首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
The relationship between pelagic larval duration (PLD) and population connectivity in marine fishes has been controversial, but most studies to date have focused on tropical taxa. Here, we examine PLD in 11 species of triplefin fishes from a temperate environment in the Hauraki Gulf, New Zealand, to describe daily increment patterns and settlement marks in the otoliths. The formation of daily increments was validated using larvae of known age and tetracycline marking of settled juveniles. Settlement mark identity was verified by comparing total increment counts from otoliths of recently settled fishes with PLD counts from post-settlement fishes. A similar pattern of three groups of increments across the otolith was found in all specimens examined. The settlement mark was similar in all species and occurred as a sharp drop in increment width within the area of transition in optical density. PLD was lengthy, compared to species of triplefins from elsewhere, and ranged between 54.4 ± 1.7 SE days in Bellapiscis lesleyae to 86.4 ± 2.6 SE days in Forsterygion malcolmi. Variation in PLD within species was high but did not mask interspecific differences. PLD was not phylogenetically constrained, as sister species differed significantly in PLD. PLD was compared with genetic population connectivity for eight of the study species using mitochondrial gene flow data from Hickey, Lavery, Hannan, Baker, Clements. Mol Ecol 18:680–696 (2009). The observed lack of correlation between PLD and gene flow suggests that dispersal is limited by other factors, such as larval behaviour and the availability of settlement habitat.  相似文献   

2.
Ecological and life history characteristics such as population size, dispersal pattern, and mating system mediate the influence of genetic drift and gene flow on population subdivision. Bull trout (Salvelinus confluentus) and mountain whitefish (Prosopium williamsoni) differ markedly in spawning location, population size and mating system. Based on these differences, we predicted that bull trout would have reduced genetic variation within and greater differentiation among populations compared with mountain whitefish. To test this hypothesis, we used microsatellite markers to determine patterns of genetic divergence for each species in the Clark Fork River, Montana, USA. As predicted, bull trout had a much greater proportion of genetic variation partitioned among populations than mountain whitefish. Among all sites, FST was seven times greater for bull trout (FST = 0.304 for bull trout, 0.042 for mountain whitefish. After removing genetically differentiated high mountain lake sites for each species FST, was 10 times greater for bull trout (FST = 0.176 for bull trout; FST = 0.018 for mountain whitefish). The same characteristics that affect dispersal patterns in these species also lead to predictions about the amount and scale of adaptive divergence among populations. We provide a theoretical framework that incorporates variation in ecological and life history factors, neutral divergence, and adaptive divergence to interpret how neutral and adaptive divergence might be correlates of ecological and life history factors.  相似文献   

3.
The hypothesis that pelagic larval duration (PLD) influences range size in marine species with a benthic adult stage and a pelagic larval period is intuitively attractive; yet, studies conducted to date have failed to support it. A possibility for the lack of a relationship between PLD and range size may stem from the failure of past studies to account for the effect of species evolutionary ages, which may add to the dispersal capabilities of species. However, if dispersal over ecological (i.e. PLD) and across evolutionary (i.e. species evolutionary age) time scales continues to show no effect on range size then an outstanding question is why? Here we collected data on PLD, evolutionary ages and range sizes of seven tropical fish families (five families were reef‐associated and two have dwell demersal habitats) to explore the independent and interactive effects of PLD and evolutionary age on range size. Separate analyses on each family showed that even after controlling for evolutionary age, PLD has an insignificant or a very small effect on range size. To shed light on why dispersal has such a limited effect on range size, we developed a global ocean circulation model to quantify the connectivity among tropical reefs relative to the potential dispersal conferred by PLD. We found that although there are several areas of great isolation in the tropical oceans, most reef habitats are within the reach of most species given their PLDs. These results suggest that the lack of habitat isolation can potentially render the constraining effect of dispersal on range size insignificant and explain why dispersal does not relate to range size in reef fishes.  相似文献   

