首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the northeastern United States, the Lyme disease agent, Borrelia burgdorferi sensu stricto, is maintained by enzoonotic transmission, cycling between white-footed mice (Peromyscus leucopus) and black-legged ticks (Ixodes scapularis). B. burgdorferi sensu stricto is genetically variable and has been divided into three major genotypes based on 16S-23S ribosomal DNA spacer (RST) analysis. To better understand how genetic differences in B. burgdorferi sensu stricto may influence transmission dynamics in nature, we investigated the interaction between an RST1 and an RST3 strain in a laboratory system with P. leucopus mice and I. scapularis ticks. Two groups of mice were infected with either BL206 (RST1) or B348 (RST3). Two weeks later, experimental mice were challenged with the opposite strain, while control mice were challenged with the same strain as that used for the primary infection. The transmission of BL206 and B348 from infected mice was then determined by xenodiagnosis with uninfected larval ticks at weekly intervals for 42 days. Mice in both experimental groups were permissive for infection with the second strain and were able to transmit both strains to the xenodiagnostic ticks. However, the overall transmission efficiencies of BL206 and B348 were significantly different. BL206 was more efficiently transmitted than B348 to xenodiagnostic ticks. Significantly fewer double infections than expected were detected in xenodiagnostic ticks. The results suggest that some B. burgdorferi sensu stricto strains, such as BL206, may be preferentially maintained in transmission cycles between ticks and white-footed mice. Other strains, such as B348, may be more effectively maintained in different tick-vertebrate transmission cycles.  相似文献   

2.
Lyme borreliosis in North America is caused by the tick-borne spirochete Borrelia burgdorferi, a zoonotic bacterium that is able to persistently infect a wide range of vertebrate species. Given the pronounced strain structure of B. burgdorferi in the northeastern United States, we asked whether the fitness of the different genotypes varies among susceptible vertebrate hosts. The transmission dynamics of two genetically divergent human isolates of B. burgdorferi, BL206 and B348, were analyzed experimentally in white-footed mice and in C3H/HeNCrl mice over a time period of almost 3 months. We found that the initially high transmission efficiency from white-footed mice to ticks declined sharply for isolate B348 but remained considerably high for isolate BL206. In contrast, in C3H/HeNCrl mice, high transmission efficiency persisted for both isolates. Our findings provide proof-of-principle evidence for intrinsic fitness variation of B. burgdorferi strains in vertebrate host species, perhaps indicating the beginnings of adaptive radiation.  相似文献   

3.
The genetic diversity of Borrelia burgdorferi sensu lato was assessed in a focus of Lyme borreliosis in southern Britain dominated by game birds. Ticks, rodents, and pheasants were analyzed for spirochete infections by PCR targeting the 23S-5S rRNA genes, followed by genotyping by the reverse line blot method. In questing Ixodes ricinus ticks, three genospecies of B. burgdorferi sensu lato were detected, with the highest prevalences found for Borrelia garinii and Borrelia valaisiana. B. burgdorferi sensu stricto was rare (<1%) in all tick stages. Borrelia afzelii was not detected in any of the samples. More than 50% of engorged nymphs collected from pheasants were infected with borreliae, mainly B. garinii and/or B. valaisiana. Although 19% of the rodents harbored B. burgdorferi sensu stricto and/or B. garinii in internal organs, only B. burgdorferi sensu stricto was transmitted to xenodiagnostic tick larvae (it was transmitted to 1% of the larvae). The data indicate that different genospecies of B. burgdorferi sensu lato can be maintained in nature by distinct transmission cycles involving the same vector tick species but different vertebrate host species. Wildlife management may have an influence on the relative risk of different clinical forms of Lyme borreliosis.  相似文献   

4.
Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis) and use the white-footed mouse (Peromyscus leucopus) as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R 0) for B. microti to be below the threshold for persistence (<1), a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R 0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild.  相似文献   

