首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The alpha(1)beta(1) and alpha(2)beta(1) integrins are cell surface collagen receptors. Cells expressing the alpha(1)beta(1) integrin preferentially adhere to collagen IV, whereas cells expressing the alpha(2)beta(1) integrin preferentially adhere to collagen I. Recombinant alpha(1) and alpha(2) integrin I domains exhibit the same collagen type preferences as the intact integrins. In addition, the alpha(2) integrin I domain binds echovirus 1; the alpha(1) I domain does not. To identify the structural components of the I domains responsible for the varying ligand specificities, we have engineered several alpha(1)/alpha(2) integrin I domain chimeras and evaluated their virus and collagen binding activities. Initially, large secondary structural components of the alpha(2) I domain were replaced with corresponding regions of the alpha(1) I domain. Following analysis in echovirus 1 and collagen binding assays, chimeras with successively smaller regions of alpha(1) I were constructed and analyzed. The chimeras were analyzed by ELISA with several different alpha(2) integrin monoclonal antibodies to assess their proper folding. Three different regions of the alpha(1) I domain, when present in the alpha(2) I domain, conferred enhanced collagen IV binding activity upon the alpha(2) I domain. These include the alpha3 and alpha5 helices and a portion of the alpha6 helix. Echovirus 1 binding was lost in a chimera containing the alphaC-alpha6 loop; higher resolution mapping identified Asn(289) as playing a critical role in echovirus 1 binding. Asn(289) had not been implicated in previous echovirus 1 binding studies. Taken together, these data reveal the existence of multiple determinants of ligand binding specificities within the alpha(1) and alpha(2) integrin I domains.  相似文献   

2.
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, alpha(1)beta(1) and alpha(2)beta(1) integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin alpha(2)I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin alpha(1)I and alpha(2)I domain avidity to collagen and to lower the number of putative alphaI domain binding sites on it. Respectively, cellular alpha(1)beta(1) integrin was able to mediate cell spreading significantly better on monomeric than on fibrillar type I collagen matrix, whereas alpha(2)beta(1) integrin appeared still to facilitate both cell spreading on fibrillar type I collagen matrix and also the contraction of fibrillar type I collagen gel. Additionally, alpha(2)beta(1) integrin promoted the integrin-mediated formation of long cellular projections typically induced by fibrillar collagen. Thus, these findings suggest that alpha(2)beta(1) integrin is a functional cellular receptor for type I collagen fibrils, whereas alpha(1)beta(1) integrin may only effectively bind type I collagen monomers. Furthermore, when the effect of soluble alphaI domains on type I collagen fibril formation was tested in vitro, the observations suggest that integrin type collagen receptors might guide or even promote pericellular collagen fibrillogenesis.  相似文献   

3.
Previous studies have established that ligation of keratinocyte alpha(2)beta(1) integrin by type I collagen induces expression of matrix metalloproteinase-1 (MMP-1) and that MMP-1 activity is required for the alpha(2)beta(1) integrin-dependent migration of primary keratinocytes across collagenous matrices. We now present evidence that MMP-1 binds the alpha(2)beta(1) integrin via the I domain of the alpha(2) integrin subunit. Using an enzyme-linked immunosorbent assay with purified human MMP-1 and recombinant alpha(2) integrin I domain, we showed that the alpha(2) integrin I domain specifically bound in a divalent cation-dependent manner to both the pro and active forms of MMP-1, but not to MMP-3 or MMP-13. Although both the I domain and MMP-1 bind divalent cations, MMP-1 bound, in a divalent cation-dependent manner, to alpha(2) integrin I domains containing metal ion-dependent adhesion sites motif mutations that prevent divalent cation binding to the I domain, demonstrating that the metal ion dependence is a function of MMP-1. Using a series of MMP-1-MMP-3 and MMP-1-MMP-13 chimeras, we determined that both the linker domain and the hemopexin-like domain of MMP-1 were required for optimal binding to the I domain. The alpha(2) integrin/MMP-1 interaction described here extends an emerging paradigm in matrix biology involving anchoring of proteinases to the cell surface to regulate their biological activities.  相似文献   

