首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hepatocyte growth factor (HGF) is a potent epithelial mitogen whose actions are mediated through its receptor, the proto-oncogene c-Met. Two truncated variants of HGF known as NK1 and NK2 have been reported to be competitive inhibitors of HGF binding to c-Met, and to function as HGF antagonists (Lokker, N.A., and P.J. Godowski. 1993. J. Biol. Chem. 268: 17145-17150; Chan, A.M., J.S. Rubin, D.P. Bottaro, D.W. Hirschfield, M. Chedid, and S.A. Aaronson. 1991. Science (Wash. DC). 254:1382-1387). We show here, however, that NK1 acts as a partial agonist in mink lung cells. Interestingly, NK1, which is an HGF antagonist in hepatocytes in normal conditions, was converted to a partial agonist by adding heparin to the culture medium. The interaction of NK1 and heparin was further studied in BaF3 cells, which express little or no cell surface heparan sulfate proteoglycans. In BaF3 cells transfected with a plasmid encoding human c-Met, heparin and NK1 synergized to stimulate DNA synthesis and cell proliferation. There was no effect of heparin on the IL-3 sensitivity of BaF3-hMet cells, and no effect of NK1 plus heparin in control BaF3 cells, indicating that the response was specific and mediated through c-Met. The naturally occurring HGF splice variant NK2 also stimulated DNA synthesis in mink lung cells and exerted a heparin-dependent effect on BaF3-hMet cells, but not on BaF3-neo cells. The activating effect of heparin was mimicked by a variety of sulfated glycosaminoglycans. Mechanistic studies revealed that heparin increased the binding of NK1 to BaF3-hMet cells, stabilized NK1, and induced dimerization of NK1. Based on these studies, we propose that the normal agonist activity of NK1 and NK2 in mink lung cells is due to an activating interaction with an endogenous glycosaminoglycan. Consistent with that model, a large portion of the NK1 binding to mink lung cells could be blocked by heparin. Moreover, a preparation of glycosaminoglycans from the surface of mink lung cells induced dimerization of NK1. These data show that the activity of NK1 and NK2 can be modulated by heparin and other related glycosaminoglycans to induce proliferation in cells expressing c-Met.  相似文献   

2.
Hepatocyte growth factor (HGF) is a secreted, heparan sulfate (HS) glycosaminoglycan-binding protein that stimulates mitogenesis, motogenesis, and morphogenesis in a wide array of cellular targets, including hepatocytes and other epithelial cells, melanocytes, endothelial cells, and hematopoietic cells. NK1 is an alternative HGF isoform that consists of the N-terminal (N) and first kringle (K1) domains of full-length HGF and stimulates all major HGF biological activities. Within NK1, the N domain retains the HS binding properties of full-length HGF and mediates HS-stimulated ligand oligomerization but lacks significant mitogenic or motogenic activity. In contrast, K1 does not bind HS, but it stimulates receptor and mitogen-activated protein kinase activation, mitogenesis, and motogenesis, demonstrating that structurally distinct and dissociable domains of HGF are the primary mediators of HS binding and receptor activation. Despite the absence of HS-K1 binding, K1 mitogenic activity in HS-negative cells is strictly dependent on added soluble heparin, whereas K1-stimulated motility is not. We also found that, like the receptors for fibroblast growth factors, the HGF receptor c-Met binds tightly to HS. These data suggest that HS can facilitate HGF signaling through interaction with c-Met that is independent of HGF-HS interaction and that the recruitment of specific intracellular effectors that mediate distinct HGF responses such as mitogenesis and motility is regulated by HS-c-Met interaction at the cell surface.  相似文献   