4.
Dispersal, gene flow, and population structure   总被引:35,自引:0,他引:35  
The accuracy of gene flow estimates is unknown in most natural populations because direct estimates of dispersal are often not possible. These estimates can be highly imprecise or even biased because population genetic structure reflects more than a simple balance between genetic drift and gene flow. Most of the models used to estimate gene flow also assume very simple patterns of movement. As a result, multiple interpretations of population structure involving contemporary gene flow, departures from equilibrium, and other factors are almost always possible. One way to isolate the relative contribution of gene flow to population genetic differentiation is to utilize comparative methods. Population genetic statistics such as FST, heterozygosity and Nei's D can be compared between species with differing dispersal abilities if these species are otherwise phylogenetically, geographically and demographically comparable. Accordingly, the available literature was searched for all groups that meet these criteria to determine whether broad conclusions regarding the relationships between dispersal, population genetic structure, and gene flow estimates are possible. Allozyme and mtDNA data were summarized for 27 animal groups in which dispersal differences can be characterized. In total, genetic data were obtained for 333 species of vertebrates and invertebrates from terrestrial, freshwater and marine habitats. Across these groups, dispersal ability was consistently related to population structure, with a mean rank correlation of -0.72 between ranked dispersal ability and FST. Gene flow estimates derived from private alleles were also correlated with dispersal ability, but were less widely available. Direct-count heterozygosity and average values of Nei's D showed moderate degrees of correlation with dispersal ability. Thus, despite regional, taxonomic and methodological differences among the groups of species surveyed, available data demonstrate that dispersal makes a measurable contribution to population genetic differentiation in the majority of animal species in nature, and that gene flow estimates are rarely so overwhelmed by population history, departures from equilibrium, or other microevolutionary forces as to be uninformative.  相似文献   

5.
Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions and evidence. We explore latitudinal differences in (i) biological (e.g. species composition, spawning mode, pelagic larval duration, PLD), (ii) physical (e.g. water movement, habitat fragmentation), and (iii) biophysical factors (primarily temperature, which could strongly affect development, swimming ability or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature and larval swimming, and each difference could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat and geographical region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.  相似文献   

6.
The influence of pelagic larval duration (PLD) and egg type dispersal capabilities of 35 demersal and pelagic-spawning tropical fish species is examined in relation to their abundance on the temperate coasts of Japan. The PLDs of pelagic spawners were significantly longer than those of demersal spawners, and a high occurrence of pelagic spawners on the temperate coasts suggests that these fishes are more easily transported to temperate coasts than demersal spawners. For demersal spawners, the common species on the temperate coasts had significantly longer PLDs than the rare species; this suggests that PLD is a major factor influencing the distribution patterns of tropical demersal spawners on temperate coasts. Moreover, a negative correlation between PLD and the abundance of some species of pelagic and demersal spawners suggests the presence of reproductively active fishes in northern subtropical and even in temperate waters.  相似文献   

7.
Freshwater species on tropical islands face localized extinction and the loss of genetic diversity. Their habitats can be ephemeral due to variability in freshwater run‐off and erosion. Even worse, anthropogenic effects on these ecosystems are intense. Most of these species are amphidromous or catadromous (i.e. their life cycle includes a marine larval phase), which buffers them against many of these effects. A long pelagic larval duration (PLD) was thought to be critical to ensure the colonization and persistence in tropical islands, but recent findings indicated that several species with short PLDs are successful in those ecosystems. To test the potential of a short PLD in maintaining genetic connectivity and forestalling extirpation, we studied Kuhlia rupestris, a catadromous fish species with an extensive distribution in the western Pacific and Indian Oceans. Using a combination of molecular genetic markers (13 microsatellite loci and two gene regions from mtDNA) and modelling of larval dispersal, we show that a short PLD constrains genetic connectivity over a wide geographical range. Molecular markers showed that the short PLD did not prevent genetic divergence through evolutionary time and speciation has occurred or is occurring. Modelling of larvae dispersal suggested limited recent connectivity between genetically homogeneous populations across the Coral Sea. However, a short PLD can maintain connectivity on a subocean basin scale. Conservation and management of tropical diadromous species needs to take into account that population connectivity may be more limited than previously suspected in those species.  相似文献   