4.
Rotaviruses utilize integrins during virus-cell interactions that lead to infection. Cell binding and infection by simian rotavirus SA11 were inhibited by antibodies (Abs) to the inserted (I) domain of the alpha2 integrin subunit. To determine directly which integrins or other proteins bind rotaviruses, cell surface proteins precipitated by rotaviruses were compared with those precipitated by anti-alpha2beta1 Abs. Two proteins precipitated by SA11 and rhesus rotavirus RRV from MA104 and Caco-2 cells migrated indistinguishably from alpha2beta1 integrin, and SA11 precipitated beta1 from alpha2beta1-transfected CHO cells. These viruses specifically precipitated two MA104 cell proteins only, but an additional 160- to 165-kDa protein was precipitated by SA11 from Caco-2 cells. The role of the alpha2 I domain in rotavirus binding, infection, and growth was examined using CHO cell lines expressing wild-type or mutated human alpha2 or alpha2beta1. Infectious SA11 and RRV, but not human rotavirus Wa, specifically bound CHO cell-expressed human alpha2beta1 and, to a lesser extent, human alpha2 combined with hamster beta1. Binding was inhibited by anti-alpha2 I domain monoclonal Abs (MAbs), but not by non-I domain MAbs to alpha2, and required the presence of the alpha2 I domain. Amino acid residues 151, 221, and 254 in the metal ion-dependent adhesion site of the alpha2 I domain that are necessary for type I collagen binding to alpha2beta1 were not essential for rotavirus binding. Rotavirus-alpha2beta1 binding led to increased virus infection and RRV growth. SA11 and RRV require the alpha2 I domain for binding to alpha2beta1, and their binding to this integrin is distinguishable from that of collagen.  相似文献   

5.
The avian integrin beta 1 subfamily consists of multiple alpha-beta subunit heterodimers. We employed two different physical states of type I collagen, monomers and fibrils, in the isolation and characterization of avian collagen integrins. Affinity chromatography showed that three integrins, tentatively designated alpha 155 beta 1 (band 1), alpha 5a beta 1, and alpha 3 beta 1 (band 2), bind fibrillar and monomeric collagen under physiological ionic conditions and require divalent cations for binding activity. Sodium chloride gradients (0-0.5 M) were used to assess the functional ability of the integrins to remain bound to the two forms of type I collagen. The results show that integrins elute from the two forms of collagen with distinct fractionation profiles. One integrin, alpha 155 beta 1, binds fibrillar collagen with relatively higher affinity than the other beta 1 receptors. This same avian integrin, alpha 155 beta 1, is immunoreactive with an antiserum (Hynes et al., 1989) raised against a peptide that corresponds to the entire alpha 5 cytoplasmic domain, and coincidently, part of the alpha 6 cytoplasmic domain (de Curtis et al., 1991). Cell biological studies employing double immunofluorescence show that integrins recognized by this antiserum co-localize with extracellular deposits of type I collagen.  相似文献   

6.
Two integrin-type collagen receptors, alpha(1)beta(1) and alpha(2)beta(1), are structurally very similar. However, cells can concomitantly express the both receptors and they might have independent functions. Here, Chinese hamster ovary (CHO) cells, which lack endogenous collagen receptors, were transfected with either alpha(1) or alpha(2) integrin cDNA. Cells were allowed to adhere to various collagen types and their integrin function was tested by observing the progression of cell spreading. The cells expressing alpha(1)beta(1) integrin could spread on collagen types I, III, IV, and V but not on type II, while alpha(2)beta(1) integrin could mediate cell spreading on collagen types I-V. Type XIII is a transmembrane collagen and its interaction with the integrins has not been previously studied. CHO-alpha1beta1 cells could spread on human recombinant type XIII collagen, unlike CHO-alpha2beta1 cells. Integrins alpha(1)beta(1) and alpha(2)beta(1) recognize collagens with the specific alphaI domains. The alpha(1)I and alpha(2)I domains were produced as recombinant proteins, labeled with europium and used in a sensitive solid-phase binding assay based on time-resolved fluorescence. alpha(1)I domain, unlike the alpha(2)I domain, could attach to type XIII collagen. The results indicate, that alpha(1)beta(1) and alpha(2)beta(1) have different ligand binding specificity. Distinct recognition of different collagen subtypes by the alphaI domains can partially explain the differences seen in cell spreading. However, despite the fact that CHO-alpha1beta1 cells could not spread on type II collagen alpha(1)I domain could bind to this collagen type. Thus, the cell spreading on collagens may also be regulated by factors other than the integrins.  相似文献   