3.
HGF/SF-met signaling in the control of branching morphogenesis and invasion   总被引:22,自引:0,他引:22  
Hepatocyte growth factor/Scatter factor (HGF/SF) is a multifunctional growth factor which can induce diverse biological events. In vitro, these include scattering, invasion, proliferation and branching morphogenesis. In vivo, HGF/SF is responsible for many processes during embryonic development and a variety of activities in adults, and many of these normal activities have been implicated in its role in tumorgenesis and metastasis. The c-Met receptor tyrosine kinase is the only known receptor for HGF/SF and mediates all HGF/SF induced biological activities. Upon HGF/SF stimulation, the c-Met receptor is tyrosine-phosphorylated which is followed by the recruitment of a group of signaling molecules and/or adaptor proteins to its cytoplasmic domain and its multiple docking sites. This action leads to the activation of several different signaling cascades that form a complete network of intra and extracellular responses. Different combinations of signaling pathways and signaling molecules and/or differences in magnitude of responses contribute to these diverse series of HGF/SF-Met induced activities and most certainly are influenced by cell type as well as different cellular environments. In this review, we focus on HGF/SF-induced branching morphogenesis and invasion, and bring together recent new findings which provide insight into how HGF/SF, via c-Met induces this response.  相似文献   

4.
The structural basis of ligand-induced dimerization of the receptor tyrosine kinase MET by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is not well understood. However, interesting insight into the molecular mechanism of MET dimerization has emerged from crystal structures of MET in complex with a bacterial agonist, the invasion protein internalin B (InlB) from pathogenic Listeria monocytogenes. MET activation by InlB promotes uptake of bacteria into host cells. Structural and biophysical data suggest that InlB is monomeric on its own but dimerizes upon binding to the membrane-anchored MET receptor promoting the formation of a signaling active 2:2 complex. The dimerization interface is small and unusually located on the convex side of the curved InlB leucine-rich repeat (LRR) domain. As InlB does not dimerize in solution, the dimerization site could only be identified by studying packing contacts of InlB in various crystal forms and had to be proven by scrutinizing its biological relevance in cellular assays. InlB dimerization is thus an example of a low-affinity contact that appears irrelevant in solution but becomes physiologically significant in the context of 2-dimensional diffusion restricted to the membrane plane. The resulting 2:2 InlB:MET complex has an InlB dimer at its center with one MET molecule bound peripherally to each InlB. This model of ligand-mediated MET dimerization may serve as a blue-print to understand MET activation by NK1, a naturally occurring HGF/SF splice variant and MET agonist. Crystal structures of NK1 repeatedly show a NK1 dimer, in which residues implicated in MET-binding are located on the outside. Thus, MET dimerization by NK1 may also be ligand-mediated with a NK1 dimer at the center of the 2:2 complex with one MET molecule bound peripherally to each NK1. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

5.
Hepatocyte growth factor/scatter factor (HGF/SF), the ligand for the receptor tyrosine kinase encoded by the c-Met proto-oncogene, is a multidomain protein structurally related to the pro-enzyme plasminogen and with major roles in development, tissue regeneration and cancer. We have expressed the N-terminal (N) domain, the four kringle domains (K1 to K4) and the serine proteinase homology domain (SP) of HGF/SF individually in yeast or mammalian cells and studied their ability to: (i) bind the Met receptor as well as heparan sulphate and dermatan sulphate co-receptors, (ii) activate Met in target cells and, (iii) map their binding sites onto the beta-propeller domain of Met. The N, K1 and SP domains bound Met directly with comparable affinities (K(d)=2.4, 3.3 and 1.4 microM). The same domains also bound heparin with decreasing affinities (N>K1>SP) but only the N domain bound dermatan sulphate. Three kringle domains (K1, K2 and K4) displayed agonistic activity on target cells. In contrast, the N and SP domains, although capable of Met binding, displayed no or little activity. Further, cross-linking experiments demonstrated that both the N domain and kringles 1-2 bind the beta-chain moiety (amino acid residues 308-514) of the Met beta-propeller. In summary, the K1, K2 and K4 domains of HGF/SF are sufficient for Met activation, whereas the N and SP domains are not, although the latter domains contribute additional binding sites necessary for receptor activation by full length HGF/SF. The results provide new insights into the structure/function of HGF/SF and a basis for engineering the N and K1 domains as receptor antagonists for cancer therapy.  相似文献   

