首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both the inositol 1,4,5-trisphosphate (InsP(3)) and ryanodine receptor pathways contribute to the Ca(2+) transient at fertilization in sea urchin eggs. To date, the precise contribution of each pathway has been difficult to ascertain. Evidence has accumulated to suggest that the InsP(3) receptor pathway has a primary role in causing Ca(2+) release and egg activation. However, this was recently called into question by a report implicating NO as the primary egg activator. In the present study we pursue the hypothesis that NO is a primary egg activator in sea urchin eggs and build on previous findings that an NO/cGMP/cyclic ADP-ribose (cADPR) pathway is active at fertilization in sea urchin eggs to define its role. Using a fluorescence indicator of NO levels, we have measured both NO and Ca(2+) at fertilization and establish that NO levels rise after, not before, the Ca(2+) wave is initiated and that this rise is Ca(2+)-dependent. By inhibiting the increase in NO at fertilization, we find not that the Ca(2+) transient is abolished but that the duration of the transient is significantly reduced. The latency and rise time of the transient are unaffected. This effect is mirrored by the inhibition of cGMP and cADPR signaling in sea urchin eggs at fertilization. We establish that cADPR is generated at fertilization, at a time comparable to the time of the rise in NO levels. We conclude that NO is unlikely to be a primary egg activator but, rather, acts after the initiation of the Ca(2+) wave to regulate the duration of the fertilization Ca(2+) transient.  相似文献   

2.
The initiation of Ca(2+) release from internal stores in the egg is a hallmark of egg activation. In sea urchins, PLCgamma activity is necessary for the production of IP(3), which leads to the initial rise in Ca(2+). To examine the possible function of a tyrosine kinase in activating PLCgamma at fertilization, sea urchin eggs were treated with the specific Src kinase inhibitor PP1 or microinjected with recombinant Src-family SH2-domain proteins, which act as dominant interfering inhibitors of Src-family kinase function. Both modes of inhibiting Src-family kinases resulted in a specific and dose-dependent delay in the onset of Ca(2+) release from the endoplasmic reticulum at fertilization. The rise in cytoplasmic pH at fertilization also was inhibited by microinjection of Src-family SH2-domain proteins. Further, an antibody directed against Src-type kinases recognized a protein of ca. M(r) 57K that was enriched in the membrane fraction of eggs. The kinase activity of this protein was stimulated rapidly and transiently at fertilization, as measured by autophosphorylation and by phosphorylation of an exogenous substrate. Together, these data indicate that a Src-type tyrosine kinase is necessary for the initiation of Ca(2+) release from the egg ER at fertilization and identify a Src-type p57 protein as a candidate in the signaling pathway leading to this Ca(2+) release.  相似文献   

3.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

4.
It was discovered about 30 years ago that a dramatic increase in intracellular calcium ion concentration ([Ca(2+)](i)) occurs at fertilization and that this increase acts as the pivotal signal for egg activation. Later, the Ca(2+) signal at fertilization turned out to be ubiquitous among animal species. Extensive advance has been brought during these 30 years in research on spatiotemporal aspects and signaling mechanisms of the [Ca(2+)](i) increase, sperm factors that induce the Ca(2+) response, and cell cycle resumption caused by the [Ca(2+)](i) rise. I provide a historical account of these advances in mammals, sea urchins, and a few other models.  相似文献   

5.
At fertilization in sea urchin, the free radical nitric oxide (NO) has recently been suggested to cause the intracellular Ca(2+) rise responsible for egg activation. The authors suggested that NO could be a universal activator of eggs and the present study was set up to test this hypothesis. Intracellular NO and Ca(2+) levels were monitored simultaneously in eggs of the mouse or the urochordate ascidian Ascidiella aspersa. Eggs were either fertilized or sperm extracts microinjected. Sperm-induced Ca(2+) rises were not associated with any global, or local, change in intracellular NO, although we were able to detect NO produced by the addition of a NO donor. Furthermore, the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester had no effect on sperm-induced Ca(2+) release but did block completely ionomycin-induced NO synthase activation. Therefore, we suggest that the current data provide evidence that NO has no role in the fertilization of these two chordate eggs.  相似文献   

