首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell reports》2023,42(5):112515
  1. Download : Download high-res image (282KB)
  2. Download : Download full-size image
  相似文献   

2.
The glycosylphosphatidylinositol (GPI)-anchored cellular prion protein (PrPc) has a fundamental role in prion diseases. Intracellular trafficking of PrPc is important in the generation of protease resistant PrP species but little is known of how endocytosis affects PrPc function. Here, we discuss recent experiments that have illuminated how PrPc is internalized and what are the possible destinations taken by the protein. Contrary to what would be expected for a GPI-anchored protein there is increasing evidence that clathrin-mediated endocytosis and classical endocytic organelles participate in PrPc trafficking. Moreover, the N-terminal domain of PrPc may be involved in sorting events that can direct the protein during its intracellular journey. Indeed, the concept that the GPI-anchor determines PrPc trafficking has been challenged. Cellular signaling can be triggered or be regulated by PrPc and we suggest that endocytosis of PrPc may influence signaling in several ways. Definition of the processes that participate in PrPc endocytosis and intracellular trafficking can have a major impact on our understanding of the mechanisms involved in PrPc function and conversion to protease resistant conformations.  相似文献   

3.
Amphiphysins interact directly with clathrin and have a function in clathrin-mediated synaptic vesicle recycling and clathrin-mediated endocytosis. The neuronal isoform amphiphysin-1 is a serine/threonine phosphoprotein that is dephosphorylated upon stimulation of synaptic vesicle endocytosis. Rephosphorylation was stimulated by nerve growth factor. We analysed the regulation of amphiphysin-clathrin interactions by phosphorylation. The N-terminal domain of clathrin bound to unphosphorylated amphiphysin-1, but not to the phosphorylated protein. A search for possible phosphorylation sites revealed two casein kinase 2 consensus motifs in close proximity to the clathrin binding sites in amphiphysin-1 and -2. We mutagenized these residues (T350 and T387) to glutamate, mimicking a constitutive phosphorylation. The double mutant showed a strong reduction in clathrin binding. The assumption that casein kinase 2 phosphorylates amphiphysin-1 at T350 and T387 was corroborated by experiments showing that: (i) casein kinase 2 phosphorylated these residues directly in vitro, (ii) when expressed in HeLa cells, the glutamate mutant showed reduced phosphorylation, and (iii) casein kinase 2 inhibitors blocked nerve growth factor-induced phosphorylation of endogenous amphiphysin-1 in PC12 cells. These observations are consistent with the hypothesis that, upon activation by nerve growth factor, casein kinase 2 phosphorylates amphiphysin-1 and thereby regulates the endocytosis of clathrin-coated vesicles via the interaction between clathrin and amphiphysin.  相似文献   

4.
Cbl proteins have been implicated in the regulation of endocytic trafficking of epidermal growth factor receptor. However, the precise role of Cbl in epidermal growth factor receptor endocytosis is not defined. To directly visualize Cbl in cells and perform structure-function analysis of Cbl's role in epidermal growth factor receptor internalization, a yellow fluorescent protein-fusion of c-Cbl was constructed. Upon epidermal growth factor receptor activation, Cbl-yellow fluorescent protein moved with epidermal growth factor receptor to clathrin-coated pits and endosomes. Localization of Cbl-yellow fluorescent protein to these endocytic organelles was dependent on a proline-rich domain of c-Cbl that interacts with Grb2 as shown by fluorescence resonance energy transfer microscopy. In contrast, direct binding of Cbl to phosphotyrosine 1045 of the epidermal growth factor receptor was required for epidermal growth factor receptor polyubiquitination, but was not essential for Cbl-yellow fluorescent protein localization in epidermal growth factor receptor-containing compartments. These data suggest that the binding of Cbl to epidermal growth factor receptor through Grb2 is necessary and sufficient for Cbl function during clathrin-mediated endocytosis. Overexpression of c-Cbl mutants that are capable of Grb2 binding but defective in linker/RING finger domain function severely inhibited epidermal growth factor receptor internalization. The same dominant-negative mutants of Cbl did not block epidermal growth factor receptor recruitment into coated pits but retained receptors in coated pits, thus preventing receptor endocytosis and transport to endosomes. These data suggest that the linker and RING finger domain of Cbl may function during late steps of coated vesicle formation. We propose that the RING domain of Cbl facilitates endocytosis either by epidermal growth factor receptor monoubiquitylation or by ubiquitylation of proteins associated with the receptor.  相似文献   