6.
肝细胞生长因子(HGF)是一种具有多重功能的细胞调控因子。HGF与其受体Met酪氨酸激酶(c-Met)的结合可激发多种生物学反应,从而调节细胞的增殖、分化、形态发生和侵袭运动等。有多种因素参与了HGF/c-Met信号传导的调控,从而防止信号的过度放大,其中Cbl1、Rab、泛素化激酶和HGF/c-Met的内吞等发挥了重要的作用。因此,对HGF/c-Met内吞过程的研究,了解内吞对于HGF/c-Met的信号传导及其调控的影响,探讨HGF/c-Met信号传导通路的调控机理和相互作用模式,可进一步阐明HGF/c-Met信号传导的调控机制,从而验证肝细胞中内吞作用直接调节HGF/c-Met信号通路的作用机制。  相似文献   

7.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

8.
NK1 is a splice variant of the polypeptide growth factor HGF/SF, which consists of the N-terminal (N) and first kringle (K) domain and requires heparan sulfate or soluble heparin for activity. We describe two X-ray crystal structures of NK1-heparin complexes that define a heparin-binding site in the N domain, in which a major role is played by R73, with further contributions from main chain atoms of T61, K63 and G79 and the side chains of K60, T61, R76, K62 and K58. Mutagenesis experiments demonstrate that heparin binding to this site is essential for dimerization in solution and biological activity of NK1. Heparin also comes into contact with a patch of positively charged residues (K132, R134, K170 and R181) in the K domain. Mutation of these residues yields NK1 variants with increased biological activity. Thus, we uncover a complex role for heparan sulfate in which binding to the primary site in the N domain is essential for biological activity whereas binding to the K domain reduces activity. We exploit the interaction between heparin and the K domain site in order to engineer NK1 as a potent receptor agonist and suggest that dual (positive and negative) control may be a general mechanism of heparan sulfate-dependent regulation of growth factor activity.  相似文献   

9.
Activation of hepatocyte growth factor/scatter factor (HGF/SF) is a critical limiting step in the HGF/SF-induced signaling pathway mediated by MET receptor tyrosine kinase. Although HGF/SF-MET signaling could have potentially important roles in the invasive growth of tumors and tumor angiogenesis, little is known about the regulation of HGF/SF activation in the tumor tissues. This activation occurs in the extracellular milieu caused by proteolytic cleavage at the bond between Arg194-Val195 in the single-chain HGF precursor to generate the active two-chain heterodimeric form. Here we show that activation of HGF/SF is significantly enhanced in colorectal carcinoma tissues compared with normal colorectal mucosa, and HGF activator (HGFA), a recently identified factor XII-like serine proteinase, is critically involved in this process. Furthermore, we also show that HGF activator inhibitor type 1 (HAI-1) should have an important regulatory role in the pericellular activation of HGF/SF having diverse roles acting as a cell surface specific inhibitor of active HGFA and a reservoir of this enzyme on the cell surface. The latter property might paradoxically ensure the concentrated pericellular HGFA activity in certain cellular conditions in which shedding of HAI-1/HGFA complex from the plasma membrane is upregulated.  相似文献   

10.
肝细胞生长因子(hepatocyte growth factor, HGF)是一种多功能的细胞因子,其生物学活性由c-Met蛋白所介导.HGF/c-Met信号通路在肿瘤生成、侵袭、转移以及肿瘤新生血管生成方面起重要促进作用. 因此, HGF/c-Met信号转导通路可以作为抗肿瘤药物设计的靶点.其中,HGF-α链N端447个氨基酸组成的NK4蛋白是HGF的特异性拮抗剂,它不仅通过抑制HGF/c-Met系统的信号转导发挥抗肿瘤效应;而且可以通过拮抗HGF和其它血管生成因子如成纤维细胞生长因子(fibroblast growth factors, FGF)、血管内皮生长因子(vascular endothelial growth factor, VEGF)的活性,进而抑制肿瘤新生血管生成,最终导致肿瘤细胞的凋亡.NK4的这种双重抗肿瘤功能使其成为一类很有前景的新型抗肿瘤药物.本文就NK4对肿瘤的抑制作用及其机制的研究进展进行综述.  相似文献   

