首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Hic-5 is a paxillin homologue with four LIM domains in its C-terminal region, localized mainly in focal adhesions in normal fibroblasts. Hic-5 is also known to associate with focal adhesion kinase (FAK) or the related CAKbeta, and with vinculin. In the present study, we examined changes in Hic-5 and paxillin protein levels in primary mouse embryo fibroblasts (MEF) during mortal and immortal stages. The Hic-5 level was markedly decreased when cells became immortalized, whereas that of paxillin was increased. The vinculin level was not changed significantly. Hic-5 was mainly localized in focal adhesion plaques of mortal MEF but was localized in the nuclear periphery in the immortalized MEF; the number of focal adhesion plaques was decreased in these cells. Mouse Hic-5 contains three LD domains in its N-terminal half, and the first LD domain (LD1) appears to be involved in interaction with FAK. However, this interaction was not essential for recruitment of Hic-5 to focal adhesions, since its subcellular localization was similar in FAK(-/-) cells. Forced expression of Hic-5 decreased colony forming ability of MEF from FAK(+/+) mice, but not of FAK(-/-) cells. These observations suggested the involvement of Hic-5 in determination of cellular proliferative capacity in collaboration with other cytoskeletal components.  相似文献   

2.
Hic-5 is a paxillin homologue that is localized to focal adhesion complexes. Hic-5 and paxillin share structural homology and interacting factors such as focal adhesion kinase (FAK), Pyk2/CAKbeta/RAFTK, and PTP-PEST. Here, we showed that Hic-5 inhibits integrin-mediated cell spreading on fibronectin in a competitive manner with paxillin in NIH 3T3 cells. The overexpression of Hic-5 sequestered FAK from paxillin, reduced tyrosine phosphorylation of paxillin and FAK, and prevented paxillin-Crk complex formation. In addition, Hic-5-mediated inhibition of spreading was not observed in mouse embryo fibroblasts (MEFs) derived from FAK(-/-) mice. The activity of c-Src following fibronectin stimulation was decreased by about 30% in Hic-5-expressing cells, and the effect of Hic-5 was restored by the overexpression of FAK and the constitutively active forms of Rho-family GTPases, Rac1 V12 and Cdc42 V12, but not RhoA V14. These observations suggested that Hic-5 inhibits cell spreading through competition with paxillin for FAK and subsequent prevention of downstream signal transduction. Moreover, expression of antisense Hic-5 increased spreading in primary MEFs. These results suggested that the counterbalance of paxillin and Hic-5 expression may be a novel mechanism regulating integrin-mediated signal transduction.  相似文献   

3.
The focal adhesion kinase (FAK) and cell adhesion kinase beta (CAKbeta, PYK2, CADTK, RAFTK) are highly homologous FAK family members, yet clearly have unique roles in the cell. Comparative analyses of FAK and CAKbeta have revealed intriguing differences in their activities. These differences were investigated further through the characterization of a set of FAK/CAKbeta chimeric kinases. CAKbeta exhibited greater catalytic activity than FAK in vitro, providing a molecular basis for differential substrate phosphorylation by FAK and CAKbeta in vivo. Furthermore, the N terminus may regulate catalytic activity since chimeras containing the FAK N terminus and CAKbeta catalytic domain exhibited a striking high level of catalytic activity and substrate phosphorylation. Unexpectedly, a modulatory role for the N termini in subcellular localization was also revealed. Chimeras containing the FAK N terminus and CAKbeta C terminus localized to focal adhesions, whereas chimeras containing the N and C termini of CAKbeta did not. Finally, prominent changes in cell morphology were induced upon expression of chimeras containing the CAKbeta N terminus, which were not associated with apoptotic cell death, cell cycle progression delay, or changes in Rho activity. These results demonstrate novel regulatory roles for the N terminus of FAK family kinases.  相似文献   