6.
Egg activation at fertilization requires the release of Ca(2+) from the egg's endoplasmic reticulum, and recent evidence has indicated that a Src family kinase (SFK) may function in initiating this signaling pathway in echinoderm eggs. Here, we identify and characterize a SFK from the sea urchin Strongylocentrotus purpuratus, SpSFK1. SpSFK1 RNA is present in eggs, and an antibody made against a SpSFK1 peptide recognizes an approximately 58-kDa egg membrane-associated protein in eggs of S. purpuratus as well as another sea urchin Lytechinus variegatus. Injection of both species of sea urchin eggs with dominant-interfering Src homology 2 domains of SpSFK1 delays and reduces the release of Ca(2+) at fertilization. Injection of an antibody against SpSFK1 into S. purpuratus eggs also causes a small increase in the delay between sperm-egg fusion and Ca(2+) release. In contrast, when injected into eggs of L. variegatus, this same antibody has a dramatic stimulatory effect: it causes PLCgamma-dependent Ca(2+) release like that occurring at fertilization. Correspondingly, in lysates of L. variegatus eggs, but not S. purpuratus eggs, the antibody stimulates SFK activity. Injection of L. variegatus eggs with another antibody that recognizes the L. variegatus egg SFK also causes PLCgamma-dependent Ca(2+) release like that at fertilization. These results indicate that activation of a Src family kinase present in sea urchin eggs is necessary to cause Ca(2+) release at fertilization and is capable of stimulating Ca(2+) release in the unfertilized egg via PLCgamma, as at fertilization.  相似文献   

7.
We have previously described a phospholipase C (PLC) activity in mammalian sperm cytosolic extracts. Here we have examined the Ca(2+) dependency of the enzyme, whether there is enough in a single sperm to account for Ca(2+) release at fertilization, and finally where in the egg is the phosphatidyl 4,5-bisphosphate, the substrate for the enzyme. As for all PLCs examined so far in vitro, we found that the boar sperm PLC activity was Ca(2+) dependent. Specific activity increased when free Ca(2+) levels were micromolar. However, even at nanomolar free Ca(2+) concentration the boar sperm PLC activity was considerable, being two orders of magnitude greater than PLC activities in other tissues. We calculated that PLC activity of a single boar sperm in a mammalian egg is enough to generate 400 nM inositol 1,4,5-trisphosphate (InsP(3)) in 1 min, which may be sufficient to account for the observed Ca(2+) changes in an egg at fertilization. We fractionated sea urchin egg homogenate and examined the ability of boar sperm extract to generate InsP(3) from these fractions. The sperm PLC activity triggered InsP(3) production from a PIP(2)-enriched nonmicrosomal egg compartment that contained yolk platelets. We propose that this sperm PLC activity, which is active at nanomolar Ca(2+) levels and hydrolyzes PIP(2) from intracellular membranes, could be involved in the Ca(2+) changes observed at fertilization.  相似文献   

8.
We analyzed the role of inositol 1,4,5-trisphosphate-induced Ca(2+) release from the endoplasmic reticulum (ER) (i) in powering mitochondrial Ca(2+) uptake and (ii) in maintaining a sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)). For this purpose, we expressed in HeLa cells aequorin-based Ca(2+)-sensitive probes targeted to different intracellular compartments and studied the effect of two agonists: histamine, acting on endogenous H(1) receptors, and glutamate, acting on co-transfected metabotropic glutamate receptor (mGluR1a), which rapidly inactivates through protein kinase C-dependent phosphorylation and thus causes transient inositol 1,4,5-trisphosphate production. Glutamate induced a transient [Ca(2+)](c) rise and drop in ER luminal [Ca(2+)] ([Ca(2+)](er)), and then the ER refilled with [Ca(2+)](c) at resting values. With histamine, [Ca(2+)](c) after the initial peak stabilized at a sustained plateau, and [Ca(2+)](er) decreased to a low steady-state value. In mitochondria, histamine evoked a much larger mitochondrial Ca(2+) response than glutamate ( approximately 15 versus approximately 65 microm). Protein kinase C inhibition, partly relieving mGluR1a desensitization, reestablished both the [Ca(2+)](c) plateau and the sustained ER Ca(2+) release and markedly increased the mitochondrial Ca(2+) response. Conversely, mitochondrial Ca(2+) uptake evoked by histamine was drastically reduced by very transient ( approximately 2-s) agonist applications. These data indicate that efficient mitochondrial Ca(2+) uptake depends on the preservation of high Ca(2+) microdomains at the mouth of ER Ca(2+) release sites close to mitochondria. This in turn depends on continuous Ca(2+) release balanced by Ca(2+) reuptake into the ER and maintained by Ca(2+) influx from the extracellular space.  相似文献   