7.
The trafficking of leukocytes through tissues is supported by an interaction between the beta 2 (CD18) integrins CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) and their ligand ICAM-1. The most recently identified and fourth member of the beta 2 integrins, alpha D beta 2, selectively binds ICAM-3 and does not appear to bind ICAM-1. We have reported recently that alpha D beta 2 can support eosinophil adhesion to VCAM-1. Here we demonstrate that expression of alpha D beta 2 in a lymphoid cell that does not express alpha 4 integrins confers efficient binding to VCAM-1. In addition, a soluble form of alpha D beta 2 binds VCAM-1 with greater efficiency relative to ICAM-3. The I domain of alpha D contains a binding site for VCAM-1 since recombinant alpha D I domain binds specifically to VCAM-1. In addition, alpha D mAb that block cellular binding to VCAM-1 bind the alpha D I domain. Using VCAM-1 mutants we have determined that the binding site on VCAM-1 for alpha D beta 2 overlaps with that of alpha 4++ integrins. Substitution of VCAM-1 aspartate at position 40, D40, within the conserved integrin binding site, diminishes binding to alpha D beta 2 and abrogates binding to the alpha D I domain. The corresponding integrin binding site residue in ICAM-3 is also essential to alpha D beta 2 binding. Finally, we demonstrate that alpha D beta 2 can support lymphoid cell adhesion to VCAM-1 under flow conditions at levels equivalent to those mediated by alpha 4 beta 1. These results indicate that VCAM-1 can bind to an I domain and that the binding of alpha D beta 2 to VCAM-1 may contribute to the trafficking of a subpopulation of leukocytes that express alpha D beta 2.  相似文献   