8.
With anthropogenic impacts rapidly advancing into deeper waters, there is growing interest in establishing deep‐sea marine protected areas (MPAs) or reserves. Reserve design depends on estimates of connectivity and scales of dispersal for the taxa of interest. Deep‐sea taxa are hypothesized to disperse greater distances than shallow‐water taxa, which implies that reserves would need to be larger in size and networks could be more widely spaced; however, this paradigm has not been tested. We compiled population genetic studies of deep‐sea fauna and estimated dispersal distances for 51 studies using a method based on isolation‐by‐distance slopes. Estimates of dispersal distance ranged from 0.24 km to 2028 km with a geometric mean of 33.2 km and differed in relation to taxonomic and life‐history factors as well as several study parameters. Dispersal distances were generally greater for fishes than invertebrates with the Mollusca being the least dispersive sampled phylum. Species that are pelagic as adults were more dispersive than those with sessile or sedentary lifestyles. Benthic species from soft‐substrate habitats were generally less dispersive than species from hard substrate, demersal or pelagic habitats. As expected, species with pelagic and/or feeding (planktotrophic) larvae were more dispersive than other larval types. Many of these comparisons were confounded by taxonomic or other life‐history differences (e.g. fishes being more dispersive than invertebrates) making any simple interpretation difficult. Our results provide the first rough estimate of the range of dispersal distances in the deep sea and allow comparisons to shallow‐water assemblages. Overall, dispersal distances were greater for deeper taxa, although the differences were not large (0.3–0.6 orders of magnitude between means), and imbalanced sampling of shallow and deep taxa complicates any simple interpretation. Our analyses suggest the scales of dispersal and connectivity for reserve design in the deep sea might be comparable to or slightly larger than those in shallow water. Deep‐sea reserve design will need to consider the enormous variety of taxa, life histories, hydrodynamics, spatial configuration of habitats and patterns of species distributions. The many caveats of our analyses provide a strong impetus for substantial future efforts to assess connectivity of deep‐sea species from a variety of habitats, taxonomic groups and depth zones.  相似文献   

9.
10.
Genetic structure within marine species may be driven by local adaptation to their environment, or alternatively by historical processes, such as geographic isolation. The gulfs and seas bordering the Arabian Peninsula offer an ideal setting to examine connectivity patterns in coral reef fishes with respect to environmental gradients and vicariance. The Red Sea is characterized by a unique marine fauna, historical periods of desiccation and isolation, as well as environmental gradients in salinity, temperature, and primary productivity that vary both by latitude and by season. The adjacent Arabian Sea is characterized by a sharper environmental gradient, ranging from extensive coral cover and warm temperatures in the southwest, to sparse coral cover, cooler temperatures, and seasonal upwelling in the northeast. Reef fish, however, are not confined to these seas, with some Red Sea fishes extending varying distances into the northern Arabian Sea, while their pelagic larvae are presumably capable of much greater dispersal. These species must therefore cope with a diversity of conditions that invoke the possibility of steep clines in natural selection. Here, we test for genetic structure in two widespread reef fish species (a butterflyfish and surgeonfish) and eight range‐restricted butterflyfishes across the Red Sea and Arabian Sea using genome‐wide single nucleotide polymorphisms. We performed multiple matrix regression with randomization analyses on genetic distances for all species, as well as reconstructed scenarios for population subdivision in the species with signatures of isolation. We found that (a) widespread species displayed more genetic subdivision than regional endemics and (b) this genetic structure was not correlated with contemporary environmental parameters but instead may reflect historical events. We propose that the endemic species may be adapted to a diversity of local conditions, but the widespread species are instead subject to ecological filtering where different combinations of genotypes persist under divergent ecological regimes.  相似文献   

11.
Faurby S  Barber PH 《Molecular ecology》2012,21(14):3419-3432
Increasing dispersal duration should result in increasing dispersal distance, facilitating higher gene flow among populations. As such, it has long been predicted that genetic structure (e.g. F(ST) ) among populations of marine species should be strongly correlated with pelagic larval duration (PLD). However, previous studies have repeatedly shown a surprisingly poor correspondence. This result has been frequently interpreted as evidence for larval behaviours or physical oceanographic processes that result in larvae failing to reach their dispersal potential, or error inherent in estimating PLD and F(ST) . This study employed a computer modelling approach to explore the impacts of various uncertainties on the correlation between measures of genetic differentiation such as F(ST) and PLD. Results indicate that variation resulting from PLD estimation error had minor impacts on the correlation between genetic structure and PLD. However, variation in effective population size between species, errors in F(ST) estimation and non-equilibrium F(ST) values all had major impacts, resulting in dramatically weaker correlations between PLD and F(ST) . These results suggest that poor correlations between PLD and F(ST) may result from variation and uncertainty in the terms associated with the calculation of F(ST) values. As such, PLD may be a much stronger determinant of realized larval dispersal than suggested by the weak-to-moderate correlations between PLD and F(ST) reported in empirical studies.  相似文献   