9.
NAADP is a highly potent mobilizer of Ca(2+), which in turn triggers Ca(2+)-induced Ca(2+) release pathways in a wide range of species. Nevertheless, NAADP is not presently classified as a second messenger because it has not been shown to increase in response to a physiological stimulus. We now report a dramatic increase in NAADP during sea urchin egg fertilization that was largely due to production in sperm upon contacting egg jelly. The NAADP bolus plays a physiological role upon delivery to the egg based on its ability to induce a cortical flash, a depolarization-induced activation of L-type Ca(2+) channels. Moreover, the sperm-induced cortical flash was eliminated in eggs desensitized to NAADP. We conclude that an NAADP increase plays a physiologically relevant role during fertilization and provides the first conclusive demonstration that NAADP is a genuine second messenger.  相似文献   

10.
Ca(2+) is the universal signal for egg activation at fertilization in all sexually reproducing species. The Ca(2+) signal at fertilization is necessary for egg activation and exhibits specialized spatial and temporal dynamics. Eggs acquire the ability to produce the fertilization-specific Ca(2+) signal during oocyte maturation. However, the mechanisms regulating Ca(2+) signaling differentiation during oocyte maturation remain largely unknown. At fertilization, Xenopus eggs produce a cytoplasmic Ca(2+) (Ca(2+)(cyt)) rise that lasts for several minutes, and is required for egg activation. Here, we show that during oocyte maturation Ca(2+) transport effectors are tightly modulated. The plasma membrane Ca(2+) ATPase (PMCA) is completely internalized during maturation, and is therefore unable to extrude Ca(2+) out of the cell. Furthermore, IP(3)-dependent Ca(2+) release is required for the sustained Ca(2+)(cyt) rise in eggs, showing that Ca(2+) that is pumped into the ER leaks back out through IP(3) receptors. This apparent futile cycle allows eggs to maintain elevated cytoplasmic Ca(2+) despite the limited available Ca(2+) in intracellular stores. Therefore, Ca(2+) signaling differentiates in a highly orchestrated fashion during Xenopus oocyte maturation endowing the egg with the capacity to produce a sustained Ca(2+)(cyt) transient at fertilization, which defines the egg's competence to activate and initiate embryonic development.  相似文献   

11.
Fertilization in mammals stimulates a series of Ca(2+) oscillations that continue for 3-4 h. Cell-cycle-dependent changes in the ability to release Ca(2+) are one mechanism that leads to the inhibition of Ca(2+) transients after fertilization. The downregulation of InsP(3)Rs at fertilization may be an additional mechanism for inhibiting Ca(2+) transients. In the present study we examine the mechanism of this InsP(3)R downregulation. We find that neither egg activation nor Ca(2+) transients are necessary or sufficient for the stimulation of InsP(3)R downregulation. First, parthenogenetic activation fails to stimulate downregulation. Second, downregulation persists when fertilization-induced Ca(2+) transients and egg activation are inhibited using BAPTA. Third, downregulation can be induced in immature oocytes that do not undergo egg activation. Other than fertilization, the only stimulus that downregulated InsP(3)Rs was microinjection of the potent InsP(3)R agonist adenophostin A. InsP(3)R downregulation was inhibited by the cysteine protease inhibitor ALLN but MG132 and lactacystin were not effective. Finally, we have injected maturing oocytes with adenophostin A and produced MII eggs depleted of InsP(3)Rs. We show that sperm-induced Ca(2+) signaling is inhibited in such InsP(3)R-depleted eggs. These data show that InsP(3)R binding is sufficient for downregulation and that Ca(2+) signaling at fertilization is mediated via the InsP(3)R.  相似文献   

12.
Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium. Coanalysis of intracellular Ca(2+) levels and CaMKII activity in the same population of eggs demonstrated a rapid and transient enzyme response to each increase in Ca(2+). Enzyme activity increased 370% during the first Ca(2+) rise, representing about 60% of maximal activity, and had decreased to basal levels within 5 min from the time Ca(2+) reached its peak value. Single fertilized eggs monitored for Ca(2+) had a mean increase in CaMKII activity of 185%. One and two ionomycin-induced Ca(2+) transients resulted in 39 and 49% mean cortical granule (CG) loss, respectively, while CG exocytosis and resumption of meiosis were inhibited by a CaMKII antagonist. These studies demonstrate that changes in the level of Ca(2+) and in CaMKII activity can be studied in the same cell and that CaMKII activity is exquisitely sensitive to experimentally induced oscillations of Ca(2+) in vivo. The data support the hypothesis that CaMKII activity oscillates for a period of time after normal fertilization and temporally regulates many events of egg activation.  相似文献   

