首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Iron regulatory proteins (IRPs) are iron-regulated RNA binding proteins that, along with iron-responsive elements (IREs), control the translation of a diverse set of mRNA with 5′ IRE. Dysregulation of IRP action causes disease with etiology that may reflect differential control of IRE-containing mRNA. IREs are defined by a conserved stem–loop structure including a midstem bulge at C8 and a terminal CAGUGH sequence that forms an AGU pseudo-triloop and N19 bulge. C8 and the pseudo-triloop nucleotides make the majority of the 22 identified bonds with IRP1. We show that IRP1 binds 5′ IREs in a hierarchy extending over a ninefold range of affinities that encompasses changes in IRE binding affinity observed with human L-ferritin IRE mutants. The limits of this IRE binding hierarchy are predicted to arise due to small differences in binding energy (e.g., equivalent to one H-bond). We demonstrate that multiple regions of the IRE stem not predicted to contact IRP1 help establish the binding hierarchy with the sequence and structure of the C8 region displaying a major role. In contrast, base-pairing and stacking in the upper stem region proximal to the terminal loop had a minor role. Unexpectedly, an N20 bulge compensated for the lack of an N19 bulge, suggesting the existence of novel IREs. Taken together, we suggest that a regulatory binding hierarchy is established through the impact of the IRE stem on the strength, not the number, of bonds between C8 or pseudo-triloop nucleotides and IRP1 or through their impact on an induced fit mechanism of binding.  相似文献   

4.
5.
Iron-responsive elements (IREs), a natural group of mRNA-specific sequences, bind iron regulatory proteins (IRPs) differentially and fold into hairpins [with a hexaloop (HL) CAGUGX] with helical distortions: an internal loop/bulge (IL/B) (UGC/C) or C-bulge. C-bulge iso-IREs bind IRP2 more poorly, as oligomers (n = 28-30), and have a weaker signal response in vivo. Two trans-loop GC base pairs occur in the ferritin IRE (IL/B and HL) but only one in C-bulge iso-IREs (HL); metal ions and protons perturb the IL/B [Gdaniec et al. (1998) Biochemistry 37, 1505-1512]. IRE function (translation) and physical properties (T(m) and accessibility to nucleases) are now compared for IL/B and C-bulge IREs and for HL mutants. Conversion of the IL/B into a C-bulge by a single deletion in the IL/B or by substituting the HL CG base pair with UA both derepressed ferritin synthesis 4-fold in rabbit reticulocyte lysates (IRP1 + IRP2), confirming differences in IRP2 binding observed for the oligomers. Since the engineered C-bulge IRE was more helical near the IL/B [Cu(phen)(2) resistant] and more stable (T(m) increased) and the HL mutant was less helical near the IL/B (ribonuclease T1 sensitive) and less stable (T(m) decreased), both CG trans-loop base pairs contribute to maximum IRP2 binding and translational regulation. The (1)H NMR spectrum of the Mg-IRE complex revealed, in contrast to the localized IL/B effects of Co(III) hexaammine observed previously, perturbation of the IL/B plus HL and interloop helix. The lower stability and greater helix distortion in the ferritin IL/B-IRE compared to the C-bulge iso-IREs create a combinatorial set of RNA/protein interactions that control protein synthesis rates with a range of signal sensitivities.  相似文献   

6.
Iron responsive elements (IREs) are short stem-loop structures found in several mRNAs encoding proteins involved in cellular iron metabolism. Iron regulatory proteins (IRPs) control iron homeostasis through differential binding to the IREs, accommodating any sequence or structural variations that the IREs may present. Here we report the structure of IRP1 in complex with transferrin receptor 1 B (TfR B) IRE, and compare it to the complex with ferritin H (Ftn H) IRE. The two IREs are bound to IRP1 through nearly identical protein-RNA contacts, although their stem conformations are significantly different. These results support the view that binding of different IREs with IRP1 depends both on protein and RNA conformational plasticity, adapting to RNA variation while retaining conserved protein-RNA contacts.  相似文献   