4.
CAKbeta (cell adhesion kinase beta)/PYK2 (proline-rich tyrosine kinase 2) is the second protein-tyrosine kinase of the FAK (focal adhesion kinase) subfamily. It is different from FAK in that it is activated following an increase in cytoplasmic free Ca2+. In the present study we have investigated how Ca2+ activates CAKbeta/PYK2. Calmodulin-agarose bound CAKbeta/PYK2, but not FAK, in the presence of CaCl2. An alpha-helix (F2-alpha2) present in the FERM (band four-point-one, ezrin, radixin, moesin homology) F2 subdomain of CAKbeta/PYK2 was the binding site of Ca2+/calmodulin; a mutant of this region, L176A/Q177A (LQ/AA) CAKbeta/PYK2, bound to Ca2+/calmodulin much less than the wild-type. CAKbeta/PYK2 is known to be prominently tyrosine phosphorylated when overexpressed from cDNA. The enhanced tyrosine phosphorylation was inhibited by W7, an inhibitor of calmodulin, and by a cell-permeable Ca2+ chelator and was almost defective in the LQ/AA-mutant CAKbeta/PYK2. CAKbeta/PYK2 formed a homodimer on binding of Ca2+/calmodulin, which might then induce a conformational change of the kinase, resulting in transphosphorylation within the dimer. The dimer was formed at a free-Ca2+ concentration of 8-12 muM and was stable at 500 nM Ca2+, but dissociated to a monomer in a Ca2+-free buffer. The dimer formation of CAKbeta/PYK2 FERM domain was partially defective in the LQ/AA-mutant FERM domain and was blocked by W7 and by a synthetic peptide with amino acids 168-188 of CAKbeta/PYK2, but not by a peptide with its LQ/AA-mutant sequence. It is known that the F2-alpha2 helix is found immediately adjacent to a hydrophobic pocket in the FERM F2 lobe, which locks, in the autoinhibited FAK, the C-lobe of the kinase domain. Our results indicate that Ca2+/calmodulin binding to the FERM F2-alpha2 helix of CAKbeta/PYK2 releases its kinase domain from autoinhibition by forming a dimer.  相似文献   

5.
Protein-tyrosine phosphatase (PTP)-PEST is a cytoplasmic tyrosine phosphatase that can bind and dephosphorylate the focal adhesion-associated proteins p130(CAS) and paxillin. Focal adhesion kinase (FAK) and cell adhesion kinase beta (CAKbeta)/PYK2/CADTK/RAFTK are protein-tyrosine kinases that can colocalize with, bind to, and induce tyrosine phosphorylation of p130(CAS) and paxillin. Thus, we considered the possibility that these kinases might be substrates for PTP-PEST. Using a combination of substrate-trapping assays and overexpression of PTP-PEST in mammalian cells, CAKbeta was found to be a substrate for PTP-PEST. Both the major autophosphorylation site of CAKbeta (Tyr(402)) and activation loop tyrosine residues, Tyr(579) and Tyr(580), were targeted for dephosphorylation by PTP-PEST. Dephosphorylation of CAKbeta by PTP-PEST dramatically inhibited CAKbeta kinase activity. In contrast, FAK was a poor substrate for PTP-PEST, and treatment with PTP-PEST had no effect on FAK kinase activity. Tyrosine phosphorylation of paxillin, which is greatly enhanced by CAKbeta overexpression, was dramatically reduced upon coexpression of PTP-PEST. Finally, endogenous PTP-PEST and endogenous CAKbeta were found to localize to similar cellular compartments in epithelial and smooth muscle cells. These results suggest that CAKbeta is a substrate of PTP-PEST and that FAK is a poor PTP-PEST substrate. Further, PTP-PEST can negatively regulate CAKbeta signaling by inhibiting the catalytic activity of the kinase.  相似文献   

6.
We have cloned three cDNA isoforms of focal adhesion kinase (FAK) from the sea urchin, Lytechinus variegatus. The sea urchin FAK is more closely related to FAK from other deuterostomes than from invertebrate protostomes or to cell adhesion kinase beta (CAKbeta/Pyk2/FAK2). FAK is expressed in all cells of sea urchin embryos by the 120-cell stage and strongly in blastulae. Phospho-FAK concentrates on basal surfaces of epithelial cells in early blastulae and occurs in syncytial cables of primary mesenchyme cells (PMC). Inhibition of FAK by constructs of FAK-related non-kinase delays blastocoel expansion and early PMC ingression. These results suggest that FAK has roles in cell adhesion and in the shape and integrity of the epithelial cells in sea urchin embryos.  相似文献   