11.
The role of SF/HGF and c-Met in the development of skeletal muscle   总被引:13,自引:0,他引:13  
Hypaxial skeletal muscles develop from migratory and non-migratory precursor cells that are generated by the lateral lip of the dermomyotome. Previous work shows that the formation of migratory precursors requires the c-Met and SF/HGF genes. We show here that in mice lacking c-Met or SF/HGF, the initial development of the dermomyotome proceeds appropriately and growth and survival of cells in the dermomyotome are not affected. Migratory precursors are also correctly specified, as monitored by the expression of Lbx1. However, these cells remain aggregated and fail to take up long range migration. We conclude that parallel but independent cues converge on the migratory hypaxial precursors in the dermomyotomal lip after they are laid down: a signal given by SF/HGF that controls the emigration of the precursors, and an as yet unidentified signal that controls Lbx1. SF/HGF and c-Met act in a paracrine manner to control emigration, and migratory cells only dissociate from somites located close to SF/HGF-expressing cells. During long range migration, prolonged receptor-ligand-interaction appears to be required, as SF/HGF is expressed both along the routes and at the target sites of migratory myogenic progenitors. Mice that lack c-Met die during the second part of gestation due to a placental defect. Rescue of the placental defect by aggregation of tetraploid (wild type) and diploid (c-Met-/-) morulae allows development of c-Met mutant animals to term. They lack muscle groups that derive from migratory precursor cells, but display otherwise normal skeletal musculature.  相似文献   

12.
Strategies that antagonize growth factor signaling are attractive candidates for the biological therapy of brain tumors. HGF/NK2 is a secreted truncated splicing variant and potential antagonist of scatter factor/hepatocyte growth factor (SF/HGF), a multifunctional cytokine involved in the malignant progression of solid tumors including glioblastoma. U87 human malignant glioma cells that express an autocrine SF/HGF stimulatory loop were transfected with the human HGF/NK2 cDNA and clonal cell lines that secrete high levels of HGF/NK2 protein (U87-NK2) were isolated. The effects of HGF/NK2 gene transfer on the U87 malignant phenotype were examined. HGF/NK2 gene transfer had no effect on 2-dimensional anchorage-dependent cell growth. In contrast, U87-NK2 cell lines were approximately 20-fold less clonogenic in soft agar and approximately 4-fold less migratory than control-transfected cell lines. Intracranial tumor xenografts derived from U87-NK2 cells grew much slower than controls. U87-NK2 tumors were approximately 50-fold smaller than controls at 21 days post-implantation and HGF/NK2 gene transfer resulted in a trend toward diminished tumorigenicity. This report shows that the predominant effect of transgenic HGF/NK2 overexpression by glioma cells that are autocrine for SF/HGF stimulation is to inhibit their malignant phenotype.  相似文献   

13.
14.
Hepatocyte growth factor (HGF), the ligand for the receptor tyrosine kinase c-Met, is composed of an alpha-chain containing four Kringle domains (K1-K4) and a serine protease domain-like beta-chain. Receptor activation by HGF is contingent upon prior proteolytic conversion of the secreted inactive single chain form (pro-HGF) into the biologically active two chain form by a single cleavage at the Arg(494)-Val(495) bond. By screening a panel of serine proteases we identified two new HGF activators, plasma kallikrein and coagulation factor XIa (FXIa). The concentrations of kallikrein and FXIa to cleave 50% (EC(50)) of (125)I-labeled pro-HGF during a 4-h period were 10 and 17 nm. Unlike other known activators, both FXIa and kallikrein processed pro-HGF by cleavage at two sites. Using N-terminal sequencing they were identified as the normal cleavage site Arg(494)-Val(495) and the novel site Arg(424)-His(425) located in the K4 domain of the alpha-chain. The identity of this unusual second cleavage site was firmly established by use of the double mutant HGF(R424A/R494E), which was completely resistant to cleavage by kallikrein and FXIa. Experiments with another mutant form, HGF(Arg(494) --> Glu), indicated that cleavage at the K4 site was independent of a prior cleavage at the primary, kinetically preferred Arg(494)-Val(495) site. The cleavage at the K4 site had no obvious consequences on HGF function, because it was fully capable of phosphorylating the c-Met receptor of A549 cells. This may be explained by the disulfide bond network in K4, which holds the cleaved alpha-chain together. In conclusion, the ability of plasma kallikrein and FXIa to activate pro-HGF in vitro raises the possibility that mediators of inflammation and blood coagulation may also regulate processes that involve the HGF/c-Met pathway, such as tissue repair and angiogenesis.  相似文献   