5.
Listeria monocytogenes (Lm) invades the host intestine using listerial invasion proteins, internalins. The in vivo role of internalin A (InlA) and internalin B (InlB) is reported here. Intragastric (i.g.) administration and ligated loop assays with ΔinlB-Lm demonstrated that a lack of InlB significantly attenuates the invasive ability of Lm into various organs. On the other hand, InlA(m)-Lm expressing a mutant InlA with two substitutions, S192N and Y369S, which has been reported to increase the affinity of InlA to mouse E-cadherin, resulted in little increase in intestinal infection according to both ligated loop and i.g. infection assays. Lm preferentially enters ileal Peyer's patch (PP) via M cells and ΔinlB-Lm showed severely reduced ability to invade though these cells. The present results reveal the importance of InlB, which accelerates listerial invasion into M cells on ileal PPs in vivo.  相似文献   

6.
Hepatocyte growth factor/scatter factor (HGF) and its receptor tyrosine kinase Met are key regulators of epithelial motility and morphogenesis. Recent studies indicate that the HGF/Met pathway also plays a role in B cell differentiation, whereas uncontrolled Met signaling may lead to B cell neoplasia. These observations prompted us to explore HGF/Met signaling in B cells. In this study, we demonstrate that HGF induces strong tyrosine phosphorylation of the proto-oncogene product c-Cbl in B cells and increases Cbl association with the Src family tyrosine kinases Fyn and Lyn, as well as with phosphatidylinositol-3 kinase and CrkL. In addition, we demonstrate that c-Cbl mediates HGF-induced ubiquitination of Met. This requires the juxtamembrane tyrosine Y1001 (Y2) of Met, but not the multifunctional docking site (Y14/15) or any additional C-terminal tyrosine residues (Y13-16). In contrast to wild-type c-Cbl, the transforming mutants v-Cbl and 70Z/3 Cbl, which lack the ubiquitin ligase RING finger domain, suppress Met ubiquitination. Our findings identify c-Cbl as a negative regulator of HGF/Met signaling in B cells, mediating ubiquitination and, consequently, proteosomal degradation of Met, and suggest a role for Cbl in Met-mediated tumorigenesis.  相似文献   

7.
Entry of the bacterial pathogen Listeria monocytogenes into host epithelial cells is critical for infection and virulence. One major pathway for Listeria entry involves binding of the bacterial protein Internalin B to the host receptor tyrosine kinase Met (hepatocyte growth factor receptor). Activation of Met and downstream signaling cascades is critical for Listeria entry. Internalin B is composed of several structural domains including an N-terminal leucine-rich repeat that is sufficient for binding Met and stimulating downstream signal transduction. Internalin B is monomeric, whereas the leucine-rich repeat is dimeric when expressed as an isolated fragment. The different quaternary states of Internalin B and the leucine-rich repeat suggest that these two Met ligands might cause distinct biological effects. Here we demonstrate that Internalin B and the leucine-rich repeat fragment exhibit agonist properties that differentially influence Met down-regulation in lysosomes. Specifically, Met stability is increased in response to the leucine-rich repeat fragment compared with Internalin B. Interestingly, Internalin B and the leucine-rich repeat stimulate equivalent rates of clathrin-mediated Met internalization. However, the leucine-rich repeat is defective in promoting lysosomal down-regulation of Met and instead enhances receptor recycling to the cell surface. In addition, the leucine-rich repeat causes prolonged Met activation (phosphorylation) and increased cell motility compared with Internalin B. Taken together, our findings indicate that individual domains of Internalin B differentially regulate Met trafficking. The ability of the leucine-rich repeat fragment to promote Met recycling could account for the increased cell motility induced by this ligand.  相似文献   

8.
Hepatitis C virus (HCV) frequently establishes a persistent infection, leading to chronic liver disease. The NS5A protein has been implicated in this process as it modulates a variety of intracellular signalling pathways that control cell survival and proliferation. In particular, NS5A associates with several proteins involved in the endocytosis of the epidermal growth factor receptor (EGFR) and has been previously shown to inhibit epidermal growth factor (EGF)-stimulated activation of the Ras–Erk pathway by a mechanism that remains unclear. As EGFR signalling involves trafficking to late endosomes, we investigated whether NS5A perturbs EGFR signalling by altering receptor endocytosis. We demonstrate that NS5A partially localizes to early endosomes and, although it has no effect on EGF internalization, it colocalizes with the EGFR and alters its distribution. This redistribution correlates with a decrease in the amount of active EGF–EGFR ligand–receptor complexes present in the late endosomal signalling compartment and also results in a concomitant increase in the total levels of EGFR. These observations suggest that NS5A controls EGFR signalling by diverting the receptor away from late endosomes. This represents a novel mechanism by which a viral protein attenuates cell signalling and suggests that NS5A may perturb trafficking pathways to maintain an optimal environment for HCV persistence.  相似文献   