8.
Integrins can mediate the attachment of cells to collagen type I. In the present study we have investigated the possible differences in collagen type I recognition sites for the alpha 1 beta 1 and alpha 2 beta 1 integrins. Different cyanogen bromide (CB) fragments of the alpha 1 (I) collagen chain were used in cell attachment experiments with three rat cell types, defined with regard to expression of collagen binding integrins. Primary rat hepatocytes expressed alpha 1 beta 1, primary rat cardiac fibroblasts alpha 1 beta 1 and alpha 2 beta 1, and Rat-1 cells only alpha 2 beta 1. All three cell types expressed alpha 3 beta 1 but this integrin did not bind to collagen--Sepharose or to immobilized collagen type I in a radioreceptor assay. Hepatocytes and cardiac fibroblasts attached to substrata coated with alpha 1(I)CB3 and alpha 1(I)CB8; Rat-1 cells attached to alpha 1(I)CB3 but only poorly to alpha 1(I)CB8-coated substrata. Cardiac fibroblasts and Rat-1 cells spread and formed beta 1-integrin-containing focal adhesions when grown on substrata coated with native collagen or alpha 1(I)CB3; focal adhesions were also detected in cardiac fibroblasts cultured on alpha 1(I)CB8. The rat alpha 1 specific monoclonal antibody 3A3 completely inhibited hepatocyte attachment to alpha 1(I)CB3 and alpha 1(I)CB8, as well as the attachment of cardiac fibroblasts to alpha 1(I)CB8, but only partially inhibited the attachment of cardiac fibroblasts to alpha 1(I)CB3. 3A3 IgG did not inhibit the attachment of Rat-1 cells to collagen type I or to alpha 1(I)CB3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have recombinantly expressed a soluble form of human alpha(2)beta(1) integrin that lacks the membrane-anchoring transmembrane domains as well as the cytoplasmic tails of both integrin subunits. This soluble alpha(2)beta(1) integrin binds to its collagen ligands the same way as the wild-type alpha(2)beta(1) integrin. Furthermore, like the wild-type form, it can be activated by manganese ions and an integrin-activating antibody. However, it does not bind to rhodocytin, a postulated agonist of alpha(2)beta(1) integrin from the snake venom of Calloselasma rhodostoma, which elicits platelet aggregation. Taking advantage of the recombinantly expressed, soluble alpha(2)beta(1) integrin, an inhibition assay was established in which samples can be tested for their capability to inhibit binding of soluble alpha(2)beta(1) integrin to immobilized collagen. Thus, by scrutinizing the C. rhodostoma snake venom in this protein-protein interaction assay, we found a component of the snake venom that inhibits the interaction of soluble alpha(2)beta(1) integrin to type I collagen efficiently. N-terminal sequences identified this inhibitor as rhodocetin, a recently published antagonist of collagen-induced platelet aggregation. We could demonstrate that its inhibitory effect bases on its strong and specific binding to alpha(2)beta(1) integrin, proving that rhodocetin is a disintegrin. Standing apart from the growing group of RGD-dependent snake venom disintegrins, rhodocetin interacts with alpha(2)beta(1) integrin in an RGD-independent manner. Furthermore, its native conformation, which is stabilized by disulfide bridges, is indispensibly required for its inhibitory activity. Rhodocetin does not contain any major collagenous structure despite its high affinity to alpha(2)beta(1) integrin, which binds to collagenous molecules much more avidly than to noncollagenous ligands, such as laminin. Blocking alpha(2)beta(1) integrin as the major collagen receptor on platelets, rhodocetin is responsible for hampering collagen-induced, alpha(2)beta(1) integrin-mediated platelet activation, leading to hemorrhages and bleeding disorders of the snakebite victim. Moreover, having a widespread tissue distribution, alpha(2)beta(1) integrin also mediates cell adhesion, spreading, and migration. We showed that rhodocetin is able to inhibit alpha(2)beta(1) integrin-mediated adhesion of fibrosarcoma cells to type I collagen completely.  相似文献   

10.
Many pathogenic bacteria interact with human integrins to enter host cells and to augment host colonization. Group A Streptococcus (GAS) employs molecular mimicry by direct interactions between the cell surface streptococcal collagen-like protein-1 (Scl1) and the human collagen receptor, integrin alpha2beta1. The collagen-like (CL) region of the Scl1 protein mediates integrin-binding, although, the integrin binding motif was not defined. Here, we used molecular cloning and site-directed mutagenesis to identify the GLPGER sequence as the alpha2beta1 and the alpha11beta1 binding motif. Electron microscopy experiments mapped binding sites of the recombinant alpha2-integrin-inserted domain to the GLPGER motif of the recombinant Scl (rScl) protein. rScl proteins and a synthetic peptide harboring the GLPGER motif mediated the attachment of C2C12-alpha2+myoblasts expressing the alpha2beta1 integrin as the sole collagen receptor. The C2C12-alpha11+myoblasts expressing the alpha11beta1 integrin also attached to GLPGER-harboring rScl proteins. Furthermore, the C2C12-alpha11+cells attached to rScl1 more efficiently than C2C12-alpha2+cells, suggesting that the alpha11beta1 integrin may have a higher binding affinity for the GLPGER sequence. Human endothelial cells and dermal fibroblasts adhered to rScl proteins, indicating that multiple cell types may recognize and bind the Scl proteins via their collagen receptors. This work is a stepping stone toward defining the utilization of collagen receptors by microbial collagen-like proteins that are expressed by pathogenic bacteria.  相似文献   