7.
Messenger RNA (mRNA) regulatory elements often form helices specifically distorted by loops or bulges, which control protein synthesis rates in vitro. Do such three-dimensional RNA structures form in vivo? We now observe formation of the internal loop/bulge (IL/B structure) in the IRE (iron-responsive element) of ferritin mRNA expressed in HeLa cells, using radical cleavage with Cu-phen (Cu-1,10-phenantholine), and protection of the loop/bulge by the regulatory protein (IRP), expressed by cotransfection. Cu-phen, a metal coordination complex (MC) selected because of binding and cleavage at the IL/B in solution, recognized the same site in mRNA in HeLa cells. Endogenous reductants apparently substituted for the sulfhydryl activation of Cu-phen cleavage in solution. Selective RNA IL/B recognition by Cu-phen in vivo is emphasized by resistance to cleavage of a mutated, IL/B IRE in ferritin mRNA. Development of small MCs even more selective than Cu-phen can exploit three-dimensional mRNA or viral RNA structures in vivo to manipulate RNA function. Formation in vivo of the IL/B in the ferritin IRE, which is associated in vitro with greater repression than single IRE structures in other mRNAs, likely contributes to larger derepression of ferritin synthesis in vivo triggered by signals for the IRE/IRP system.  相似文献   

8.
Popovic Z  Templeton DM 《The FEBS journal》2007,274(12):3108-3119
Iron regulatory protein-1 binding to the iron-responsive element of mRNA is sensitive to iron, oxidative stress, NO, and hypoxia. Each of these agents changes the level of intracellular ATP, suggesting a link between iron levels and cellular energy metabolism. Furthermore, restoration of iron regulatory protein-1 aconitase activity after NO removal has been shown to require mitochondrial ATP. We demonstrate here that the iron-responsive element-binding activity of iron regulatory protein is ATP-dependent in HepG2 cells. Iron cannot decrease iron regulatory protein binding activity in cell extracts if they are simultaneously treated with an uncoupler of oxidative phosphorylation. Physiologic concentrations of ATP inhibit iron-responsive element/iron regulatory protein binding in cell extracts and binding of iron-responsive element to recombinant iron regulatory protein-1. ADP has the same effect, in contrast to the nonhydrolyzable analog adenosine 5'-(beta,gamma-imido)triphosphate, indicating that in order to inhibit iron regulatory protein-1 binding activity, ATP must be hydrolyzed. Indeed, recombinant iron regulatory protein-1 binds ATP with a Kd of 86+/-17 microM in a filter-binding assay, and can be photo-crosslinked to azido-ATP. Upon binding, ATP is hydrolyzed. The kinetic parameters [Km=5.3 microM, Vmax=3.4 nmol.min(-1).(mg protein)(-1)] are consistent with those of a number of other ATP-hydrolyzing proteins, including the RNA-binding helicases. Although the iron-responsive element does not itself hydrolyze ATP, its presence enhances iron regulatory protein-1's ATPase activity, and ATP hydrolysis results in loss of the complex in gel shift assays.  相似文献   

9.
10.
We have looked for genes for ferritin and its translational control protein that could account for anomalies in the expression of ferritin (FT) and the transferrin receptor in the duodenum of individuals with hemochromatosis (HC). We show that there are probably only two FTH-like sequences near the HC locus on the short arm of chromosome 6 and no FTL-like sequences. We report the cloning of the previously uncharacterized FTH sequence from 6p (FTHL15) and show that it is probably a processed pseudogene. This gene has been mapped with a panel of radiation hybrid cells to near 6p12. Additionally, we show that there are no sequences on chromosome 6p for a protein that coordinately regulates expression of ferritin and the transferrin receptor.  相似文献   