9.
By screening for mutants exhibiting interactions with a dominant-negative dynamin, we have identified the Drosophila homologue of receptor-mediated endocytosis (Rme) 8, a J-domain-containing protein previously shown to be required for endocytosis in Caenorhabditis elegans. Analysis of Drosophila Rme-8 mutants showed that internalization of Bride of sevenless and the uptake of tracers were blocked. In addition, endosomal organization and the distribution of clathrin were greatly disrupted in Rme-8 cells, suggesting that Rme-8 participates in a clathrin-dependent process. The phenotypes of Rme-8 mutants bear a strong resemblance to those of Hsc70-4, suggesting that these two genes act in a common pathway. Indeed, biochemical and genetic data demonstrated that Rme-8 interacts specifically with Hsc70-4 via its J-domain. Thus, Rme-8 appears to function as an unexpected but critical cochaperone with Hsc70 in endocytosis. Because Hsc70 is known to act in clathrin uncoating along with auxilin, another J-protein, its interaction with Rme-8 indicates that Hsc70 can act with multiple cofactors, possibly explaining its pleiotropic effects on the endocytic pathway.  相似文献   

10.
11.
Neurons are the largest cells in the body and form subcellular compartments such as axons and dendrites. During both development and adulthood building blocks must be continually trafficked long distances to maintain the different regions of the neuron. Beyond building blocks, signaling complexes are also transported, allowing for example, axons to communicate with the soma. The critical roles of signaling via ligand–receptor complexes is perhaps best illustrated in the context of development, where they are known to regulate polarization, survival, axon outgrowth, dendrite development, and synapse formation. However, knowing ‘when’ and ‘how much’ signaling is occurring does not provide the complete story. The location of signaling has a significant impact on the functional outcomes. There are therefore complex and functionally important trafficking mechanisms in place to control the precise spatial and temporal aspects of many signal transduction events. In turn, many of these signaling events affect trafficking mechanisms, setting up an intricate connection between trafficking and signaling. In this review we will use neurotrophin receptors, specifically TrkA and TrkB, to illustrate the cell biology underlying the links between trafficking and signaling. Briefly, we will discuss the concepts of how trafficking and signaling are intimately linked for functional and diverse signaling outputs, and how the same protein can play different roles for the same receptor depending on its localization. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

12.
Activated epidermal growth factor receptors recruit various intracellular proteins leading to signal generation and endocytic trafficking. Although activated receptors are rapidly internalized into the endocytic compartment and subsequently degraded in lysosomes, the linkage between signaling and endocytosis is not well understood. Here we show that EGF stimulation of NR6 cells induces a specific, rapid and transient activation of Rab5a. EGF also enhanced translocation of the Rab5 effector, early endosomal autoantigen 1 (EEA1), from cytosol to membrane. The activation of endocytosis, fluid phase and receptor mediated, by EGF was enhanced by Rab5a expression, but not by Rab5b, Rab5c, or Rab5a truncated at the NH(2) and/or COOH terminus. Dominant negative Rab5a (Rab5:N34) blocked EGF-stimulated receptor-mediated and fluid-phase endocytosis. EGF activation of Rab5a function was dependent on tyrosine residues in the COOH-terminal domain of the EGF receptor (EGFR). Removal of the entire COOH terminus by truncation (c'973 and c'991) abrogated ligand-induced Rab5a activation of endocytosis. A "kinase-dead" EGFR failed to stimulate Rab5a function. However, another EGF receptor mutant (c'1000), with the kinase domain intact and a single autophosphorylation site effectively signaled Rab5 activation. These results indicate that EGFR and Rab5a are linked via a cascade that results in the activation of Rab5a and that appears essential for internalization. The results point to an interdependent relationship between receptor activation, signal generation and endocytosis.  相似文献   

13.
The B cell antigen receptor (BCR) plays two central roles in B cell activation: to internalize antigens for processing and presentation, and to initiate signal transduction cascades that both promote B cells to enter the cell cycle and facilitate antigen processing by accelerating antigen transport. An early event in B cell activation is the association of BCR with the actin cytoskeleton, and an increase in cellular F-actin. Current evidence indicates that the organization of actin filaments changes in response to BCR-signaling, making actin filaments good candidates for regulation of BCR-antigen targeting. Here, we have analyzed the role of actin filaments in BCR-mediated antigen transport, using actin filament-disrupting reagents, cytochalasin D and latrunculin B, and an actin filament-stabilizing reagent, jasplakinolide. Perturbing actin filaments, either by disrupting or stabilizing them, blocked the movement of BCR from the plasma membrane to late endosomes/lysosomes. Cytochalasin D-treatment dramatically reduced the rate of internalization of BCR, and blocked the movement of the BCR from early endosomes to late endosomes/lysosomes, without affecting BCR-signaling. Thus, BCR-trafficking requires functional actin filaments for both internalization and movement to late endosomes/lysosomes, defining critical control points in BCR-antigen targeting.  相似文献   