13.
The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca(2+) from the acidic Ca(2+) stores of many organisms, including those of the sea urchin egg. We investigated whether the pH within the lumen of these acidic organelles changes in response to stimuli. Fertilization activates the egg by Ca(2+) release dependent upon NAADP, and accordingly, we report that fertilization also alters organellar pH in a spatio-temporally complex manner. Upon sperm fusion, vesicles deep in the egg center slowly acidify, whereas cortical vesicles undergo a rapid alkalinization. The cortical vesicle alkalinization is independent of exocytosis and cytosolic pH but coincides with the NAADP-dependent fertilization Ca(2+) wave. Microinjection of NAADP mimicked the fertilization cortical response, suggesting that it occurred within NAADP-sensitive acidic Ca(2+) stores. Our data show that NAADP and physiological stimuli alter the pH within intracellular organelles and suggest that NAADP signals through pH as well as Ca(2+).  相似文献   

14.
The newt, Cynops pyrrhogaster, exhibits physiological polyspermic fertilization, in which several sperm enter an egg before egg activation. An intracellular Ca(2+) increase occurs as a Ca(2+) wave at each sperm entry site in the polyspermic egg. Some Ca(2+) waves are preceded by a transient spike-like Ca(2+) increase, probably caused by a tryptic protease in the sperm acrosome at the contact of sperm on the egg surface. The following Ca(2+) wave was induced by a sperm factor derived from sperm cytoplasm after sperm-egg membrane fusion. The Ca(2+) increase in the isolated, cell-free cytoplasm indicates that the endoplasmic reticulum is the major Ca(2+) store for the Ca(2+) wave. We previously demonstrated that citrate synthase in the sperm cytoplasm is a major sperm factor for egg activation in newt fertilization. In the present study, we found that the activation by the sperm factor as well as by fertilizing sperm was prevented by an inhibitor of citrate synthase, palmitoyl CoA, and that an injection of acetyl-CoA or oxaloacetate caused egg activation, indicating that the citrate synthase activity is necessary for egg activation at fertilization. In the frog, Xenopus laevis, which exhibits monospermic fertilization, we were unable to activate the eggs with either the homologous sperm extract or the Cynops sperm extract, indicating that Xenopus sperm lack the sperm factor for egg activation and that their eggs are insensitive to the newt sperm factor. The mechanism of egg activation in the monospermy of frog eggs is quite different from that in the physiological polyspermy of newt eggs.  相似文献   

15.
16.
The involvement of Ca(2+) in the activation of eggs and in the first steps of the embryonic development of several species is a well-known phenomenon. An association between Ca(2+) sources with the fate of the blastopore during embryonic development has been investigated by several authors. Ca(2+) influx mediated by voltage-gated channels and Ca(2+) mobilization from intracellular stores are the major sources of Ca(2+) to egg activation and succeeding cell divisions. Studies on sea urchins embryonic development show that intracellular Ca(2+) stores are responsible for egg activation and early embryogenesis. In the present work we investigated the involvement of extracellular Ca(2+) in the first stages of the embryonic development of the sea urchin Echinometra lucunter. Divalent cation chelators EDTA and EGTA strongly blocked the early embryonic development. Adding to this, we demonstrated the involvement of voltage-gated Ca(2+) channels in E. lucunter embryogenesis since Ca(2+) channel blockers powerfully inhibited the early embryonic development. Our data also revealed that Ca(2+) influx is crucial for embryonic development during only the first 40?min postfertilization. However, intracellular Ca(2+) remains mandatory to embryonic development 40?min postfertilization, seen that both the intracellular Ca(2+) chelator BAPTA-AM and calmodulin antagonists trifluoperazine and chlorpromazine inhibited the first stages of development when added to embryos culture 50?min postfertilization. Our work highlights the crucial role of extracellular Ca(2+) influx through voltage-gated Ca(2+) channels for the early embryonic development of the sea urchin E. lucunter and characterizes an exception in the phylum Echinodermata.  相似文献   