15.
EDA-containing fibronectin (EDA + FN) is selectively produced under several physiological and pathological conditions requiring tissue remodeling, where cells actively proliferate and migrate. Only a few growth factors, such as transforming growth factor (TGF)-beta1, have been reported to regulate FN splicing at the EDA region. In the present study, we showed for the first time that hepatocyte growth factor/scatter factor (HGF/SF), which is mainly produced by mesenchymal cells and functions as a motogenic and mitogenic factor for epithelial cells, modulates FN splicing at the EDA region in MDCK epithelial cells. HGF/SF treatment increased the ratio of EDA + FN mRNA to mRNA of FN that lacks EDA (EDA - FN) (EDA+/EDA- ratio) more than TGF-beta1 treatment did: at a range from 0.02 to 20 ng/ml, HGF/SF increased the ratio in a dose-dependent manner by up to 2. 1-fold compared with nontreated control, while TGF-beta1 stimulated the EDA+/EDA- ratio by 1.5-fold at the optimum dose of 10 ng/ml. However, TGF-beta1 increased total FN mRNA levels by 3-fold at 10 ng/ml, but HGF/SF did not. We previously demonstrated that fibroblasts cultured at low cell density expressed more EDA + FN than those at high cell density. The same effect of cell density was also observed in MDCK cells. Furthermore, at low cell density, HGF/SF stimulated EDA inclusion into FN mRNA more effectively than did TGF-beta1, whereas at high cell density, TGF-beta1 was more potent than HGF/SF. Simultaneous treatment of cells with HGF/SF and TGF-beta1 synergistically stimulated EDA inclusion into FN mRNA. This stimulation of EDA inclusion into FN mRNA by HGF/SF led to increased EDA + FN protein production and secretion by cells, which was demonstrated by immunoblotting. Thus, our studies have shown that HGF/SF is an enhancer of EDA inclusion into FN mRNA as is TGF-beta1. However, these two factors were different in their effects at low and high cell densities and also in their effects on total FN mRNA levels.  相似文献   

16.
The extracellular protease urokinase is known to be crucially involved in morphogenesis, tissue repair and tumor invasion by mediating matrix degradation and cell migration. Hepatocyte growth factor/scatter factor (HGF/SF) is a secretory product of stromal fibroblasts, sharing structural motifs with enzymes of the blood clotting cascade, including a zymogen cleavage site. HGF/SF promotes motility, invasion and growth of epithelial and endothelial cells. Here we show that HGF/SF is secreted as a single-chain biologically inactive precursor (pro-HGF/SF), mostly found in a matrix-associated form. Maturation of the precursor into the active alpha beta heterodimer takes place in the extracellular environment and results from a serum-dependent proteolytic cleavage. In vitro, pro-HGF/SF was cleaved at a single site by nanomolar concentrations of pure urokinase, generating the active mature HGF/SF heterodimer. This cleavage was prevented by specific urokinase inhibitors, such as plasminogen activator inhibitor type-1 and protease nexin-1, and by antibodies directed against the urokinase catalytic domain. Addition of these inhibitors to HGF/SF responsive cells prevented activation of the HGF/SF precursor. These data show that urokinase acts as a pro-HGF/SF convertase, and suggest that some of the growth and invasive cellular responses mediated by this enzyme may involve activation of HGF/SF.  相似文献   