7.
hic-5 was originally isolated as an H(2)O(2)-inducible cDNA clone whose product was normally found at focal adhesions. In this study, we found that Hic-5 accumulated in the nucleus in response to oxidants such as H(2)O(2). Other focal adhesion proteins including paxillin, the most homologous to Hic-5, remained in the cytoplasm. Mutation analyses revealed that the C- and N-terminal halves of Hic-5 contributed to its nuclear localization in a positive and negative manner, respectively. After the finding that leptomycin B (LMB), an inhibitor of nuclear export signal (NES), caused Hic-5 to be retained in the nucleus, Hic-5 was demonstrated to harbor NES in the N-terminal, which was sensitive to oxidants, thereby regulating the nuclear accumulation of Hic-5. NES consisted of a leucine-rich stretch and two cysteines with a limited similarity to Yap/Pap-type NES. In the nucleus, Hic-5 was suggested to participate in the gene expression of c-fos. Using dominant negative mutants, we found that Hic-5 was actually involved in endogenous c-fos gene expression upon H(2)O(2) treatment. Hic-5 was thus proposed as a focal adhesion protein with the novel aspect of shuttling between focal adhesions and the nucleus through an oxidant-sensitive NES, mediating the redox signaling directly to the nucleus.  相似文献   

8.
PYK2/CAKbeta is a recently described cytoplasmic tyrosine kinase related to p125 focal adhesion kinase (p125(FAK)) that can be activated by a number of stimuli including growth factors, lipids, and some G protein-coupled receptors. Studies suggest PYK2/CAKbeta may be important for coupling various G protein-coupled receptors to the mitogen-activated protein kinase (MAPK) cascade. The hormone neurotransmitter cholecystokinin (CCK) is known to activate both phospholipase C-dependent cascades and MAPK signaling pathways; however, the relationship between these remain unclear. In rat pancreatic acini, CCK-8 (10 nM) rapidly stimulated tyrosine phosphorylation and activation of PYK2/CAKbeta by both activation of high affinity and low affinity CCK(A) receptor states. Blockage of CCK-stimulated increases in protein kinase C activity or CCK-stimulated increases in [Ca(2+)](i), inhibited by 40-50% PYK2/CAKbeta but not p125(FAK) tyrosine phosphorylation. Simultaneous blockage of both phospholipase C cascades inhibited PYK2/CAKbeta tyrosine phosphorylation completely and p125(FAK) tyrosine phosphorylation by 50%. CCK-8 stimulated a rapid increase in PYK2/CAKbeta kinase activity assessed by both an in vitro kinase assay and autophosphorylation. Total PYK2/CAKbeta under basal conditions was largely localized (77 +/- 7%) in the membrane fraction, whereas total p125(FAK) was largely localized (86 +/- 3%) in the cytosolic fraction. With CCK stimulation, both p125(FAK) and PYK2/CAKbeta translocated to the plasma membrane. Moreover CCK stimulation causes a rapid formation of both PYK2/CAKbeta-Grb2 and PYK2/CAKbeta-Crk complexes. These results demonstrate that PYK2/CAKbeta and p125(FAK) are regulated differently by CCK(A) receptor stimulation and that PYK2/CAKbeta is probably an important mediator of downstream signals by CCK-8, especially in its ability to activate the MAPK signaling pathway, which possibly mediates CCK growth effects in normal and neoplastic tissues.  相似文献   