14.
Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions.  相似文献   

15.
Abstract Within infected eukaryotic cells the two pathogenic Listeria species, L. monocytogenes and L. ivanovii , induce polymerization of cellular actin and the formation of a propulsive actin tail at one bacterial pole. For L. monocytogenes it has been shown that the product of the listerial actA gene is required for this process which is regarded as a model for actin-based motility. We have now cloned and sequenced a functionally analogous gene from L. ivanovii ; its product, as deduced from the DNA sequence, is considerably larger (108 kDa) than L. monocytogenes ActA (67 kDa) and shares only a limited amino acid sequence homology (46% similarity on average) with the latter protein. This is the first example of a virulence gene product from L. ivanovii which is significantly different from its L. monocytogenes counterpart. Comparison of the two ActA proteins gives new insight into the structure of this class of actin-polymerization proteins, in particular with respect to their proline-rich repeat region.  相似文献   

16.
Background information. ARAP1 is an Arf (ADP‐ribosylation factor)‐directed GAP (GTPase‐activating protein) that inhibits the trafficking of EGFR (epidermal growth factor receptor) to the early endosome. To further understand the function of ARAP1, we sought to identify proteins that interact with ARAP1. Results. Here we report that ARAP1 associates with the CIN85 (Cbl‐interacting protein of 85 kDa). Arg86 and Arg90 of ARAP1 and the SH3 (Src homology 3) domains of CIN85 are necessary for the interaction. We found that a mutant of ARAP1 with reduced affinity for CIN85 does not efficiently rescue the effect of reduced ARAP1 expression on EGFR trafficking to the early endosome. Reduced expression of CIN85 has a similar effect as reduced expression of ARAP1 on traffic of the EGFR. Cbl proteins regulate the endocytic trafficking of the EGFR by mediating ubiquitination of the EGFR. Overexpression of ARAP1 reduced ubiquitination of the EGFR by Cbl and slowed Cbl‐dependent degradation of the EGFR. Reduced expression of ARAP1 accelerated degradation of EGFR but did not affect the level of ubiquitination of the receptor that was detected. Conclusion. ARAP1 interaction with CIN85 regulates endocytic trafficking of the EGFR and affects ubiquitination of EGFR. We propose a model in which the ARAP1‐CIN85 complex drives exit of EGF—EGFR–Cbl complex from a pre‐early endosome into a pathway distinct from the early endosome/lysosome pathway.  相似文献   

17.
Aggregation of the high-affinity immunoglobulin E (IgE) receptor (FcepsilonRI), expressed on mast cells and basophils, initiates the immediate hypersensitivity reaction. Aggregated FcepsilonRI has been reported to rapidly migrate to lipid rafts in RBL-2H3 cells. We confirmed that aggregated FcepsilonRI is found in the lipid raft fractions of cellular lysates. Furthermore, we show that the cross-linked FcepsilonRI remains associated with detergent-resistant structures upon internalization. Previous morphological studies have reported that aggregated FepsiloncRI is endocytosed via clathrin-coated pits, which in general are not lipid raft associated. To address this apparent discrepancy, we employed siRNA to suppress expression of components of the clathrin-mediated internalization machinery, namely, clathrin heavy chain, and the AP-2 (alpha-adaptin or mu2-subunit). Transferrin receptor (TfR) is endocytosed by a clathrin-mediated process and, as expected, each transfected siRNA caused a two to threefold elevation of TfR surface expression and almost completely inhibited its endocytosis. In contrast, there was no effect on surface expression levels of FcepsilonRI nor on the endocytosis of the dinitrophenyl-human serum albumin (DNP-HSA)/IgE/FcepsilonRI complex. On the contrary, internalization of DNP-HSA/IgE/FcepsilonRI was inhibited by overexpression of a dominant-negative dynamin mutant. We conclude that internalization of cross-linked FcRI does not require the AP-2/clathrin complex but is dynamin-dependent and may be lipid raft mediated.  相似文献   