5.
The role of migratory birds in the dispersal of Ixodes scapularis ticks in the northeastern U.S. is well established and is presumed to be a major factor in the expansion of the geographic risk for Lyme disease. Population genetic studies of B. burgdorferi sensu stricto, the agent of Lyme disease in this region, consistently reveal the local presence of as many as 15 distinct strain types as designated by major groups of the ospC surface lipoprotein. Recent evidence suggests such strain diversity is adaptive to the diverse vertebrate hosts that maintain enzootic infection. How this strain diversity is established in emergent areas is unknown. To determine whether similar strain diversity is present in ticks imported by birds, we examined B. burgdorferi strains in I. scapularis ticks removed from migrants at an isolated island site. Tick mid‐guts were cultured and isolates underwent DNA amplification with primers targeting ospC. Amplicons were separated by gel electrophoresis and sequenced. One hundred thirty‐seven nymphal ticks obtained from 68 birds resulted in 24 isolates of B. burgdorferi representing eight ospC major groups. Bird‐derived ticks contain diverse strain types of B. burgdorferi, including strain types associated with invasive Lyme disease. Birds and the ticks that feed on them may introduce a diversity of strains of the agent of Lyme disease to emergent areas.  相似文献   

6.
Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota.  相似文献   

7.
More than a decade after a study on the transmission cycle of Borrelia burgdorferi sensu lato in the Siebengebirge, a nature reserve near Bonn, Germany, questing nymphal and adult Ixodes ricinus ticks were collected again in three selected areas of the same low mountain range and examined for infection with B. burgdorferi sensu lato. Between May and October 2001, a total of 1,754 ticks were collected by blanket dragging; 374 ticks were analyzed for B. burgdorferi sensu lato by both an immunofluorescence assay (IFA) and at least two different PCR tests, whereas 171 ticks were analyzed by PCR only. By combining all assays, an average of 14% of the ticks tested positive for B. burgdorferi sensu lato, 5.5, 15.8, and 21.8% in the three collection areas. Of the nymphs and adults examined, 12.9 and 21.1%, respectively, were found to be spirochete infected. A lower total infection prevalence was obtained by IFA (14.4%) than by a nested PCR approach (16.5%), but both were higher than that obtained by a simple PCR approach (11.9%). Compared with data collected over a decade ago, the mean infection prevalence of B. burgdorferi sensu lato in the ticks was significantly higher for all three biotopes, whereas a similar pattern of habitat-specific infection prevalence was observed. Genotyping of B. burgdorferi sensu lato revealed high relative prevalences of B. valaisiana (identified in 43.1% of infected ticks) and B. garinii (32.3%), whereas B. afzelii (12.3%) and B. burgdorferi sensu stricto (1.5%) were relatively rare. We conclude that B. burgdorferi sensu lato infection has increased in this region over the last 15 years due to presently unknown changes in ecological conditions, perhaps related to climate change or wildlife management.  相似文献   

8.
Ixodes scapularis is the principal tick vector of the Lyme borreliosis agent Borrelia burgdorferi and other tick-borne zoonoses in northeastern North America. The degree of seasonal synchrony of nymphal and larval ticks may be important in influencing the basic reproductive number of the pathogens transmitted by I. scapularis. Because the seasonal phenology of tick vectors is partly controlled by ambient temperature, climate and climate change could shape the population biology of tick-borne pathogens. We used projected monthly normal temperatures, obtained from the second version of the Canadian Coupled Global Climate Model (CGCM2) under emissions scenario A2 of the Intergovernmental Panel on Climate Change for a site in southern Ontario, Canada, to simulate the phenology of I. scapularis in a mathematical model. The simulated seasonal abundance of ticks then determined transmission of three candidate pathogens amongst a population of white-footed mice (Peromyscus leucopus) using a susceptible-infected-recovered (SIR) model. Fitness of the different pathogens, in terms of resilience to changes in tick and rodent mortality, minima for infection duration, transmission efficiency and particularly any additional mortality of rodents specifically associated with infection, varied according to the seasonal pattern of immature tick activity, which was different under the temperature conditions projected for the 2020s, 2050s and 2080s. In each case, pathogens that were long-lived, highly transmissible and had little impact on rodent mortality rates were the fittest. However, under the seasonal tick activity patterns projected for the 2020s and 2050s, the fitness of pathogens that are shorter-lived, less efficiently transmitted, and more pathogenic to their natural hosts, increased. Therefore, climate change may affect the frequency and distribution of I. scapularis-borne pathogens and alter their evolutionary trajectories.  相似文献   

