首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local inflammation and respiratory burst of polymorphonuclear leukocytes generate reactive oxygen species (ROS). The aim of our study was to analyze the effects of peritoneal neutrophils on changes of the muscle tension of isolated aorta and compare their effects with those of different ROS. While native neutrophils did not influence muscle tension, the N-formyl-methionyl-leucyl-phenylalanine activated ones evoked a biphasic response on the KCl-precontracted aorta. The effects of activated neutrophils were in both respects similar to those evoked by xanthine/xanthine oxidase (X/XO) and differed from the effects evoked by H(2)O(2) and Fe(2)SO(4)/H(2)O(2). Using H(2)O(2) we demonstrated that the effects of ROS were dependent on the KCl induced initial tension. To exclude the effect of extensive depolarization the action of different ROS was studied also on tissues precontracted by phenylephrine. Under such condition activated neutrophils caused a marked contraction similar to that evoked by X/XO. Their effects differed however, from those of H(2)O(2) and Fe(2)SO(4)/ascorbic acid. These findings and elimination of activated neutrophil-induced contractions as well as the chemiluminiscence by superoxide dismutase suggest that the primarily activated neutrophil-released ROS was superoxide, which can be transformed to peroxynitrite, and other ROS including H(2)O(2). Reduction of all followed-up contractions caused by nordihydroguaiaretic acid, indicate that 5-lipoxygenase metabolites unselectively reduce contractions. In contrast, selective inhibition of activated neutrophil-evoked contraction by indomethacin suggests that cyclooxygenase metabolites are involved mainly in their action on vascular smooth muscle.  相似文献   

2.
The effects of the reactive oxygen species (ROS) superoxide anion (O2*-) and hydroxyl radical (*OH) on the surface tension lowering properties of bovine lipid extract surfactant (BLES) were compared to the effects of calf serum protein (CSP) in a captive bubble surfactometer (CBS). O2*- was generated from xanthine/xanthine oxidase (X/XO), and *OH was generated by the Fenton reaction. ROS were demonstrated by electron spin resonance (ESR) using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin trap. Lipid peroxidation was measured using the thiobarbituric acid method. *OH had broad inhibitory effects on surface tension parameters, including adsorption, minimum surface tension, percentage film area change and film compressibility. O2*- showed inhibitory effects on adsorption, film area change and film compressibility but had no significant effect on minimum surface tension. Both O2*- and *OH treatment were associated with a large 'squeezeout' plateau around 20-25 mN/m in the surface tension-area relation, indicating poor film organization during the compression phase. At the concentrations used, ROS were associated with lipid peroxidation of BLES, which also demonstrated radical scavenging properties. Calf serum protein produced inhibitory effects on adsorption, minimum surface tension and percentage film area change that were quantitatively similar to those produced by *OH. The effects on film compression were significantly greater and qualitatively different from those seen with either O2*- or *OH. We conclude that the inhibition of BLES surface activity by ROS and inhibitory proteins can be distinguished in the captive bubble surfactometer and, particularly, by changes in the film compressibility modulus.  相似文献   

3.
Structural analogues (flavanone: 2-4 and flavone: 5 and 6, respectively) of silybin (1a) were synthesized and tested for inhibitory activity on O(2)(-) release and PKC translocation in PMA-stimulated neutrophils as well as xanthine oxidase activity in order to identify the molecular structures responsible for the antioxidant property of silybin. Concerning the prevention of hem-mediated oxidative modification of LDL by silybin, the hydroxyl radical scavenging activity of its structural analogues was also determined. We demonstrated that the basic skeleton of 1a (4) is responsible for its inhibitory activity on O(2)(-) release in PMA-stimulated neutrophils via inhibition of PKC translocation, since introduction of a double bound and hydroxyl groups at C-5 and C-7 position (5 and 6) did not result in further increase in inhibition of O(2)(-) release. It has been shown that the presence of the phenolic hydroxyl group at C-5 and C-7 of 1a is essential for the inhibition of xanthine oxidase activity. Moreover, introduction of a double bond into the C-ring of 2 and 3, resulting in flavone derivatives (5 and 6), markedly enhanced the antioxidant effect in all the tested systems. Finally, silybin (1a) and its flavon derivatives (5 and 6) directly scavenged hydroxyl radicals as well. On the basis of these results it might be concluded that different moiety of silybin is responsible for inhibition of overproduction of O(2)(-) in stimulated neutrophils, xanthine oxidase activity, and for prevention of hem-mediated oxidative modification of LDL.  相似文献   