11.
Several studies have addressed the interaction of the HIV Tat protein with the cell surface. Our analysis of the cell attachment-promoting activity of Tat and peptides derived from it revealed that the basic domain of Tat, not the arg-gly-asp (RGD) sequence, is required for cell attachment to Tat. Affinity chromatography with Tat peptides and immunoprecipitation with various anti-integrin antibodies suggest that the vitronectin-binding integrin, alpha v beta 5, is the cell surface protein that binds to the basic domain of Tat. The Tat basic domain contains the sequence RKKRRQRRR. A related sequence, KKQRFRHRNRKG, present in the heparin-binding domain of an alpha v beta 5 ligand, vitronectin, also bound alpha v beta 5 in affinity chromatography and, in combination with an RGD peptide, was an inhibitor of cell attachment to vitronectin. The alpha v beta 5 interaction with these peptides was not solely due to high content of basic amino acids in the ligand sequences; alpha v beta 5 did not bind substantially to peptides consisting entirely of arginine or lysine, whereas a beta 1 integrin did bind to these peptides. The interaction of alpha v beta 5 with Tat is atypical for integrins in that the binding to Tat is divalent cation independent, whereas the binding of the same integrin to an RGD- containing peptide or to vitronectin requires divalent cations. These data define an auxiliary integrin binding specificity for basic amino acid sequences. These basic domain binding sites may function synergistically with the binding sites that recognize RGD or equivalent sequences.  相似文献   

12.
Keratinocyte growth factor (KGF) induction of keratinocyte attachment and migration on provisional and basement membrane proteins was examined. KGF-treated keratinocytes showed increased attachment to collagen types I and IV and fibronectin, but, not to laminin-1, vitronectin, or tenascin. This increase was time- and dose-dependent. Increase in attachment occurred with 2 10 microg/ml of ECM proteins. This KGF-stimulated cell attachment was beta1 integrin-dependent but was not associated with stimulation of the cell surface expression nor affinity (activity) of the collagen integrin receptor (alpha2beta1) nor the fibronectin integrin receptors (alpha5beta1 or alphav). At the basal layer of KGF-treated cells significant accumulation of beta1 integrins was found at the leading edges, and actin stress fibers colocalized with beta1. KGF also induced migratory phenotype and stimulated keratinocyte migration on both fibronectin and collagen types I and IV but not on laminin-1, vitronectin nor tenascin. The results suggest that in addition to its proliferation promoting activity. KGF is able to modulate keratinocyte adhesion and migration on collagen and fibronectin. Our data suggest that KGF induced integrin avidity (clustering), a signaling event, which is not dependent on the alteration of cell surface integrin numbers.  相似文献   

13.
Four integrins, namely alpha(1)beta(1), alpha(2)beta(1), alpha(10)beta(1), and alpha(11)beta(1), form a special subclass of cell adhesion receptors. They are all collagen receptors, and they recognize their ligands with an inserted domain (I domain) in their alpha subunit. We have produced the human integrin alpha(10)I domain as a recombinant protein to reveal its ligand binding specificity. In general, alpha(10)I did recognize collagen types I-VI and laminin-1 in a Mg(2+)-dependent manner, whereas its binding to tenascin was only slightly better than to albumin. When alpha(10)I was tested together with the alpha(1)I and alpha(2)I domains, all three I domains seemed to have their own collagen binding preferences. The integrin alpha(2)I domain bound much better to fibrillar collagens (I-III) than to basement membrane type IV collagen or to beaded filament-forming type VI collagen. Integrin alpha(1)I had the opposite binding pattern. The integrin alpha(10)I domain was similar to the alpha(1)I domain in that it bound very well to collagen types IV and VI. Based on the previously published atomic structures of the alpha(1)I and alpha(2)I domains, we modeled the structure of the alpha(10)I domain. The comparison of the three I domains revealed similarities and differences that could potentially explain their functional differences. Mutations were introduced into the alphaI domains, and their binding to types I, IV, and VI collagen was tested. In the alpha(2)I domain, Asp-219 is one of the amino acids previously suggested to interact directly with type I collagen. The corresponding amino acid in both the alpha(1)I and alpha(10)I domains is oppositely charged (Arg-218). The mutation D219R in the alpha(2)I domain changed the ligand binding pattern to resemble that of the alpha(1)I and alpha(10)I domains and, vice versa, the R218D mutation in the alpha(1)I and alpha(10)I domains created an alpha(2)I domain-like ligand binding pattern. Thus, all three collagen receptors appear to differ in their ability to recognize distinct collagen subtypes. The relatively small structural differences on their collagen binding surfaces may explain the functional specifics.  相似文献   