17.
The acrosome reaction (AR) of sperm is a prerequisite for fusion with the egg. In sea urchins, the complete AR (CAR) consists of exocytosis of the acrosomal vesicle (AV) and polymerization of acrosomal actin to form the approximately 1 micro m long acrosomal process. The fucose sulfate polymer (FSP) of egg jelly stimulates Ca(2+) entry through two distinct Ca(2+) channels and induces the CAR. Here we report that the second channel is blocked by SKF96365 (SKF), an inhibitor of store-operated channels. SKF also blocks the thapsigargin (TG), trifluoperazine (TFP), and calmidizolium (CMZ) stimulated Ca(2+) entry into sperm. These data indicate that the second Ca(2+) channel is a store-operated channel (SOC) that may be regulated by calmodulin. The TG, TFP, and CMZ-induced intracellular Ca(2+) elevations are similar to those induced by FSP, but the sperm acrosomal process does not polymerize. An antibody to bindin, the major protein of the AV, showed that in a significant percentage of these drug-treated sperm, the AV had undergone exocytosis. When NH(4)Cl was added to increase intracellular pH, the TG-treated sperm polymerized actin to form the acrosomal process. We conclude that the second Ca(2+) channel of sea urchin sperm is a SOC that triggers AV exocytosis.  相似文献   

18.
The sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm-egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca(2+) signaling and homeostasis modules present in the egg and zygote. The sea urchin "calcium toolkit" as predicted by the genome is described. Emphasis is on the Ca(2+) signaling modules operating during egg activation, but the Ca(2+) signaling repertoire has ramifications for later developmental events and adult physiology as well. Presented here are the mechanisms that control the initial release of Ca(2+) at fertilization and additional signaling components predicted by the genome and found to be expressed and operating in eggs at fertilization. The initial release of Ca(2+) serves to coordinate egg activation, which is largely a phenomenon of post-translational modifications, especially dynamic protein phosphorylation. Functional proteomics can now be used to identify the phosphoproteome in general and specific kinase targets in particular. This approach is described along with findings to date. Key outstanding questions regarding the activation of the developmental program are framed in the context of what has been learned from the genome and how this knowledge can be applied to functional studies.  相似文献   

19.
The aminoguanide, methylglyoxal bis(guanylhydrazone) (MGBG), was shown to stimulate phosphorylation of RR-SRC, a synthetic protein tyrosine kinase (PTK) substrate, and different levels of tyrosyl phosphorylation of endogenous proteins in a sea urchin egg membrane-cortex preparation. Stimulating protein tyrosine kinase activity in the sea urchin egg stimulated intracellular Ca2+ release, because microinjection of 1-5 mM of MGBG into unfertilized eggs triggered a transient rise in intracellular Ca2+ activity ([Ca2+]i) after a brief latent period. Pretreating eggs with PTK-specific inhibitors, genistein or tyrphostin B42, significantly inhibited the MGBG-induced rise in [Ca2+]i. Methylglyoxal bis(guanylhydrazone) stimulation of PTK activities in the unfertilized sea urchin egg appeared to trigger Ca2+ release through phospholipase C (PLC)-dependent inositol 1,4,5-trisphosphate (InsP3) production. The MGBG-induced Ca2+ response could be suppressed in eggs preloaded with the InsP3 receptor antagonist, heparin, and was reduced in eggs pretreated with U73122, a PLC inhibitor. However, the response was unchanged in eggs treated with nicotinamide, an inhibitor of ADP-ribosyl cyclase, or nifedipine, an inhibitor of nicotinic acid adenine dinucleotide phosphate activity. These results suggest that MGBG may be useful as a chemical agonist of PTK in sea urchin eggs and allow direct testing of the PTK requirement for the transient rise in [Ca2+]i in sea urchin eggs during fertilization. Although genistein was observed to significantly delay the onset, the sperm-induced Ca2+ response in PTK inhibitor-loaded eggs otherwise appeared normal. Therefore, it was concluded that sea urchin eggs contain a PTK-dependent pathway that can mediate intracellular Ca2+ release, but PTK activity does not appear to be required for the fertilization response.  相似文献   

20.
We have discovered that a single sperm protein, phospholipase C-zeta (PLCζ), can stimulate intracellular Ca(2+) signalling in the unfertilized oocyte ('egg') culminating in the initiation of embryonic development. Upon fertilization by a spermatozoon, the earliest observed signalling event in the dormant egg is a large, transient increase in free Ca(2+) concentration. The fertilized egg responds to the intracellular Ca(2+) rise by completing meiosis. In mammalian eggs, the Ca(2+) signal is delivered as a train of long-lasting cytoplasmic Ca(2+) oscillations that begin soon after gamete fusion and persist beyond the completion of meiosis. Sperm PLCζ effects Ca(2+) release from egg intracellular stores by hydrolyzing the membrane lipid PIP(2) and consequent stimulation of the inositol 1,4,5-trisphosphate (InsP(3) ) receptor Ca(2+) -signalling pathway, leading to egg activation and early embryogenesis. Recent advances have refined our understanding of how PLCζ induces Ca(2+) oscillations in the egg and also suggest its potential dysfunction as a cause of male infertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号