4.
Neutrophils stimulated with phorbol myristate acetate (PMA) in the presence of the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO), dimethyl sulfoxide, and diethylenetriaminepentaacetic acid (DETAPAC) fail to generate hydroxyl radical (.OH), detected as the methyl spin-trapped adduct of DMPO (2,2,5-trimethyl-1-pyrrolidinyloxyl, DMPO-CH3), unless ferric salts (Fe3+) are also added (Britigan, B. E., Rosen, G. M., Chai, Y., and Cohen, M. S. (1986) J. Biol. Chem. 261, 4426-4431). Even then, .OH formation wanes in spite of ongoing superoxide (O2-.) production. In contrast, ferric salt supplementation of a hypoxanthine/xanthine oxidase O2-. generating system containing DETAPAC produces continual .OH, suggesting that neutrophils limit the formation of this free radical. To evaluate this hypothesis, neutrophil cytoplasts (largely devoid of granules but able to generate O2-.) were stimulated with PMA in the presence of Fe3+, DETAPAC, dimethyl sulfoxide, and DMPO. This resulted in continual production of DMPO-CH3. In the presence of dimethyl sulfoxide, HL-60 (promyelocytic) cells differentiate into cells similar in morphology and O2-. generating capacity to neutrophils. However, their granules lack the iron-binding protein lactoferrin (LF). Ferric salt supplementation of HL-60 cells stimulated with PMA yielded an EPR spectrum similar to cytoplasts. Supernatant obtained following PMA-induced neutrophil degranulation (which releases LF extracellularly) suppressed DMPO-CH3 formation by the hypoxanthine/xanthine oxidase/Fe3+/DETAPAC system. Anti-LF antibody, but not anti-transferrin antibody, prevented stimulated neutrophil supernatant inhibition of hypoxanthine/xanthine oxidase/Fe3+/DETAPAC-mediated .OH formation. Similarly, neutrophils stimulated with PMA in the presence of Fe3+, DETAPAC, and anti-LF antibody (but not anti-transferrin antibody) demonstrated continual formation of .OH. Neutrophil degranulation of LF limits Fe3+-catalyzed .OH formation which in vivo could protect tissue from possible .OH-mediated injury.  相似文献   

5.
N-[4-(3)H]Benzoylglycylglycylglycine ([(3)H]BzG(3)) was tested as a probe for detecting hydroxyl radicals (*OH). Aerated solutions of l-ascorbate generated *OH, which oxidized [(3)H]BzG(3), yielding hydrophilic (probably hydroxylated) derivatives plus tritiated water. The (3)H(2)O was separated from organic products and remaining [(3)H]BzG(3) on Dowex-1. (3)H(2)O production was much greater with *OH than with other reactive oxygen species (ROS) (e.g., H(2)O(2), superoxide). The slight (3)H(2)O production in the presence of H(2)O(2) or superoxide was blocked by *OH scavengers (e.g., glycerol, mannitol, butan-1-ol) that do not scavenge H(2)O(2) or superoxide. This indicates that (3)H(2)O production was caused by *OH and that other ROS only generated any (3)H(2)O by forming traces of *OH. Doses of *OH that caused detectable nonenzymic polysaccharide scission also caused (3)H(2)O production, indicating that [(3)H]BzG(3) is a sensitive *OH probe in studies of polymer scission. The ability of scavengers and chelators to protect against ascorbate-mediated polysaccharide scission paralleled their ability to inhibit concurrent (3)H(2)O production, indicating that both processes were due to *OH. Thus, [(3)H]BzG(3) is a simple, specific, sensitive, and robust probe for detecting *OH production in vitro. It may have applications for in vivo detection of extracellular *OH in arthritic joints and of apoplastic *OH in plant cell walls.  相似文献   