14.
We have isolated and characterized EMS16, a potent and selective inhibitor of the alpha2beta1 integrin, from Echis multisquamatus venom. It belongs to the family of C-lectin type of proteins (CLPs), and its amino acid sequence is homologous with other members of this protein family occurring in snake venoms. EMS16 (M(r) approximately 33K) is a heterodimer composed of two distinct subunits linked by S-S bonds. K562 cells transfected with alpha2 integrin selectively adhere to immobilized EMS16, but not to two other snake venom-derived CLPs, echicetin and alboaggregin B. EMS16 inhibits adhesion of alpha2beta1-expressing cells to immobilized collagen I at picomolar concentrations, and the platelet/collagen I interaction in solution at nanomolar concentrations. EMS16 inhibits binding of isolated, recombinant I domain of alpha2 integrin to collagen in an ELISA assay, but not the interaction of isolated I domain of alpha1 integrin with collagen IV. Studies with monoclonal antibodies suggested that EMS16 binds to the alpha2 subunit of the integrin. EMS16 inhibits collagen-induced platelet aggregation, but has no effect on aggregation induced by other agonists such as ADP, thromboxane analogue (U46619), TRAP, or convulxin. EMS16 also inhibits collagen-induced, but not convulxin-induced, platelet cytosolic Ca(2+) mobilization. In addition, EMS16 inhibits HUVEC migration in collagen I gel. In conclusion, we report a new, potent viper venom-derived inhibitor of alpha2beta1 integrin, which does not belong to the disintegrin family.  相似文献   

15.
Integrins are a complex family of divalent cation-dependent cell adhesion receptors composed of one alpha and one beta subunit noncovalently bound to one another. A subset of integrins contains the alpha v subunit in association with one of several beta subunits (e.g. beta 3, beta 5, beta 1). We have recently identified a novel integrin beta subunit, beta 6, that is present in a number of epithelial cell lines. Using a polyclonal antibody raised against the carboxyl-terminal peptide of beta 6, we have now identified the integrin heterodimer, alpha v beta 6, on the surface of two human carcinoma cell lines. Using affinity chromatography of lysates from the pancreatic carcinoma cell line, FG-2, we demonstrate that alpha v beta 6 binds to fibronectin, but not to vitronectin or collagen I. In contrast, the alpha v beta 5 integrin, which is also expressed on FG-2 cells, binds exclusively to vitronectin. Immobilized collagen I does not interact with alpha v integrins, but binds beta 1-containing integrins. Both alpha v beta 6 and alpha v beta 5 are eluted from their respective immobilized ligands by a hexa-peptide containing the sequence Arg-Gly-Asp (RGD). RGD is highly effective in the presence of Ca2+, somewhat less effective in Mg2+, and virtually inactive in Mn2+. These results suggest that alpha v beta 6 functions as an RGD-dependent fibronectin receptor in FG-2 carcinoma cells. In agreement with this notion, cell adhesion assays show that FG-2 cell attachment to fibronectin is only partially inhibited by anti-beta 1 integrin antibodies, implying that other fibronectin receptors may be involved. Taken together with recent reports on the vitronectin receptor function of alpha v beta 5, our results suggest that the previously described carcinoma cell integrin, alpha v beta x (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), is a mixture of at least two different receptors: alpha v beta 5, mediating adhesion to vitronectin, and alpha v beta 6, mediating adhesion to fibronectin.  相似文献   