9.
Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.  相似文献   

10.
Lyme borreliosis (LB) group spirochetes, collectively known as Borrelia burgdorferi sensu lato, are distributed worldwide. Wild rodents are acknowledged as the most important reservoir hosts. Ixodes scapularis is the primary vector of B. burgdorferi sensu lato in the eastern United States, and in the southeastern United States, the larvae and nymphs mostly parasitize certain species of lizards. The primary aim of the present study was to determine whether wild lizards in the southeastern United States are naturally infected with Lyme borreliae. Blood samples obtained from lizards in Florida and South Carolina were tested for the presence of LB spirochetes primarily by using B. burgdorferi sensu lato-specific PCR assays that amplify portions of the flagellin (flaB), outer surface protein A (ospA), and 66-kDa protein (p66) genes. Attempts to isolate spirochetes from a small number of PCR-positive lizards failed. However, PCR amplification and sequence analysis of partial flaB, ospA, and p66 gene fragments confirmed numerous strains of B. burgdorferi sensu lato, including Borrelia andersonii, Borrelia bissettii, and B. burgdorferi sensu stricto, in blood from lizards from both states. B. burgdorferi sensu lato DNA was identified in 86 of 160 (54%) lizards representing nine species and six genera. The high infection prevalence and broad distribution of infection among different lizard species at different sites and at different times of the year suggest that LB spirochetes are established in lizards in the southeastern United States.  相似文献   

11.
Lyme disease is reported across Canada, but pinpointing the source of infection has been problematic. In this three‐year, bird‐tick‐pathogen study (2004–2006), 366 ticks representing 12 species were collected from 151 songbirds (31 passerine species/subspecies) at 16 locations Canada‐wide. Of the 167 ticks/pools tested, 19 (11.4%) were infected with Borrelia burgdorferi sensu lato (s.l.). Sequencing of the rrf‐rrl intergenic spacer gene revealed four Borrelia genotypes: B. burgdorferi sensu stricto (s.s.) and three novel genotypes (BC genotype 1, BC genotype 2, BC genotype 3). All four genotypes were detected in spirochete‐infected Ixodes auritulus (females, nymphs, larvae) suggesting this tick species is a vector for B. burgdorferi s.l. We provide first‐time records for: ticks in the Yukon (north of 60° latitude), northernmost collection of Amblyomma americanum in North America, and Amblyomma imitator in Canada. First reports of bird‐derived ticks infected with B. burgdorferi s.l. include: live culture of spirochetes from Ixodes pacificus (nymph) plus detection in I. auritulus nymphs, Ixodes scapularis in New Brunswick, and an I. scapularis larva in Canada. We provide the first account of B. burgdorferi s. l. in an Ixodes muris tick collected from a songbird anywhere. Congruent with previous data for the American Robin, we suggest that the Common Yellowthroat, Golden‐crowned Sparrow, Song Sparrow, and Swainson's Thrush are reservoir‐competent hosts. Song Sparrows, the predominant hosts, were parasitized by I. auritulus harboring all four Borrelia genotypes. Our results show that songbirds import B. burgdorferi s.l.‐infected ticks into Canada. Bird‐feeding I. scapularis subadults were infected with Lyme spirochetes during both spring and fall migration in eastern Canada. Because songbirds disperse millions of infected ticks across Canada, people and domestic animals contract Lyme disease outside of the known and expected range.  相似文献   

12.
The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57.  相似文献   

13.
We investigated the relationship between the binding activity to galactosylceramide (GalCer) and the arthritis induction activity of Borrelia japonica. The B. japonica strains maintained the ability to induce arthritis in inbred C3H/HeN and immunodeficient SCID mice, but the ability was lower than that of Borrelia burgdorferi sensu stricto virulent strain 297. Histopathological changes were restricted to the joints, and a marked effusion of polymorphonuclear neutrophils into the joint space was found. The binding activity of B. japonica strains to GalCer was lower than that of the virulent strain 297 but higher than that of the high-passage strain 297. The lower infectivity and virulence of B. japonica may explain its lower binding ability to GalCer.  相似文献   

14.
Borrelia burgdorferi sensu lato was obtained from adult ixodid ticks, Ixodes ovatus, collected in Nagano, Japan, and was named NT112. The genomic DNA was digested with enzymes, electrophoresed, blotted and hybridized with rRNA gene probes obtained from B. burgdorferi sensu stricto B31. The results showed that the borrelial chromosome contains a single rrs (16S rRNA gene) sequence and two copies of rrl/rrf (23S/5S rRNA genes) sequences. The rrl/rrf genes were tandemly repeated at intervals of 3.2 kb and were located separately from the rrs gene on the genome. Our findings indicate that the organization of rRNA genes in Borrelia from I. ovatus ticks is identical to that of B. burgdorferi sensu stricto.  相似文献   