6.
The action of xanthine oxidase upon acetaldehyde or xanthine at pH 10.2 has been shown to be accompanied by substantial accumulation of O2- during the first few minutes of the reaction. H2O2 decreases this accumulation of O2- presumably because of the Haber-Weiss reaction (H2O2+O2- leads to OH- +OH+O2) and very small amounts of superoxide dismutase eliminate it. This accumulation of O2- was demonstrated in terms of a burst of reduction of cytochrome c, seen when the latter compound was added after aerobic preincubation of xanthine oxidase with its substrate. The kinetic peculiarities of the luminescence seen in the presence of luminol, which previously led to the proposal of H2O4-, can now be satisfactorily explained entirely on the basis of known radical intermediates.  相似文献   

7.
8.
Uroporphyrin I, haematoporphyrin and haematoporphyrin derivative had no effect on O2-. generation during oxidation of hypoxanthine by xanthine oxidase and on the formation of hydroxyl radicals (OH.) in the hypoxanthine/xanthine oxidase/Fe3+-EDTA/deoxyribose system. On the other hand, these porphyrins strongly inhibited O2-. formation in a horseradish peroxidase/H2O2/NADPH mixture, whereas they augmented OH. generation in this system after addition of Fe3+-EDTA. Experimental evidence suggests that these observations should be ascribed to the formation of a porphyrin anion radical in the horseradish peroxidase/NADPH system. The formation of this anion radical was confirmed by e.s.r. spectroscopy. This radical is apparently unable to reduce cytochrome c, but it can replace O2-. in the OH.-generating Haber-Weiss reaction.  相似文献   

9.
O2- was produced by gamma irradiation of formate solutions, by the action of xanthine oxidase on hypoxanthine and O2, and by the action of ferredoxin reductase on NADPH and paraquat in the presence of O2. Its reaction with H2O2 and various iron chelates was studied. Oxidation of deoxyribose to thiobarbituric acid-reactive products that was appropriately inhibited by OH. scavengers, or formate oxidation to CO2, was used to detect OH(.). With each source of O2-, and by these criteria, Fe(EDTA) efficiently catalyzed this (Haber-Weiss) reaction, but little catalysis was detectable with iron bound to DTPA, citrate, ADP, ATP, or pyrophosphate, or without chelator in phosphate buffer. O2- produced from xanthine oxidase, but not from the other sources, underwent another iron-dependent reaction with H2O2, to produce an oxidant that did not behave as free OH(.). It was formed in phosphate or bicarbonate buffer, and caused deoxyribose oxidation that was readily inhibited by mannitol or Tris, but not by benzoate, formate, or dimethyl sulfoxide. It did not oxidize formate to CO2. Addition of EDTA changed the pattern of inhibition to that expected for a reaction of OH(.). The other chelators all inhibited deoxyribose oxidation, provided their concentrations were high enough. The results are compatible with iron bound to xanthine oxidase catalyzing production of a strong oxidant (which is not free OH.) from H2O2 and O2- produced by the enzyme.  相似文献   

10.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of O*- and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating O*- and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

11.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

12.
Substance P (SP(1-11)) was exposed to a continuous flux of superoxide (O2-) or hydroxyl radicals ((.)OH) in a hypoxanthine (HX)/xanthine oxidase (86 mU) system in the presence of 1 mM deferoxamine and 40 mM D-mannitol or 50 muM FeCI(3). 6H(2)O and 50 muM EDTA, respectively. O2- caused fragmentation between the Phe(7) and Phe(8), whereas (.)OH induced cleavage also between the Phe(8) and Gly(9). Reactive oxygen species H(2)O(2) and HCIO did not cause fragmentation, but modification of the amino acid side chains and/or aggregation with altered hydrophobicity in reverse phase high performance liquid chromatography compared to native SP(1-11). Furthermore, exposure of SP(1-11) to phorbol myristate acetate preactivated neutrophils resuited in products similar to those observed upon exposure to superoxide or hydroxyl radicals in a cell-free HX/xanthine oxidase system. This study suggests that, in contrast to rigid proteins, fragmentation is relatively easily induced in a small peptide like SP(1-11), perhaps due to strain on the peptide and t-carbon bonds caused by the movable, random coil configuration acquired by SP(1-11) in an aqueous solution. Oxidative modification might modulate paracrine actions of SP(1-11) at site of inflammation.  相似文献   