16.
Snake venoms contain a number of heterodimeric C-type lectin-like proteins (CLPs) that interact specifically with components of the haemostatic system. EMS16 from the venom of Echis multisquamatus binds to the collagen receptor, integrin alpha2beta1, also known as glycoprotein (GP) Ia/IIa, and specifically inhibits collagen binding. Here we report the crystal structure of EMS16 in complex with recombinant integrin alpha2-I domain that plays a central role in collagen binding. The structure of the complex at 1.9 Angstrom resolution reveals that the collagen-binding site of the alpha2-I domain is covered completely by the bound EMS16. This blockage by EMS16 appears to spatially inhibit collagen binding to the alpha2-I domain. The bound alpha2-I domain adopts a closed conformation, which is seen in the absence of ligand, suggesting that EMS16 stabilizes a closed conformation corresponding to the less active structure of the alpha2-I domain. EMS16 does not directly bind to the manganese ion and residues of the metal ion-dependent adhesion site (MIDAS) of the alpha2-I domain, suggesting that EMS16 may have the potential to bind specifically to the alpha2-I domain in a metal ion-independent fashion.  相似文献   

17.
The alpha M beta 2 integrin of leukocytes can bind a variety of ligands. We screened phage display libraries to isolate peptides that bind to the alpha M I domain, the principal ligand binding site of the integrin. Only one peptide motif, (D/E)(D/E)(G/L)W, was obtained with this approach despite the known ligand binding promiscuity of the I domain. Interestingly, such negatively charged sequences are present in many known beta 2 integrin ligands and also in the catalytic domain of matrix metalloproteinases (MMPs). We show that purified beta 2 integrins bind to pro-MMP-2 and pro-MMP-9 gelatinases and that that the negatively charged sequence of the MMP catalytic domain is an active beta 2 integrin-binding site. Furthermore, a synthetic DDGW-containing phage display peptide inhibited the ability of beta 2 integrin to bind progelatinases but did not inhibit the binding of cell adhesion-mediating substrates such as intercellular adhesion molecule-1, fibrinogen, or an LLG-containing peptide. Immunoprecipitation and cell surface labeling demonstrated complexes of pro-MMP-9 with both the alpha M beta 2 and alpha L beta 2 integrins in leukocytes, and pro-MMP-9 colocalized with alpha M beta 2 in cell surface protrusions. The DDGW peptide and the gelatinase-specific inhibitor peptide CTTHWGFTLC blocked beta 2 integrin-dependent leukocyte migration in a transwell assay. These results suggest that leukocytes may move in a progelatinase-beta 2 integrin complex-dependent manner.  相似文献   

18.
Type I collagen stimulation of pro-matrix metalloproteinase (pro-MMP)-2 activation by ovarian cancer cells involves beta(1) integrin receptor clustering; however, the specific cellular and biochemical events that accompany MMP processing are not well characterized. Collagenolysis is not required for stimulation of pro-MMP-2 activation, and denatured collagen does not elicit an MMP-2 activation response. Similarly, DOV13 cells bind to intact collagen utilizing both alpha(2)beta(1) and alpha(3)beta(1) integrins but interact poorly with collagenase-treated or thermally denatured collagen. Antibody-induced clustering of alpha(3)beta(1) strongly promotes activation of pro-MMP-2, whereas alpha(2)beta(1) integrin clustering has only marginal effects. Membrane-type 1 (MT1)-MMP is present on the DOV13 cell surface as both an active 55-kDa TIMP-2-binding species and a stable catalytically inactive 43-kDa form. Integrin clustering stimulates cell surface expression of MT1-MMP and co-localization of the proteinase to aggregated integrin complexes. Furthermore, cell surface proteolysis of the 55-kDa MT1-MMP species occurs in the absence of active MMP-2, suggesting MT1-MMP autolysis. Cellular invasion of type I collagen matrices requires collagenase activity, is blocked by tissue inhibitor of metalloproteinases-2 (TIMP-2) and collagenase-resistant collagen, is unaffected by TIMP-1, and is accompanied by pro-MMP-2 activation. Together, these data indicate that integrin stimulation of MT1-MMP activity is a rate-limiting step for type I collagen invasion and provide a mechanism by which this activity can be down-regulated following collagen clearance.  相似文献   