11.
Noncoding sequences regulate the function of mRNA and DNA. In animal mRNAs, iron responsive elements (IREs) regulate the synthesis of proteins for iron storage, uptake and red cell heme formation. Folding of the IRE was indicated previously by reactivity with chemical and enzymatic probes. 1H- and 31P-NMR spectra now confirm the IRE folding; an atypical 31P-spectrum, differential accessibility of imino protons to solvents, multiple long-range NOEs and heat stable subdomains were observed. Biphasic hyperchromic transitions occurred (52 and 73 degrees C). A G-C base pair occurs in the hairpin loop (HL) (based on dimethylsulfate, RNAse T1 previously used, and changes in NMR imino proton resonances typical of G-C base pairs after G/A substitution). Mutation of the hairpin loop also decreased temperature stability and changed the 31P-NMR spectrum; regulation and protein (IRP) binding were previously shown to change. Alteration of IRE structure shown by NMR spectroscopy, occurred at temperatures used in studies of IRE function, explaining loss of IRP binding. The effect of the HL mutation on the IRE emphasizes the importance of HL structure in other mRNAs, viral RNAs (e.g. HIV-TAR), and ribozymes.  相似文献   

12.
13.
Mammalian cells regulate iron levels tightly through the activity of iron-regulatory proteins (IRPs) that bind to RNA motifs called iron-responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Likewise, intestinal epithelial cells regulate iron absorption by a process that also depends on the intracellular levels of iron. Although intestinal epithelial cells have an active IRE/IRP system, it has not been proven that this system is involved in the regulation of iron absorption in these cells. In this study, we characterized the effect of overexpression of the ferritin IRE on iron absorption by Caco-2 cells, a model of intestinal epithelial cells. Cells overexpressing ferritin IRE had increased levels of ferritin, whereas the levels of the transferrin receptor were decreased. Iron absorption in IRE-transfected cells was deregulated: iron uptake from the apical medium was increased, but the capacity to retain this newly incorporated iron diminished. Cells overexpressing IRE were not able to control iron absorption as a function of intracellular iron, because both iron-deficient cells as well as iron-loaded cells absorbed similarly high levels of iron. The labile iron pool of IRE-transfected cell was extremely low. Likewise, the reduction of the labile iron pool in control cells resulted in cells having increased iron absorption. These results indicate that cells overexpressing IRE do not regulate iron absorption, an effect associated with decreased levels of the regulatory iron pool.  相似文献   

14.
Summary We studied the factors that determine the differing growth requirements of low-iron-tolerant (LIT) versus high-iron-dependent (HID) cells for extracellular nontransferrin iron. The growth of LIT cells HeLa and THP-1, when transferred from transferrin (5 μg/ml) medium into low-iron (5 μM ferric citrate) medium, was not significantly affected while HID cells Jiyoye and K562 showed nearly no growth. HeLa and THP-1 cells, as well as Jiyoye and K562 cells, do not produce transferrin in sufficient amounts to support their growth in low-iron medium. Surprisingly, similar rates of iron uptake in low-iron medium (0.033 and 0.032 nmol Fe/min and 106 cells) were found for LIT cells HeLa and HID cells K562. Furthermore, the intracellular iron level (4.64 nmol/106 cells) of HeLa cells grown in low-iron medium was much higher than iron levels (0.15 or 0.20 nmol/106 cells) of HeLa or K562 cells grown in transferrin medium. We demonstrated that the activity (ratio activated/total) of the iron regulatory protein (IRP) in HID cells Jiyoye and K562 increased more than twofold (from 0.32 to 0.79 and from 0.47 to 1.12, respectively) within 48 h after their transfer into low-iron medium. In the case of LIT cells HeLa and THP-1, IRP activity stayed at similar or slightly decreased levels (0.86–0.73 and 0.58–0.55, respectively). Addition of iron chelator deferoxamine (50 μM, i.e., about half-maximal growth-inhibitory dose) resulted in significantly increased activity of IRP also in HeLa and THP-1 cells. We hypothesize that the relatively higher bioavailability of nontransferrin iron in LIT cells, over that in HID cells, determines the differing responses observed under low-iron conditions.  相似文献   