13.
The effect of serum opsonization on Vibrio alginolyticus (heat-killed)-stimulated chemiluminescence (CL) by plaice kidney- and peritoneal exudate-derived neutrophils was investigated. Peritoneal neutrophils only recognized heat-labile and kidney neutrophils only heat-stable opsonic activity in normal serum. Specific antibody did not show opsonic activity nor any synergism with the normal serum opsonins for either neutrophil population. Evidence was found for the production, by plaice neutrophils, of H2O2, O2-, OH. and two or more, as yet unidentified, reactive oxygen species (ROS).  相似文献   

14.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

15.
Reactive oxygen species (ROS) contribute to neutrophil activation and the development of acute inflammatory processes in which neutrophils play a central role. However, there is only limited information concerning the mechanisms through which extracellular ROS, and particularly cell membrane-impermeable species, such as superoxide, enhance the proinflammatory properties of neutrophils. To address this issue, neutrophils were exposed to superoxide generating combinations of xanthine oxidase and hypoxanthine or lumazine. Extracellular superoxide generation induced nuclear translocation of nuclear factor-kappaB (NF-kappaB) and increased neutrophil production of the NF-kappaB-dependent cytokines tumor necrosis factor-alpha (TNF-alpha) and macrophage inhibitory protein-2 (MIP-2). In contrast, there were no changes in TNF-alpha or MIP-2 expression when neutrophils lacking Toll-like receptor-4 (TLR4) were exposed to extracellular superoxide. Immunoprecipitation, confocal microscopy, and fluorescence resonance energy transfer (FRET) studies demonstrated association between TLR4 and xanthine oxidase. Exposure of neutrophils to heparin attenuated binding of xanthine oxidase to the cell surface as well as interactions with TLR4. Heparin also decreased xanthine oxidase-induced nuclear translocation of NF-kappaB as well as production of proinflammatory cytokines. These results demonstrate that extracellular superoxide has proinflammatory effects on neutrophils, predominantly acting through an TLR4-dependent mechanism that enhances nuclear translocation of NF-kappaB and increases expression of NF-kappaB-dependent cytokines.  相似文献   

16.
Zs Varga  L Ujhelyi  A Kiss  J Balla  A Czompa  S Antus 《Phytomedicine》2004,11(2-3):206-212
Mechanism of the action of silybin (1) and its derivatives (2-4), possessing different lipid solubility in PMA-stimulated neutrophils was evaluated. Silybin (1) inhibited the calcium, phosphatidylserine- and diacylglycerol-dependent protein kinase C translocation and the NADPH oxidase activity in PMA-stimulated neutrophils and resulted in decreased apoptosis. Furthermore, silybin (1) inhibited xanthine oxidase activity and hem-mediated oxidative degradation of low-density lipoprotein, as well. Its derivatives (2-4), possessing different lipid-solubility, affected all the studied parameters. The lipid solubility of silybin (1) was enhanced by methylation (5'7'4'trimethylsilybin: 2), whereas a decrease in lipid-solubility by acetylation of compound 2 (5',7,'4"-trimethylsilybin-acetate: 3) or all the hydroxyl groups of silybin (peracetyl-silybin: 4) attenuated the antioxidant capacity by decreasing the inhibition in PKC translocation and NADPH oxidase activation. All the derivatives of silybin (2-4) showed no inhibition in cell free systems; e.g. did not alter the xanthine oxidase activity and the hem-mediated oxidative degradation of LDL. In conclusion, the antioxidant activity of (1) might be due to its ability to inhibit PKC translocation and NADPH oxidase activation in PMA-stimulated neutrophils. The increase of lipid solubility of silybin (1) supports its penetration through cell membrane and enhances its inhibitory effects. This structural modification of (1) might have pharmacological consequences.  相似文献   