12.
Rockfishes (Sebastes spp.) represent a speciose and ecologically important group of marine fishes found in both the Pacific and Atlantic oceans, with approximately 105 species found world-wide (Hyde and Vetter 2007). They also comprise the majority of species found in the Pacific groundfish fishery. Thorough species assessments in terms of harvest management have been done for only 11 species, and of the 11 species, seven have been declared overfished. Having accurate genetic information is critical to the continuing effort at stock assessments, but sampling is often difficult in marine fishes. Genetic techniques are a powerful tool in the effort to better characterize the ecology of these species. These techniques can be used to investigate multiple biological traits, including species identity, intra- and interspecific genetic variation, migration patterns, and effective population size. There are important caveats and limitations when applying specific genetic methods, especially in marine species that lack discrete spawning aggregates. Nevertheless, it is clear from a review of recent literature that genetic tools have already provided very specific insight regarding rockfish population dynamics. The results are diverse and difficult to synthesize; however, existing studies show five primary patterns to population groupings in rockfishes: no obvious pattern of structure, structure consistent with isolation by distance, structure evident but inconsistent with isolation by distance, structure that correlates to oceanographic features, and potential genetic introgression. Clearly the study of rockfish population genetics is poised for rapid expansion that will unquestionably aid management of the rockfish fisheries and general understanding of rockfish evolutionary systematics. A principle challenge at this point is to derive generalized inferences from such a diverse array of study results across the vast North Pacific range of Sebastes. This review summarizes existing genetic studies in Sebastes spp. in the North Pacific to assist in identifying knowledge gaps for this ecologically important and diverse group.  相似文献   

13.
The persistence and resilience of marine populations in the face of disturbances is directly affected by connectivity among populations. Thus, understanding the magnitude and pattern of connections among populations and the temporal variation in these patterns is critical for the effective management and conservation of marine species. Despite recent advances in our understanding of marine connectivity, few empirical studies have directly measured the magnitude or pattern of connections among populations of marine fishes, and none have explicitly investigated temporal variation in demographic connectivity. We use genetic assignment tests to track the dispersal of 456 individual larval fishes to quantify the extent of connectivity, dispersal, self-recruitment and local retention within and among seven populations of a coral reef fish (Stegastes partitus) over a three-year period. We found that some larvae do disperse long distances (~200 km); however, self-recruitment was a regular phenomenon. Importantly, we found that dispersal distances, self-recruitment, local retention and the pattern of connectivity varied significantly among years. Our data highlight the unpredictable nature of connectivity, and underscore the need for more, temporally replicated, empirical measures of connectivity to inform management decisions.  相似文献   

14.
Dispersal is thought to be an important process determining range size, especially for species in highly spatially structured habitats, such as tropical reef fishes. Despite intensive research efforts, there is conflicting evidence about the role of dispersal in determining range size. We hypothesize that traits related to dispersal drive range sizes, but that complete and comprehensive datasets are essential for detecting relationships between species’ dispersal ability and range size. We investigate the roles of six traits affecting several stages of dispersal (adult mobility, spawning mode, pelagic larval duration (PLD), body size, aggregation behavior, and circadian activity), in explaining range size variation of reef fishes in the Tropical Eastern Pacific (TEP). All traits, except for PLD (148 species), had data for all 497 species in the region. Using a series of statistical models, we investigated which traits were associated with large range sizes, when analyzing all TEP species or only species with PLD data. Furthermore, using null models, we analyzed whether the PLD‐subset is representative of the regional species pool. Several traits affecting dispersal ability were strongly associated with range size, although these relationships could not be detected when using the PLD‐subset. Pelagic spawners (allowing for passive egg dispersal) had on average 56% larger range sizes than nonpelagic spawners. Species with medium or high adult mobility had on average a 25% or 33% larger range, respectively, than species with low mobility. Null models showed that the PLD‐subset was nonrepresentative of the regional species pool, explaining why model outcomes using the PLD‐subset differed from the ones based on the complete dataset. Our results show that in the TEP, traits affecting dispersal ability are important in explaining range size variation. Using a regionally complete dataset was crucial for detecting the theoretically expected, but so far empirically unresolved, relationship between dispersal and range size.  相似文献   