15.
Iron increases ferritin synthesis, targeting plant DNA and animal mRNA. The ferritin promoter in plants has not been identified, in contrast to the ferritin promoter and mRNA iron-responsive element (IRE) in animals. The soybean leaf, a natural tissue for ferritin expression, and DNA, with promoter deletions and luciferase or glucuronidase reporters, delivered with particle bombardment, were used to show that an 86-base pair fragment (iron regulatory element (FRE)) controlled iron-mediated derepression of the ferritin gene. Mutagenesis with linkers of random sequence detected two subdomains separated by 21 base pairs. FRE has no detectable homology to the animal IRE or to known promoters in DNA and bound a trans-acting factor in leaf cell extracts. FRE/factor binding was abrogated by increased tissue iron, in analogy to mRNA (IRE)/iron regulatory protein in animals. Maximum ferritin derepression was obtained with 50 microm iron citrate (1:10) or 500 microm iron citrate (1:1) but Fe-EDTA was ineffective, although the leaf iron concentration was increased; manganese, zinc, and copper had no effect. The basis for different responses in ferritin expression to different iron complexes, as well as the significance of using DNA but not mRNA as an iron regulatory target in plants, remain unknown.  相似文献   

16.
17.
18.
The heavy metals iron and lead are taken up and metabolized in a similar manner by the crayfish hepatopancreas, but only lead appears to enter cells of the antennal gland (green gland). Iron, on the other hand, which apparently is not taken up by the antennal gland cells following systemic injections of low doses (0.05 mg), exerts striking alterations in cell ultrastructure after pericardial injections of massive doses (0.5 mg). Electron microscopic examination and atomic absorption spectrophotometric analyses of the hepatopancreas and antennal glands of iron-injected crayfish revealed that iron was selectively stored in metal-containing vacuoles of R- and F-cells in the hepatopancreatic cells, where it accumulated in concentrations that were toxic to these cells. High doses of iron caused alterations in the ultrastructural morphology of the cells of the antennal glands, although no accumulation of iron was apparent. Lead was similarly stored in metal-containing vacuoles of the cells of the hepatopancreas of lead-injected crayfish, but also accumulated in high concentrations (prior to being excreted) in vacuoles, cytoplasmic bodies and vesicles in the cells of the antennal gland. In contrast, lead in high concentrations was relatively non-toxic to any of these cells, suggesting that crayfish were more efficient in detoxifying and eliminating lead than iron.  相似文献   

19.
20.
Glutathione transferase from the hepatopancreas of fresh water crayfish Macrobrachium vollenhovenii was purified to apparent homogeneity by ion-exchange chromatography on DEAE-cellulose and by gel filtration on Sephadex G-100. The enzyme appeared to be a homodimer with molecular weight (Mr) of 46.0 +/- 1.4 kDa and a subunit Mr of 24.1 +/- 0.35 kDa. Chromatofocusing of the apparently pure enzyme revealed microheterogeneity and resolved it into two isozymic peaks, which were eluted at pH 8.36 and 8.22 respectively. Inhibition studies showed that the I50 value for cibacron blue, S-hexylglutathione, hematin, and N-ethylmaleimide (NEM) were 0.01 microM, 340 microM, 5 microM and 33 mM respectively. Out of the several substrates tested, only 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole could be conjugated with glutathione. Chemical modification studies with DTNB revealed that two sulphydryl groups per dimer were essential to the activity of the enzymes. On the basis of structural and catalytic characteristics, M. vollenhovenii GST seems close, tentatively, to the omega and zeta classes of GST. Initial-velocity studies of the enzyme are consistent with a steady-state random kinetic mechanism. Denaturation and renaturation studies with guanidine HCl (Gdn-HCl) revealed that though low Gdn-HCl concentrations (less than 0.5 M) denatured the enzyme, the enzyme was able to renature completely (100%). At higher concentration of the denaturant (0.5-4 M), refolding studies indicated that complete renaturation was not achieved. The extent of renaturation was however a function of protein concentration. Our results are consistent with a three-state unfolding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号