9.
Hic-5 is a focal adhesion LIM protein serving as a scaffold in integrin signaling. The protein comprises four LD domains in its N-terminal half and four LIM domains in its C-terminal half with a nuclear export signal in LD3 and is shuttled between the cytoplasmic and nuclear compartments. In this study, immunoprecipitation and in vitro cross-linking experiments showed that Hic-5 homo-oligomerized through its most C-terminal LIM domain, LIM4. Strikingly, paxillin, the protein most homologous to Hic-5, did not show this capability. Gel filtration analysis also revealed that Hic-5 differs from paxillin in that it has multiple forms in the cellular environment, and Hic-5 but not paxillin was capable of hetero-oligomerization with a LIM-only protein, PINCH, another molecular scaffold at focal adhesions. The fourth LIM domain of Hic-5 and the fifth LIM domain region of PINCH constituted the interface for the interaction. The complex included integrin-linked kinase, a binding partner of PINCH, which also interacted with Hic-5 through the region encompassing the pleckstrin homology-like domain and LIM domains of Hic-5. Of note, Hic-5 marginally affected the subcellular distribution of PINCH but directed its shuttling between the cytoplasmic and nuclear compartments in the presence of integrin-linked kinase. Uncoupling of the two signaling platforms of Hic-5 and PINCH through interference with the hetero-oligomerization resulted in impairment of cellular growth. Hic-5 is, thus, a molecular scaffold with the potential to dock with another scaffold through the LIM domain, organizing a mobile supramolecular unit and coordinating the adhesion signal with cellular activities in the two compartments.  相似文献   

10.
The calcium-dependent tyrosine kinase (CADTK), also known as Pyk2/RAFTK/CAKbeta/FAK2, is a cytoskeleton-associated tyrosine kinase. We compared CADTK regulation with that of the highly homologous focal adhesion tyrosine kinase (FAK). First, we generated site-specific CADTK mutants. Mutation of Tyr402 eliminated autophosphorylation and significantly decreased kinase activity. Mutation of Tyr881, a putative Src kinase phosphorylation site predicted to bind Grb2, had little effect on CADTK regulation. Src family tyrosine kinases resulted in CADTK tyrosine phosphorylation even when co-expressed with the Tyr402/Tyr881 double mutant, suggesting that Src/Fyn etc. phosphorylate additional tyrosine residues. Interestingly, CADTK tyrosine-phosphorylated FAK when both were transiently expressed, but FAK did not phosphorylate CADTK. Biochemical experiments confirmed direct CADTK phosphorylation of FAK. This phosphorylation utilized tyrosine residues other than Tyr397, Tyr925, or Tyr576/Tyr577, suggesting that new SH2-binding sites might be created by CADTK-dependent FAK phosphorylation. Last, expression of the CADTK carboxyl terminus (CRNK) abolished CADTK but not FAK autophosphorylation. In contrast, FAK carboxyl terminus overexpression inhibited both FAK and CADTK autophosphorylation, suggesting that a FAK-dependent cytoskeletal function may be necessary for CADTK activation. Thus, CADTK and FAK, which both bind to some, but not necessarily the same, cytoskeletal elements, may be involved in coordinate regulation of cytoskeletal structure and signaling.  相似文献   

11.
《The Journal of cell biology》1996,134(5):1323-1332
Integrins alpha v beta 3 and alpha v beta 5 both mediate cell adhesion to vitronectin yet trigger different postligand binding events. Integrin alpha v beta 3 is able to induce cell spreading, migration, angiogenesis, and tumor metastasis without additional stimulators, whereas alpha v beta 5 requires exogenous activation of protein kinase C (PKC) to mediate these processes. To investigate this difference, the ability of beta 3 or beta 5 to induce colocalization of intracellular proteins was assessed by immunofluorescence in hamster CS-1 melanoma cells. We found that alpha v beta 5 induced colocalization of talin, alpha-actinin, tensin, and actin very weakly relative to alpha v beta 3. alpha v beta 5 was able to efficiently induce colocalization of focal adhesion kinase (FAK); however, it was unable to increase phosphorylation of FAK on tyrosine. Activation of PKC by adding phorbol ester to alpha v beta 5-expressing cells induced spreading, increased colocalization of alpha-actinin, tensin, vinculin, p130cas and actin, and triggered tyrosine phosphorylation of FAK. Unexpectedly, talin colocalization remained low even after activation of PKC. Treatment of cells with the PKC inhibitor calphostin C inhibited spreading and the colocalization of talin, alpha-actinin, tensin, and actin for both alpha v beta 3 and alpha v beta 5. We conclude that PKC regulates localization of cytoskeletal proteins and phosphorylation of FAK induced by alpha v beta 5. Our results also show that FAK can be localized independent of its phosphorylation and that cells can spread and induce localization of other focal adhesion proteins in the absence of detectable talin.  相似文献   

