共查询到20条相似文献,搜索用时 0 毫秒
1.
The chloroplast ATP-dependent Clp protease (EC 3.4.21.92) is composed of the proteolytic subunit ClpP and the regulatory ATPase, ClpC. Although both subunits are found in the stroma, the interaction between the two is dynamic. When immunoprecipitation with antibodies against ClpC was performed on stroma from dark-adapted pea (Pisum sativum L. cv. Alaska) chloroplasts, ClpC but not ClpP was precipitated. However, when stroma was supplemented with ATP, both ClpC and ClpP were precipitated. Co-immunoprecipitation was even more efficient in the presence of ATP-gamma-S, suggesting that the association between regulatory and proteolytic subunits is dependent on binding of ATP to ClpC, but not its hydrolysis. To further test this association, stroma was fractionated by column chromatography, and the presence of Clp subunits in the different fractions was monitored immunologically. When stroma depleted of ATP was fractionated on an ion-exchange column, ClpP and ClpC migrated separately, whereas in the presence of ATP-gamma-S both subunits co-migrated. Similar results were observed in size-exclusion chromatography. To further characterize the precipitated enzyme, its proteolytic activity was assayed by testing its ability to degrade beta-casein. No degradation was observed in the absence of ATP, and degradation was inhibited in the presence of phenylmethylsulfonyl fluoride, consistent with Clp being an ATP-dependent serine protease. The activity of the isolated enzyme was further tested using chimeric OE33 as a model substrate. This protein was also degraded in an ATP-dependent manner, supporting the suggested role of Clp protease as a major housekeeping protease in the stroma. 相似文献
2.
3.
4.
The ATP-dependent proteolysis of rat liver mitochondria prepared in electrolyte-poor sucrose media requires the presence of Ca2+. Lanthanum, an inhibitor of Ca2+ uptake, inhibits the proteolysis. In contrast, proteolysis of mitochondria prepared in a salt medium does not require Ca2+, nor is it inhibited by lanthanum. It is concluded that Caa+ exerts its effect in an indirect manner, by causing swelling and thereby increasing the accessibility of the membrane proteins of the inner mitochondrial membrane. 相似文献
5.
Clp protease complexes and their diversity in chloroplasts 总被引:5,自引:0,他引:5
Anna Sokolenko Silvia Lerbs-Mache Lothar Altschmied Reinhold G. Herrmann 《Planta》1998,207(2):286-295
The Clp proteases represent a large, ancient ATP-dependent protease family which in higher plants is known to be located
in chloroplasts. The soluble, presumably multisubunit, enzyme of the organelle stroma is of dual genetic origin. It consists
of a nuclear-encoded, regulatory subunit ClpC, which is an ATPase, and a plastid-encoded proteolytic subunit ClpP, which is
a serine protease. An additional, nuclear-encoded proteolytic subunit resembling ClpP has been recently reported from tomato
(Schaller and Ryan, 1995 plant gene Register 95–00). We demonstrate that in both tomato Lycopersicon esculentum Mill. and Arabidopsis thaliana, (L.) Heynh. the nuclear-encoded ClpP (nClpP) is made as a precursor molecule that can be imported into isolated intact chloroplasts
of spinach (Spinacia oleracea L.) and processed in two or three steps, respectively, to the size of the authentic protein. Furthermore, both gel electrophoresis
under non-denaturing conditions and size-exclusion chromatography verified that the three proteins can form distinct heteromeric
supramolecular complexes of approximately 860, 1380 and 1700 kDa (probably also of 600 kDa) molecular mass. The size ranges
of the former two are reminiscent of those of Clp complexes described from Escherichia coli. In addition, various complexes between 160 and 560 kDa are detectable with the individual components. Both the processing
“intermediates” and the mature nClpP are found in assembled form.
Received: 11 March 1998 / Accepted: 8 July 1998 相似文献
6.