17.
Germline missense mutations in the tyrosine kinase domain of the hepatocyte growth factor/scatter factor (HGF/SF) receptor, c-Met, are thought to be responsible for hereditary papillary renal carcinoma (HPRC) type 1, a form of human kidney cancer. In addition to extensive linkage analysis of HPRC families localizing the HPRC type 1 gene within chromosome 7, the demonstration that individual c-Met mutations reconstituted in cultured cells display enhanced and dysregulated kinase activity, and confer cell transformation and tumorigenicity in mice, solidifies this conclusion. Our prior knowledge of HGF/SF biology and c-Met signaling enabled rapid progress in unraveling the molecular pathogenesis of HPRC type 1, and in laying the framework for the development of novel therapeutics for the treatment of this cancer. At the same time, the study of HPRC type 1 has refined our appreciation of the oncogenic potential of c-Met signaling, and challenges our current understanding of HGF/SF and c-Met function in health and disease.  相似文献   

18.
The role of heparin as an anticoagulant is well defined; however, its role in tumorigenesis and tumor progression is not clear yet. Some studies have shown that anticoagulant treatment in cancer patients improve overall survival, however, recent clinical trials have not shown a survival benefit in cancer patients receiving heparin treatment. In our previous studies we have shown the inhibitory effects of heparin on Hepatocyte Growth Factor (HGF)-induced invasion and migration in hepatocellular carcinoma (HCC) cells. In this study, we showed the differential effects of heparin on the behaviors of HCC cells based on the presence or absence of HGF. In the absence of HGF, heparin activated HGF/c-Met signaling and promoted motility and invasion in HCC cells. Heparin treatment led to c-Met receptor dimerization and activated c-Met signaling in an HGF independent manner. Heparin-induced c-Met activation increased migration and invasion through ERK1/2, early growth response factor 1 (EGR1) and Matrix Metalloproteinases (MMP) axis. Interestingly, heparin modestly decreased the proliferation of HCC cells by inhibiting activatory phosphorylation of Akt. The inhibition of c-Met signaling reversed heparin-induced increase in motility and invasion and, proliferation inhibition. Our study provides a new perspective into the role of heparin on c-Met signaling in HCC.  相似文献   

19.
Contact inhibition, the inhibition of cell proliferation by tight cell-cell contact is a fundamental characteristic of normal cells. Using primary cultured hepatocytes, we investigated the mechanisms of contact inhibition that decrease the mitogenic activity of hepatocyte growth factor (HGF), focusing on the regulation of c-Met/HGF-receptor activation. In hepatocytes cultured at a sparse cell density, HGF stimulation induced prolonged c-Met tyrosine phosphorylation for over 5 h and a marked mitogenic response. In contrast, HGF stimulation induced transient c-Met tyrosine phosphorylation in <3 h and failed to induce mitogenic response in hepatocytes cultured at a confluent cell density. Treatment of the confluent cells with HGF plus orthovanadate, a broad spectrum protein-tyrosine phosphatase inhibitor, however, prolonged c-Met tyrosine phosphorylation for over 5 h and permitted the subsequent mitogenic response. The mitogenic response to HGF was associated with the duration of c-Met tyrosine phosphorylation even in the sparse cells. We found that the activity and expression of the protein-tyrosine phosphatase LAR increased following HGF stimulation specifically in confluent hepatocytes and not in sparse hepatocytes. LAR and c-Met were associated, and purified LAR dephosphorylated tyrosine-phosphorylated c-Met in in vitro phosphatase reactions. Furthermore, antisense oligonucleotides specific for LAR mRNA suppressed the expression of LAR, allowed prolonged c-Met tyrosine phosphorylation, and led to acquisition of a mitogenic response in hepatocytes even under the confluent condition. Thus functional association of LAR and c-Met underlies the inhibition of c-Met-mediated mitogenic signaling through the dephosphorylation of c-Met, which specifically occurs under the confluent condition.  相似文献   

20.
Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号