15.
In Europe, 6 of the 11 genospecies of Borrelia burgdorferi sensu lato are prevalent in questing Ixodes ricinus ticks. In most parts of Central Europe, B. afzelii, B. garinii, and B. valaisiana are the most frequent species, whereas B. burgdorferi sensu stricto, B. bissettii, and B. lusitaniae are rare. Previously, it has been shown that B. afzelii is associated with European rodents. Therefore, the aim of this study was to identify reservoir hosts of B. garinii and B. valaisiana in Slovakia. Songbirds were captured in a woodland near Bratislava and investigated for engorged ticks. Questing I. ricinus ticks were collected in the same region. Both tick pools were analyzed for spirochete infections by PCR, followed by DNA-DNA hybridization and, for a subsample, by nucleotide sequencing. Three of the 17 captured songbird species were infested with spirochete-infected ticks. Spirochetes in ticks that had fed on birds were genotyped as B. garinii and B. valaisiana, whereas questing ticks were infected with B. afzelii, B. garinii, and B. valaisiana. Furthermore, identical ospA alleles of B. garinii were found in ticks that had fed on the birds and in questing ticks. The data show that songbirds are reservoir hosts of B. garinii and B. valaisiana but not of B. afzelii. This and previous studies confirm that B. burgdorferi sensu lato is host associated and that this bacterial species complex contains different ecotypes.  相似文献   

16.
In the Thousand Islands region of eastern Ontario, Canada, Lyme disease is emerging as a serious health risk. The factors that influence Lyme disease risk, as measured by the number of blacklegged tick (Ixodes scapularis) vectors infected with Borrelia burgdorferi, are complex and vary across eastern North America. Despite study sites in the Thousand Islands being in close geographic proximity, host communities differed and both the abundance of ticks and the prevalence of B. burgdorferi infection in them varied among sites. Using this archipelago in a natural experiment, we examined the relative importance of various biotic and abiotic factors, including air temperature, vegetation, and host communities on Lyme disease risk in this zone of recent invasion. Deer abundance and temperature at ground level were positively associated with tick abundance, whereas the number of ticks in the environment, the prevalence of B. burgdorferi infection, and the number of infected nymphs all decreased with increasing distance from the United States, the presumed source of this new endemic population of ticks. Higher species richness was associated with a lower number of infected nymphs. However, the relative abundance of Peromyscus leucopus was an important factor in modulating the effects of species richness such that high biodiversity did not always reduce the number of nymphs or the prevalence of B. burgdorferi infection. Our study is one of the first to consider the interaction between the relative abundance of small mammal hosts and species richness in the analysis of the effects of biodiversity on disease risk, providing validation for theoretical models showing both dilution and amplification effects. Insights into the B. burgdorferi transmission cycle in this zone of recent invasion will also help in devising management strategies as this important vector-borne disease expands its range in North America.  相似文献   

17.

Background

Lyme disease caused by Borrelia burgdorferi sensu lato complex is an important endemic zoonosis whose distribution is closely related to the main ixodid tick vectors. In China, isolated cases of Lyme disease infection of humans have been reported in 29 provinces. Ticks, especially ixodid ticks are abundant and a wide arrange of Borrelia natural reservoirs are present. In this study, we developed a reverse line blot (RLB) to identify Borrelia spp. in ticks collected from sheep and cattle in 7 Provinces covering the main extensive livestock regions in China.

Results

Four species-specific RLB oligonucleotide probes were deduced from the spacer region between the 5S-23S rRNA gene, along with an oligonucleotide probe which was common to all. The species specific probes were shown to discriminate between four genomic groups of B. burgdorferi sensu lato i.e. B. burgdorferi sensu stricto, B. garinii, B. afzelii, and B. valaisiana, and to bind only to their respective target sequences, with no cross reaction to non target DNA. Furthermore, the RLB could detect between 0.1 pg and 1 pg of Borrelia DNA. A total of 723 tick samples (Haemaphysalis, Boophilus, Rhipicephalus and Dermacentor) from sheep and cattle were examined with RLB, and a subset of 667 corresponding samples were examined with PCR as a comparison. The overall infection rate detected with RLB was higher than that of the PCR test. The infection rate of B. burgdoreri sensu stricto was 40% in south areas; while the B. garinii infection rate was 40% in north areas. The highest detection rates of B. afzelii and B. valaisiana were 28% and 22%, respectively. Mixed infections were also found in 7% of the ticks analyzed, mainly in the North. The proportion of B. garinii genotype in ticks was overall highest at 34% in the whole investigation area.