Proteolysis functions as a precise regulatory mechanism for a broad spectrum of cellular processes. Such control impacts not only on the stability of key metabolic enzymes but also on the effective removal of terminally damaged polypeptides. Much of this directed protein turnover is performed by proteases that require ATP and, of those in bacteria, the Clp protease from Escherichia coli is one of the best characterized to date. The Clp holoenzyme consists of two adjacent heptameric rings of the proteolytic subunit known as ClpP, which are flanked by a hexameric ring of a regulatory subunit from the Clp/Hsp100 chaperone family at one or both ends. The recently resolved three-dimensional structure of the E. coli ClpP protein has provided new insights into its interaction with the regulatory/chaperone subunits. In addition, an increasing number of studies over the last few years have recognized the added complexity and functional importance of ClpP proteins in other eubacteria and, in particular, in photosynthetic organisms ranging from cyanobacteria to higher plants. The goal of this review is to summarize these recent findings and to highlight those areas that remain unresolved. 相似文献
7.
De Castro RE Maupin-Furlow JA Giménez MI Herrera Seitz MK Sánchez JJ 《FEMS microbiology reviews》2006,30(1):17-35
Proteases play key roles in many biological processes and have numerous applications in biotechnology and industry. Recent advances in the genetics, genomics and biochemistry of the halophilic Archaea provide a tremendous opportunity for understanding proteases and their function in the context of an archaeal cell. This review summarizes our current knowledge of haloarchaeal proteases and provides a reference for future research. 相似文献
8.
9.
Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis 总被引:1,自引:0,他引:1
下载免费PDF全文

In contrast with the model Escherichia coli Clp protease, the ATP-dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus-encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1-4 proteins, the other containing ClpP3-6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis. 相似文献
10.
11.
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity. 相似文献
12.
m-AAA proteases exert dual functions in the mitochondrial inner membrane: they mediate the processing of specific regulatory proteins and ensure protein quality control degrading misfolded polypeptides to peptides. Loss of these activities leads to neuronal cell death in several neurodegenerative disorders. However, it is unclear how the m-AAA protease chooses between specific processing and complete degradation. A central and conserved function of the m-AAA protease is the processing of the ribosomal subunit MrpL32, which regulates ribosome biogenesis and the formation of respiratory complexes. Here, we demonstrate that the formation of a tightly folded domain harbouring a conserved CxxC-X(9)-CxxC sequence motif halts degradation initiated from the N-terminus and triggers the release of mature MrpL32. Oxidative stress impairs folding of MrpL32, resulting in its degradation by the m-AAA protease and decreased mitochondrial translation. Surprisingly, MrpL32 folding depends on its mitochondrial targeting sequence. Presequence-assisted folding of MrpL32 requires the complete import of the MrpL32 precursor before maturation occurs and therefore explains the need for post-translocational processing by the m-AAA protease rather than co-translocational cleavage by the general mitochondrial processing peptidase. 相似文献
13.
Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces 总被引:1,自引:0,他引:1
Valérie de Crécy-Lagard Pascale Servant-Moisson Julie Viala Cosette Grandvalet & Philippe Mazodier 《Molecular microbiology》1999,32(3):505-517
The genes of Streptomyces coelicolor A3(2) encoding catalytic subunits (ClpP) and regulatory subunits (ClpX and ClpC) of the ATP-dependent protease family Clp were cloned, mapped and characterized. S. coelicolor contains at least two clpP genes, clpP1 and clpP2, located in tandem upstream from the clpX gene, and at least two unlinked clpC genes. Disruption of the clpP1 gene in S. lividans and S. coelicolor blocks differentiation at the substrate mycelium step. Overexpression of clpP1 and clpP2 accelerates aerial mycelium formation in S. lividans, S. albus and S. coelicolor. Overproduction of ClpX accelerates actinorhodin production in S. coelicolor and activates its production in S. lividans. 相似文献
14.
Atorino L Silvestri L Koppen M Cassina L Ballabio A Marconi R Langer T Casari G 《The Journal of cell biology》2003,163(4):777-787
Mmutations in paraplegin, a putative mitochondrial metallopeptidase of the AAA family, cause an autosomal recessive form of hereditary spastic paraplegia (HSP). Here, we analyze the function of paraplegin at the cellular level and characterize the phenotypic defects of HSP patients' cells lacking this protein. We demonstrate that paraplegin coassembles with a homologous protein, AFG3L2, in the mitochondrial inner membrane. These two proteins form a high molecular mass complex, which we show to be aberrant in HSP fibroblasts. The loss of this complex causes a reduced complex I activity in mitochondria and an increased sensitivity to oxidant stress, which can both be rescued by exogenous expression of wild-type paraplegin. Furthermore, complementation studies in yeast demonstrate functional conservation of the human paraplegin-AFG3L2 complex with the yeast m-AAA protease and assign proteolytic activity to this structure. These results shed new light on the molecular pathogenesis of HSP and functionally link AFG3L2 to this neurodegenerative disease. 相似文献
15.
Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP 总被引:2,自引:0,他引:2
Kang SG Ortega J Singh SK Wang N Huang NN Steven AC Maurizi MR 《The Journal of biological chemistry》2002,277(23):21095-21102
Human mitochondrial ClpP (hClpP) and ClpX (hClpX) were separately cloned, and the expressed proteins were purified. Electron microscopy confirmed that hClpP forms heptameric rings and that hClpX forms a hexameric ring. Complexes of a double heptameric ring of hClpP with hexameric hClpX rings bound on each side are stable in the presence of ATP or adenosine 5'-(3-thiotriphosphate) (ATPgammaS), indicating that a symmetry mismatch is a universal feature of Clp proteases. hClpXP displays both ATP-dependent proteolytic activity and ATP- or ATPgammaS-dependent peptidase activity. hClpXP cannot degrade lambdaO protein or GFP-SsrA, specific protein substrates recognized by Escherichia coli (e) ClpXP. However, eClpX interacts with hClpP, and, when examined by electron microscopy, the resulting heterologous complexes are indistinguishable from homologous eClpXP complexes. The hybrid eClpX-hClpP complexes degrade eClpX-specific protein substrates. In contrast, eClpA can neither associate with nor activate hClpP. hClpP has an extra C-terminal extension of 28 amino acids. A mutant lacking this C-terminal extension interacts more tightly with both hClpX and eClpX and shows enhanced enzymatic activities but still does not interact with eClpA. Our results establish that human ClpX and ClpP constitute a bone fide ATP-dependent protease and confirm that substrate selection, which differs between human and E. coli ClpX, is dependent solely on the Clp ATPase. Our data also indicate that human ClpP has conserved sites required for interaction with eClpX but not eClpA, implying that the modes of interaction with ClpP may not be identical for ClpA and ClpX. 相似文献
16.
Protein stability and degradation in chloroplasts 总被引:14,自引:0,他引:14
Zach Adam 《Plant molecular biology》1996,32(5):773-783
17.
The ATP-dependent caseinolytic protease (Clp) is an essential housekeeping enzyme in plant chloroplasts. It is by far the most complex of all known Clp proteases, with a proteolytic core consisting of multiple catalytic ClpP and noncatalytic ClpR subunits. It also includes a unique form of Clp protein of unknown function designated ClpT, two of which exist in the model species Arabidopsis thaliana. Inactivation of ClpT1 or ClpT2 significantly reduces the amount of Clp proteolytic core, whereas loss of both proves seedling lethal under autotrophic conditions. During assembly of the Clp proteolytic core, ClpT1 first binds to the P-ring (consisting of ClpP3-6 subunits) followed by ClpT2, and only then does the P-ring combine with the R-ring (ClpP1, ClpR1-4 subunits). Most of the ClpT proteins in chloroplasts exist in vivo as homodimers, which then apparently monomerize prior to association with the P-ring. Despite their relative abundance, however, the availability of both ClpT proteins is rate limiting for the core assembly, with the addition of recombinant ClpT1 and ClpT2 increasing core content up to fourfold. Overall, ClpT appears to regulate the assembly of the chloroplast Clp protease, revealing a new and sophisticated control mechanism on the activity of this vital protease in plants. 相似文献
18.