17.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

18.
The diabetogenic agent alloxan is selectively accumulated in insulin-producing cells through uptake via the GLUT2 glucose transporter in the plasma membrane. In the presence of intracellular thiols, especially glutathione, alloxan generates "reactive oxygen species" (ROS) in a cyclic reaction between this substance and its reduction product, dialuric acid. The cytotoxic action of alloxan is initiated by free radicals formed in this redox reaction. Autoxidation of dialuric acid generates superoxide radicals (O(2)(*-)) and hydrogen peroxide (H(2)O(2)), and finally hydroxyl radicals ((*)OH). Thus, while superoxide dismutase (SOD) only reduced the toxicity, catalase, in particular in the presence of SOD, provided complete protection of insulin-producing cells against the cytotoxic action of alloxan and dialuric acid due to H(2)O(2) destruction and the prevention of hydroxyl radical ((*)OH) formation, indicating that it is the hydroxyl radical ((*)OH) which is the ROS ultimately responsible for cell death. After selective accumulation in pancreatic beta cells, which are weakly protected against oxidative stress, the cytotoxic glucose analogue alloxan destroys these insulin-producing cells and causes a state of insulin-dependent diabetes mellitus through ROS-mediated toxicity in rodents and in other animal species, which express this glucose transporter isoform in their beta cells.  相似文献   

19.
Rat pheochromocytoma PC 12 cells are susceptible to the oxidative toxicity caused by H2O2, nitrofurantoin, dopamine, and xanthine/xanthine oxidase reaction. The cytotoxicities of these agents are greatly reduced by the simultaneous presence of 0.1 mM tetrahydrobiopterin (BH4), 3 units/ml horseradish peroxidase, 0.2 mM NADH, and 0.1 units/ml sheep liver dihydropteridine reductase (DHPR). Individually, BH4, NADH and DHPR have no protection against H2O2 toxicity in PC 12 cells. Peroxidase alone offers 58% of protection if cells are incubated in the medium but only 3% in Dulbecco's phosphate buffered saline. The efficiency of the BH4-mediated antioxidation system in PC 12 cells is equal to or better than ascorbic acid and catalase, depending on the source of the reactive O2 species (ROS). The reactions responsible for the BH4-antioxidation system may consist of the non-enzymatic and the peroxidase-catalyzed reduction of H2O2 to H2O by BH4 and the regeneration of BH4 by DHPR using NADH as the cofactor. The components of this defence mechanism against ROS are all normal cellular constituents and are ubiquitous in nature. This DHPR-catalyzed redox cycling of BH4 may constitute an as yet little-known antioxidation system in mammalian cells.  相似文献   

20.
The action of six synthetic Biginelli pyrimidines on the production of reactive oxygen species (ROS) by polymorphonuclear leukocytes has been studied. It has been shown using the method of luminoldependent chemiluminescence that, at concentrations of 10–100 μM, these compounds stimulate the production of ROS by neutrophils stimulated by phorbol-12-myristate-13-acetate (PMA). The ROS production by PMA-stimulated neutrophils in the presence of 10 μM 1-(3,4-dimethoxyphenylethyl)-4-(alkyl/aryl) substituted Biginelli pyrimidines increased by 50–90%. The priming action of Biginelli pyrimidines on the ROS production by neutrophils has been shown to increase when the furyl radical was replaced by phenyl and isopropyl radicals by the C(4) pyrimidine cycle and replacement of the benzyl substitute at N(1) by 3,4-phenylethyl. At a concentration of 0.01–0.1 μM, 1-(3,4-dimethoxyphenylethyl)-4-(alkyl/aryl) substituted Biginelli pyrimidines had a high inhibitory activity. It has been found that 1-(2-[3,4-dimethoxyphenyl]-ethyl)-4-phenyl-5-carbethoxy-6-methyl-3,4-dihydro-2(1H)-pyrimidinethion at high concentrations (1 mM and more) is able to induce a respiratory burst of neutrophils without additional stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号