12.
Focal adhesions play a critical role as centers that transduce signals by cell-matrix interactions and regulate fundamental processes such as proliferation, migration, and differentiation. Focal adhesion kinase (FAK), paxillin, integrin-linked kinase (ILK), and hydrogen peroxide–inducible clone-5 (Hic-5) are major proteins that contribute to these events. In this study, we investigated the expression of focal adhesion proteins in the developing rat kidney. Western blotting analysis revealed that the protein levels of FAK, p-FAK397, paxillin, p-paxillin118, and Hic-5 were high in embryonic kidneys, while ILK expression persisted from the embryonic to the mature stage. Immunohistochemistry revealed that FAK, p-FAK397, paxillin, and p-paxillin118 were strongly expressed in condensed mesenchymal cells and the ureteric bud. They were detected in elongating tubules and immature glomerular cells in the nephrogenic zone. Hic-5 was predominantly expressed in mesenchymal cells as well as immature glomerular endothelial and mesangial cells, suggesting that Hic-5 might be involved in mesenchymal cell development. ILK expression was similar to that of FAK in the developmental stages. Interestingly, ILK was strongly expressed in podocytes in mature glomeruli. ILK might play a role in epithelial cell differentiation as well as kidney growth and morphogenesis. In conclusion, the temporospatially regulated expression of focal adhesion proteins during kidney development might play a role in morphogenesis and cell differentiation.  相似文献   

13.
《The Journal of cell biology》1995,130(5):1181-1187
The integrins have recently been implicated in signal transduction. A likely mediator of integrin signaling is focal adhesion kinase (pp125FAK or FAK), a structurally distinct protein tyrosine kinase that becomes enzymatically activated upon engagement of integrins with their ligands. A second candidate signaling molecule is paxillin, a focal adhesion associated, cytoskeletal protein that coordinately becomes phosphorylated on tyrosine upon activation of pp125FAK. Paxillin physically complexes with two protein tyrosine kinases, pp60src and Csk (COOH-terminal src kinase), and the oncoprotein p47gag-crk, each of which could function as part of a paxillin signaling complex. Using an in vitro assay we have established that the cytoplasmic domain of the beta 1 integrin can bind to paxillin and pp125FAK from chicken embryo cell lysates. The NH2-terminal, noncatalytic domain of pp125FAK can bind directly to the cytoplasmic tail of beta 1 and recognizes integrin sequences distinct from those involved in binding to alpha-actinin. Paxillin binding is independent of pp125FAK binding despite the fact that both bind to the same region of beta 1. These results demonstrate that the cytoplasmic domain of the beta subunits of integrins contain binding sites for both signaling molecules and structural proteins suggesting that integrins can coordinate the generation of cytoplasmic signals in addition to their role in anchoring components of the cytoskeleton.  相似文献   

14.
15.
16.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

17.
18.
FAK nuclear export signal sequences   总被引:2,自引:0,他引:2  
Ossovskaya V  Lim ST  Ota N  Schlaepfer DD  Ilic D 《FEBS letters》2008,582(16):2402-2406
Ubiquitously expressed focal adhesion kinase (FAK), a critical component in transducing signals from sites of cell contacts with extracellular matrix, was named after its typical localization in focal adhesions. A nuclear localization of FAK has been also reported and its scaffolding role in nucleus and requirement for p53 ubiquitination were only recently described. Whereas FAK nuclear localization signal (NLS) was found in F2 lobe of FERM domain, nuclear export signal (NES) sequences have not been yet determined. Here we demonstrate that FAK has two NES sequences, NES1 in F1 lobe of FERM domain and NES2 in kinase domain. Although, both NES1 and NES2 are evolutionary conserved, and present as well in FAK-related protein kinase Pyk2, only NES2 demonstrates full biological nuclear export activity.  相似文献   

19.
20.
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C(2)C(12) myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5alpha and Hic-5beta, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results in a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5alpha is permissive to differentiation while expression of either Hic-5beta or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C(2)C(12) myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号