Protease Ti, a new ATP-dependent protease in Escherichia coli, contains protein-activated ATPase and proteolytic functions in distinct subunits 总被引:26,自引:0,他引:26
B J Hwang K M Woo A L Goldberg C H Chung 《The Journal of biological chemistry》1988,263(18):8727-8734
In addition to protease La (the lon gene product), Escherichia coli contains another ATP-dependent protease, Ti. This enzyme (approximately 340 kDa) is composed of two components, both of which are required for proteolysis. Both have been purified to homogeneity by conventional procedures using [3H]casein as the substrate. The ATP-stabilized component, A, has a subunit molecular weight of 80,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate, but it behaves as a dimer (140 kDa) upon gel filtration. Component P, which is relatively heat stable, is inactivated by diisopropyl fluorophosphate and can be labeled with [3H] diisopropyl fluorophosphate. It has a subunit size of 23 kDa, but the isolated component behaves as a complex (260 kDa) of 10-12 subunits. The isoelectric point of component A is 7.0 and that of P is 8.2, and their amino acid compositions differ considerably. The purified enzyme has an ATPase activity that is stimulated 2-4-fold by casein and other protein substrates but not by nonhydrolyzed proteins. Component A also shows ATPase activity which can be stimulated by casein. Addition of component P (which lacks ATPase activity) inhibits basal ATP hydrolysis by A and makes this ATPase more responsive to casein. Although component P contains the serine active site for proteolysis, it shows no proteolytic activity in the absence of component A, Mg2+, and ATP or dATP. Other nucleoside triphosphates are not hydrolyzed and do not support proteolysis. Protease Ti has a Km for ATP of 210 microM for hydrolysis of both casein and ATP. Casein increases the Vmax for ATP without affecting the Km. A Mg2+ concentration of 5 mM is necessary for half-maximal rates of ATP and casein hydrolysis. Ca2+ and Mn2+ partially support these activities. Thus, protease Ti shares many unusual properties with protease La (e.g. coupled ATP and protein hydrolysis and protein-activated ATPase), but these functions in protease Ti are associated with distinct subunits that modify each other's activities. 相似文献
19.
ATP依赖的人Lon蛋白酶是一种同质寡聚、环状的蛋白酶,主要位于细胞线粒体基质中。许多研究表明,Lon蛋白酶对于维护细胞的内环境稳定起着重要作用,并参与线粒体蛋白质量控制和代谢调控。将pPROEX1 His6-Lon重组质粒在Escherichia coli Rosetta 2菌株中诱导表达用Ni2+柱亲和层析法纯化,获得纯度较高的目的蛋白。经纯化后,Lon蛋白酶的比酶活达到0.17 U/mg。通过多肽底物Rhodamine 110、bis-(CBZ-L-alanyl-L-alanine amide)[(Z-AA)2 Rh110]的降解检测显示,Lon蛋白酶具有肽酶活性,并被ATP所刺激。Casein和线粒体转录因子A降解实验表明,纯化的Lon蛋白酶具有蛋白水解活性,而且蛋白水解活性依赖于ATP。 相似文献
20.
The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus 总被引:1,自引:3,他引:1
ClpP is the proteolytic subunit of the ATP-dependent Clp protease in eubacteria, mammals and plant chloroplasts. Cyanobacterial ClpP protein is encoded by a multigene family, producing up to four distinct isozymes. We have examined the importance of the first ClpP protein (ClpP1) isolated from the cyanobacterium Synechococcus sp. PCC 7942 for acclimation to ecologically relevant UV-B and low-temperature regimens. When the growth light of 50 μmol photons m?2 s?1 was supplemented with 0.5 W m?2 UV-B for 8 h, the constitutive level of ClpP1 rose eightfold after an initial lag of 1 h. Wild-type cells readily acclimated to this UV-B level, recovering after the initial stress to almost the same growth rate as that before UV-B exposure. Growth of a clpP1 null mutant (ΔclpP1), however, was severely inhibited by UV-B, being eight times slower than the wild type after 8 h. In comparison, ClpP1 content increased 15-fold in wild-type cultures shifted from 37°C to 25°C for 24 h. Wild-type cultures readily acclimated to 25°C after 24 h, whereas the ΔclpP1 strain did not and eventually lost viability with prolonged cold treatment. During acclimation to either UV-B or cold, photosynthesis in the wild type was initially inhibited upon the shift but then recovered. Photosynthesis in ΔclpP1 cultures, however, was more severely inhibited by the stress treatment and failed to recover. Acclimation was also monitored by examining the exchange of photosystem II reaction centre D1 proteins that occurs in wild-type Synechococcus during conditions of excitation stress. During both cold and UV-B shifts, wild-type cultures replaced the acclimative form of D1 (D1:1) with the alternative D1 form 2 (D1:2) within the first hours. Once acclimated to either 25°C or 0.5 W m?2 UV-B, D1:2 was exchanged back for D1:1. In ΔclpP1 cultures, this second exchange between D1 forms did not occur, with D1:2 remaining the predominant D1 form. Our results demonstrate that the ATP-dependent Clp protease is an essential component of the cold and UV-B acclimation processes of Synechococcus. 相似文献