19.
Integrin-using rotaviruses bind MA104 cell surface alpha2beta1 integrin via the Asp-Gly-Glu (DGE) sequence in virus spike protein VP4 and interact with alphaxbeta2 integrin during cell entry through outer capsid protein VP7. Infection is inhibited by the alpha2beta1 ligand Asp-Gly-Glu-Ala (DGEA) and the alphaxbeta2 ligand Gly-Pro-Arg-Pro (GPRP), and virus-alpha2beta1 binding is increased by alpha2beta1 activation. In this study, we analyzed the effects of monomers and polymers containing DGEA-, GPRP-, and DGEA-related peptides on rotavirus binding and infection in intestinal (Caco-2) and kidney (MA104) cells and virus binding to recombinant alpha2beta1. Blockade of rotavirus-cell binding and infection by peptides and anti-alpha2 antibody showed that Caco-2 cell entry is dependent on virus binding to alpha2beta1 and interaction with alphaxbeta2. At up to 0.5 mM, monomeric DGEA and DGAA inhibited binding to alpha2beta1 and infection. At higher concentrations, DGEA and DGAA showed a reduced ability to inhibit virus-cell binding and infection that depended on virus binding to alpha2beta1 but occurred without alteration in cell surface expression of alpha2, beta2, or alphavbeta3 integrin. This loss of DGEA activity was abolished by genistein treatment and so was dependent on tyrosine kinase signaling. It is proposed that this signaling activated existing cell surface alpha2beta1 to increase virus-cell attachment and entry. Polymeric peptides containing DGEA and GPRP or GPRP only were inhibitory to SA11 infection at approximately 10-fold lower concentrations than peptide monomers. As polymerization can improve peptide inhibition of virus-receptor interactions, this approach could be useful in the development of inhibitors of receptor recognition by other viruses.  相似文献   

20.
The alpha 2 beta 1 integrin serves as either a specific cell surface receptor for collagen or as both a collagen and laminin receptor depending upon the cell type. Recently we established that the alpha 2 beta 1 integrin binds to a site within the alpha 1 (I)-CB3 fragment of type I collagen (Staatz, W. D., Walsh, J. J., Pexton, T., and Santoro, S. A. (1990) J. Biol. Chem. 265, 4778-4781). To define the alpha 2 beta 1 recognition sequence further we have prepared an overlapping set of synthetic peptides which completely spans the 148-amino acid alpha 1(I)-CB3 fragment and tested the peptides for ability to inhibit cell adhesion to collagen and laminin substrates. The minimal active recognition sequence defined by these experiments is a tetrapeptide of the sequence Asp-Gly-Glu-Ala (DGEA) corresponding to residues 435-438 of the type I collagen sequence. The DGEA-containing peptides effectively inhibited alpha 2 beta 1-mediated Mg2(+)-dependent adhesion of platelets, which use the alpha 2 beta 1 integrin as a collagen-specific receptor, to collagen but had no effect on alpha 5 beta 1-mediated platelet adhesion to fibronectin or alpha 6 beta 1-mediated platelet adhesion to laminin. In contrast, with T47D breast adenocarcinoma cells, which use alpha 2 beta 1 as a collagen/lamin receptor, adhesion to both collagen and laminin was inhibited by DGEA-containing peptides. Deletion of the alanine residue or substitution of alanine for either the glutamic or aspartic acid residues in DGEA-containing peptides resulted in marked loss of inhibitory activity. These results indicate that the amino acid sequence DGEA serves as a recognition site for the alpha 2 beta 1 integrin complex on platelets and other cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号