15.
Gene flow within and between social groups is contingent on behaviourally mediated patterns of mating and dispersal. To understand how these patterns affect the genetic structure of primate populations, long-term data are required. In this study, we analyse 10 years of demographic and genetic data from a wild lemur population (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar. Our goal is to specify how patterns of mating and dispersal determine kinship and genetic diversity among animals in the population. Specifically, we use microsatellite, parentage, and census data to obtain estimates of genetic subdivision (FST), within group homozygosity (FIS), and relatedness (r) within and among social groups in the population. We analyse different classes of individuals (i.e. adults, offspring, males, females) separately in order to discern which classes most strongly influence aspects of population structure. Microsatellite data reveal that, across years, offspring are consistently more heterozygous than expected within social groups (FIS mean = -0.068) while adults show both positive and negative deviations from expected genotypic frequencies within groups (FIS mean = 0.003). Offspring cohorts are more genetically subdivided than adults (FST mean = 0.108 vs. 0.052) and adult females are more genetically subdivided than adult males (FST mean = 0.098 vs. 0.046). As the proportion of females in social groups increases, the proportion of offspring sired by resident males decreases. Offspring are characterized by a heterozygote excess as resident males (vs. nonresident males) sire the majority of offspring within groups. We link these genetic data to patterns of female philopatry, male dispersal, exogamy, and offspring sex-ratio. Overall, these data reveal how mating and dispersal tactics influence the genetic population structure in this species.  相似文献   

16.
What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2 = 0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2 = 0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaìi marine species may be generated by demographic variability due to species‐specific abundance and migration patterns and/or seascape and historical factors.  相似文献   

17.
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well‐connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean‐warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph‐theoretical approach based on centrality (eigenvector and distance‐weighted fragmentation) of habitat patches can help design better‐connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation‐only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.  相似文献   

18.
Knouft JH 《Oecologia》2004,139(3):408-417
Many taxonomic and ecological assemblages of species exhibit a right-skewed body size-frequency distribution when characterized at a regional scale. Although this distribution has been frequently described, factors influencing geographic variation in the distribution are not well understood, nor are mechanisms responsible for distribution shape. In this study, variation in the species body size-frequency distributions of 344 regional communities of North American freshwater fishes is examined in relation to latitude, species richness, and taxonomic composition. Although the distribution of all species of North American fishes is right-skewed, a negative correlation exists between latitude and regional community size distribution skewness, with size distributions becoming left-skewed at high latitudes. This relationship is not an artifact of the confounding relationship between latitude and species richness in North American fishes. The negative correlation between latitude and regional community size distribution skewness is partially due to the geographic distribution of families of fishes and apparently enhanced by a nonrandom geographic distribution of species within families. These results are discussed in the context of previous explanations of factors responsible for the generation of species size-frequency distributions related to the fractal nature of the environment, energetics, and evolutionary patterns of body size in North American fishes.  相似文献   

19.
Climatic changes during the quaternary history in Arctic regions have shaped the genetic variation and genealogies of Arctic species. Several studies have been conducted in recent years on genetic diversity of Arctic organisms, but marine fishes are largely underrepresented in these studies. Here, we present a study on mitochondrial variation in three Arctic gadoids: Arctic cod (Arctogadus glacialis), Greenland cod (Gadus ogac), and Polar cod (Boreogadus saida). In addition, geographic variation in Polar cod is presented. The sequence variation at the mtDNA presents similar patterns as observed for other related marine fishes. Variation in these three species reflects rather different historic processes, due to colonization and climatic changes than differences in life histories. In Polar cod, a deeper genealogy is observed and variation is dependent on both latitude and longitude. The deep genealogy indicates either admixture of separate lineages or a population, which has been stable in size during alternating cold and warm periods of the pleistocene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Duration of the pelagic phase of benthic marine fishes has been related to dispersal distance, with longer pelagic larval duration (PLD) expected to result in greater dispersal potential. Here, we examine PLDs of 2 species of coral-reef butterflyfish (Chaetodon auriga and C. flavirostris) across latitudes (14°S–37°S) along the Great Barrier Reef into south-eastern Australia; we predict that PLD will be higher for fish collected below the breeding latitudes of 24°S. For C. auriga, apart from significantly longer PLDs at Lord Howe Island and Jervis Bay (means of 54 and 52 days, respectively), all locations had similar PLDs (mean 41 days). For C. flavirostris, there was no significant location effect on PLD (mean 41.5 days); however, PLD at Lord Howe Island was 58 days with high variance precluding significance. Also, there was no significant variation in PLD among years for either species despite considerable variation in East Australian Current strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号