Conclusion

In this study, the RLB assay was used to detect B. burgdorferi sensu lato in ticks collected from sheep and cattle in China. The results showed that B. burdorferi senso stricto and B. afzelii were mainly distributed in the South; while B. garinii and B. valaisiana were dominant in the North. Borrelia spirochaetes were detected in Rhipicephalus spp for the first time. It is suggested that the Rhipicephalus spps might play a role in transmitting Borrelia spirochaetes.  相似文献   

18.
Activities of 19 enzymes were tested by the API ZYM system in 13 strains ofBorrelia burgdorferi sensu lato (B. burgdorferi sensu stricto,B. afzelii, B. garinii, B. lusitaniae, B. valaisiana) grown in liquid BSK-H medium supplemented with rabbit serum. All strains produced acid phosphatase, esterase (C4), esterase-lipase (C8), leucine arylamidase and naphthol-AS-BI-phosphohydrolase. Nine strains also produced alkaline phosphatase, and three strains produced α-glucosidase. The API ZYM system probably cannot be used for differentiation betweenB. burgdorferi sensu lato genomospecies.  相似文献   

19.
Lyme disease spirochetes demonstrate strain- and species-specific differences in tissue tropism. For example, the three major Lyme disease spirochete species, Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii, are each most commonly associated with overlapping but distinct spectra of clinical manifestations. Borrelia burgdorferi sensu stricto, the most common Lyme spirochete in the U.S., is closely associated with arthritis. The attachment of microbial pathogens to cells or to the extracellular matrix of target tissues may promote colonization and disease, and the Lyme disease spirochete encodes several surface proteins, including the decorin- and dermatan sulfate-binding adhesin DbpA, which vary among strains and have been postulated to contribute to strain-specific differences in tissue tropism. DbpA variants differ in their ability to bind to its host ligands and to cultured mammalian cells. To directly test whether variation in dbpA influences tissue tropism, we analyzed murine infection by isogenic B. burgdorferi strains that encode different dbpA alleles. Compared to dbpA alleles of B. afzelii strain VS461 or B. burgdorferi strain N40-D10/E9, dbpA of B. garinii strain PBr conferred the greatest decorin- and dermatan sulfate-binding activity, promoted the greatest colonization at the inoculation site and heart, and caused the most severe carditis. The dbpA of strain N40-D10/E9 conferred the weakest decorin- and GAG-binding activity, but the most robust joint colonization and was the only dbpA allele capable of conferring significant joint disease. Thus, dbpA mediates colonization and disease by the Lyme disease spirochete in an allele-dependent manner and may contribute to the etiology of distinct clinical manifestations associated with different Lyme disease strains. This study provides important support for the long-postulated model that strain-specific variations of Borrelia surface proteins influence tissue tropism.  相似文献   

20.
The vector competence of Ixodes angustus for Borrelia burgdorferi sensu stricto (s.s.) was investigated in the laboratory. The larval progeny of female ticks from Washington State were placed on Swiss-Webster mice that had been inoculated intravenously with 108 spirochetes each of a Californian isolate of B. burgdorferi. Spirochetes were detected in 6 (12%) of 50 nymphs derived from larvae that had fed on these animals. Ten nymphs from the same cohort of experimentally infected ticks were placed on each of 4 naive deer mice (Peromyscus maniculatus). One of the mice seroconverted to B. burgdorferi and spirochetes were isolated from its ear tissues 4 weeks after exposure to ticks. Further vector competence trials were conducted with I. angustus ticks from California. Larvae were fed on deer mice that had been inoculated intradermally with B. burgdorferi along with larvae of I. spinipalpis as a comparison group. There was no significant difference in the prevalence of infection in nymphs of I. angustus (8.2%) versus those of I. spinipalpis (12.1%). We conclude that I. angustus is a competent experimental vector of B. burgdorferi s.s. and its efficiency for acquiring and transstadially passing such spirochetes is similar to that of I. spinipalpis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号