18.
Epidermal growth factor (EGF) activates the EGF receptor (EGFR) and stimulates its internalization and trafficking to lysosomes for degradation. However, a percentage of EGFR undergoes ligand‐independent endocytosis and is rapidly recycled back to the plasma membrane. Importantly, alterations in EGFR recycling are a common hallmark of cancer, and yet, our understanding of the machineries controlling the fate of endocytosed EGFR is incomplete. Intersectin‐s is a multi‐domain adaptor protein that is required for internalization of EGFR. Here, we discover that intersectin‐s binds DENND2B, a guanine nucleotide exchange factor for the exocytic GTPase Rab13, and this interaction promotes recycling of ligand‐free EGFR to the cell surface. Intriguingly, upon EGF treatment, DENND2B is phosphorylated by protein kinase D and dissociates from intersectin‐s, allowing for receptor targeting to degradation. Our study thus reveals a novel mechanism controlling the fate of internalized EGFR with important implications for cancer.  相似文献   

19.
Insulin receptor mutation studies that the receptor tyrosine kinase activity is necessary for receptor endocytosis, and several insulin receptor-containing tissues have a plasma membrane-associated protein (Mr 180,000, p180) whose tyrosine phosphorylation is receptor catalysed. Since clathrin heavy chain (Mr 180,000 in dodecyl sulphate gel electrophoresis) is a major component of coated vesicles, the latter functioning in receptor endocytosis, we investigated whether insulin receptors can catalyse clathrin phosphorylation and whether p180 is clathrin. Bovine brain triskelion or coated vesicles and 32P-ATP were added to prephosphorylated insulin receptor preparations (wheat ferm agglutinin-purified human placenta membrane proteins). Antiphosphotyrosine immunoprecipitated a phosphorylated 180,000 molecular weight protein. Insulin (10−7M) increased the rate of phosphorylation. Monoclonal anti-clathrin antibody immunoprecipitated the phosphorylated 180,000 molecular weight protein, whereas monoclonal anti-insulin receptor antibodies (-IR1, MA10) immunoprecipitated both insulin receptors and the phosphorylated 180,000 molecular weight protein. In the absence of added clathrin, anticlathrin immunoprecipitated no proteins, and -IR1 imunoprecipitated only the insulin receptor. Density gradient (glycerol 7.5–30%, w/v) centrifugation separated human placenta microsomal membrane proteins into endosomal, plasma membrane, cytoplasmic and coated vesicle fractions. Antiphosphotyrosine immunoprecipitated phosphorylated-microsomal proteins that centrifugated into endosomal and plasma membrane fractions. Addition of glycerol gradient fractions to a prephosphorylated insulin receptor preparation, however, gave a tyrosine-phosphorylated 180,000 molecular weight protein when cytoplasmic and coated vesicle fractions were added. Taken together these results suggest: (1) that, in vitro, human placenta insulin receptors can phosphorylate bovine brain and human placenta clathrin heavy chain; (2) that both assembled and unassembled clathrin can be phosphorylated; and (3) that p180, the plasma membrane-associated insulin receptor substrate, is not clathrin heavy chain.  相似文献   

20.
Hepatocyte growth factor (HGF) influences several components of the angiogenic response, including endothelial cell migration. While recent studies indicate a crucial role of HGF in brain angiogenesis, the signaling pathways that regulate brain endothelial cell migration by HGF remain uncharacterized. Herein, we report that HGF stimulated human brain microvascular endothelial cell (HBMEC) migration in a dose- and time-dependent manner. Challenge of HBMECs with HGF activated the c-jun amino-terminal kinase (JNK), increased phosphorylation of the proline-rich tyrosine kinase 2 (Pyk-2) at Tyr(402) and activated c-Src. Inhibition of JNK by SP600125 or expression of a dominant negative JNK1 construct abrogated the migratory response of HBMECs to HGF. Treatment of HBMECs with the Src inhibitor PP2 markedly decreased HGF-stimulated JNK activation and migration to HGF. Moreover, expression of a mutant Pyk-2 construct prevented HGF-induced Pyk-2 phosphorylation at Tyr(402) and stimulation of HBMEC migration. Next, we examined activation of the extracellular signal regulated kinase (ERK) pathway. Stimulation of HBMECs by HGF led to rapid activation of ERK1/2, phosphorylation of Raf-1 at Ser(338) and Tyr(340/341) and MEK1/2 at Ser(222). Moreover, inhibition of ERK activation by UO126 and PD98059 markedly decreased HGF-stimulated HBMEC migration. HGF also activated AKT, while inhibition of AKT by LY294002 induced a modest decrease of HGF-induced HBMEC migration. These results highlight a model whereby JNK and ERK play a critical role in regulation of brain endothelial cell migration by HGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号