are found in the native protein. It is proposed that the high mannose precursor is a form of alpha 1-acid glycoprotein that exists at an early stage in assembly of the glycoprotein and which contains largely unprocessed carbohydrate chains. In addition, evidence is presented from amino acid analyses and gel electrophoresis of the high mannose precursor and another fraction from which it is formed by limited tryptic treatment, that pro-forms of alpha 1-acid glycoprotein with extensions of the polypeptide chain may also exist.  相似文献   

20.
Use was made of the asialoglycoprotein receptor system in a perfused rat liver in order to study lysosomal degradation and subsequent metabolism of radioactive derivatives of asialo-ovine submaxillary mucin and asialo-alpha 1-acid glycoprotein. A trace of N-acetyl-D-[6-3H]galactosamine-labeled asialo-ovine submaxillary (4 micrograms) was completely taken up by the tissue in less than 20 min. After 3 h 24% of the radioactivity from the mucin reappeared on newly synthesized serum glycoproteins that were secreted into the perfusate. [6-3H] Galactose asialo-alpha 1-acid glycoprotein was also rapidly cleared by the liver; however, after 3 h greater than 60% of the radioactivity derived from this sugar labeled glycoprotein was secreted back into the perfusate as [3H]glucose. Rat livers perfused with 0.15 mM beta-D-galactopyranosylmethyl-p-nitrophenyltriazene lost 90% of their beta-D-galactosidase activity within 1 h while other representative glycosidases showed no change as followed by hydrolysis of p-nitrophenylglycosides. Livers pretreated with this triazene compound metabolized [3H]GalNAc asialo-ovine submaxillary mucin normally but were unable to process [3H]Gal asialo-alpha 1-acid glycoprotein as evidenced by a complete inhibition of [3H]glucose release following addition of the latter substrate. Metabolism of N-acetyl[14C]glucosamine asialo-alpha 1-acid glycoprotein was similarly inhibited by 70%. 125I-labeled asialo-alpha 1-acid glycoprotein catabolism was not affected by the chemically induced beta-D-galactosidase deficiency. Subcellular fractionation of inhibitor-treated livers accumulating radioactive carbohydrate showed the majority of the label was associated with a fraction enriched in lysosomes. Analysis of the trapped radioactivity by high resolution Bio-Gel P-4 chromatography revealed nearly intact oligosaccharides minus only the reducing N-acetylglucosamine of the chitobiose core. Direct comparison of these sugar chains with those isolated from human and canine GM1 gangliosidosis liver by silicic acid thin layer chromatography showed those isolated from rat liver to be identical to the major subset of oligosaccharides found in the human disease. In similar experiments in which the galactosyl triazene was replaced by swainsonine, an alpha-D-mannosidase inhibitor, catabolism of [14C]GlcNAc asialo-alpha 1-acid glycoprotein resulted in the accumulation of a single oligosaccharide of the structure. Man3[14C]GlcNAc1. These results demonstrate an endo-N-acetyl-beta-D-glucosaminidase is active in rat liver lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号