首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An ethene-utilising bacterium was isolated in pure culture from soil and was tentatively identified as aMicrococcus sp. The organism accumulated epoxyalkanes (0.2–13 mM) from internal, terminal, cyclic and aryl-substituted olefins and exhibited a substrate specificity which was different from that expected on the basis of the chemical reactivity pattern in peracid epoxidations. Epoxyalkanes were hydrolysed at a much slower rate than the epoxidation step which allowed them to accumulate. Ethene-grown cells catalysed the stereospecific formation of R-1,2-epoxypropane (enantiomeric excess: e.e.=96%), R-1,2-epoxybutane (e.e.=94%) andtrans-(2R,3R)-epoxybutane (e.e.=84%). An ethene monooxygenase was implicated in the production of chiral epoxides in cell-free extracts of the bacterium. The (2S,3S)-enantiomer of racemictrans-2,3-epoxybutane was stereoselectively hydrolysed to completion resulting in an enrichment in the (2R,3R)-enantiomer. Further hydrolysis of 1,2-epoxyalkanes (C3-C4), however, occurred via complete destruction of both stereoisomers.  相似文献   

2.
Summary Newly isolated and already available strains of alkene-utilizing bacteria were able to oxidize ethene, propene or 1-butene to the respective 1,2-epoxides. Resting-cell suspensions of organisms isolated on propene and butene, when grown on these substrates converted ethene quantitatively to epoxyethane. Some, but not all ethene-utilizing strains accumulated 1,2-epoxypropane or 1,2-epoxybutane when propene or butene was supplied, although not quantitatively because the epoxides produced were partially further metabolized. Suitable epoxide producers which eventually may be employed as biocatalysts in a biotechnological process were used for immobilization in calcium alginate and K-carrageenan; after immobilization, 60%–100% activity for epoxide production was retained.  相似文献   

3.
Resting cells of ethene grown Mycobacterium 2W produced 1,2-epoxypropane stereospecifically from propene as revealed by optical rotation, 1H n.m.r. using a chiral shift reagent, and also by complexation gas chromatography involving a glass capillary column coated with an optically active metal chelate. The gas-liquid chromatography method allowed the rapid screening of 11 strains with regard to stereospecific formation of 1,2-epoxypropane, 1,2-epoxybutane and 1-chloro-2,3-epoxypropane. Bacteria grown on either ethene, propene or butadiene all predominantly produced the R form of 1,2-epoxypropane from propene and 1,2-epoxybutane from 1-butene while the strains tested for 1-chloro-2,3-epoxypropane production from 3-chloro-1-propene predominantly accumulated the S enantiomer.  相似文献   

4.
Summary Newly isolated Xanthobacter spp. were able to grow on the gaseous alkenes like ethene, propene, 1-butene and 1,3-butadiene. Resting-cell suspensions of propene-, 1-butene- or 1,3-butadiene-grown Xanthobacter Py10 accumulated 1,2-epoxyethane from ethene. Ethene-grown Xanthobacter Py10 did not produce any 1,2-epoxyalkane from the alkenes tested. Furthermore, propenegrown Xanthobacter Py2 accumulated 2,3-epoxybutane from trans-butene and cis-butene but did not form epoxides from other substrates tested.  相似文献   

5.
Summary Methane-grown cells ofMethylococcus capsulatus andMethylosinus trichosporium readily oxidized propene and various isomers of butene to their respective epoxides. When examined in a proton NMR spectrum using tris([3-trifluoromethylhydroxymethylene]-d-camphorato), europium III derivative as an optically active chemical shift reagent, the products propylene oxide and 1,2-epoxybutane were found to contain equal amounts of both isomers. Methane-grown cells of both bacteria had considerable levels of reducing equivalents to catalyze the epoxidation of gaseous olefins. Cells depleted of reductants catalyzed the oxidation in the presence of low levels of methanol or formaldehyde with a stoichiometry of about 2:1. The rates of epoxidation of propene and 1-butene in a continuous reactor were 2–3-times that of a batch-wise reaction; the epoxidation activity, however, was lost within 3 h. The inactivation was attributed to the reactivity of the accumulated epoxides in the reactor. Propene and 1-butene oxidation by both bacteria were drastically inhibited by the respective products. Thus, the major problem in the application of microorganisms for production of epoxides from gaseous olefins is the rapid separation of the reactive products.  相似文献   

6.
Summary Eighteen newly isolated ethene- and propene-utilizing bacteria were screened for the ability to produce phenyl glycidyl ether, a common precursor for the synthesis of beta blockers, from phenyl allyl ether. These organisms included Aerococcus, Alcaligenes, Micrococcus and Staphylococcus spp. and a variety of Gram-negative, Gram-positive and Gram-variable mesophilic rods/coccobacilli not yet identified. The majority of ethene- and propene-grown cultures (14 strains) accumulated phenyl glycidyl ether (0.4–1.7 mm) as the sole oxidation product. The bioconversions with the three most promising ethene-utilizers (M26, M90C, M93A) were scaled-up to yield essentially optically pure (enantiomeric excess = 93%) S-(+)-phenyl glycidyl ether. This is currently under investigation for commercial production of optically pure beta blockers. Offprint requests to: M. Mahmoudian  相似文献   

7.
Enantiopure epoxides are valuable intermediates in the synthesis of optically pure biologically active fine chemicals (e.g., pharmaceuticals) that are often difficult to produce by chemical approaches. An attractive alternative is biological synthesis by microorganisms expressing stereoselective enzymes. In this study, we investigated the ability of ethene-grown Nocardioides sp. strain JS614 to produce highly enantio-enriched epoxyalkanes via stereoselective monooxygenase-mediated alkene epoxidation. Ethene-grown JS614 cells transformed propene, 1-butene, and trans-2-butene to their corresponding epoxyalkanes at rates ranging from 27.1 to 44.0 nmol/min mg protein. Chiral gas chromatography analysis revealed that R-1,2-epoxypropane, R-1,2-epoxybutane, and trans-2R,3R-epoxybutane were produced in enantiomeric excess (e.e.) of 98%, 74%, and 82%, respectively. Ethene-grown JS614 cells also preferentially transformed trans-2S,3S-epoxybutane from a racemic mixture, but could not resolve racemic 1,2-epoxypropane. Glucose facilitated increased epoxyalkane production by ethene-grown JS614 cells. However, after 22 h of propene biotransformation with 20 mM glucose, 84% of ethene-grown JS614 cells lost membrane integrity and the remaining live cells were not viable. Propene biotransformation by JS614 was extended beyond 22 h and 54% more epoxypropane was produced when cells were resuspended in fresh buffer + glucose at 8-h intervals. We conclude that JS614 is a promising new biocatalyst for applications that involve enantiopure epoxide production.  相似文献   

8.
Summary Two highly alkalophilic bacteria, and potent producers of alkaline pullulanase, were isolated from Korean soils. The two isolates, identified asBacillus sp. S-1 andMicrococcus sp. Y-1, grow on starch under alkaline conditions and effectively secrete extracellular pullulanases. The two isolates were extremely alkalophilic since bacterial growth and enzyme production occurred at pH values ranging from pH 6.0 to 12.0 forMicrococcus sp. Y-1 and pH 6.0 to 10.0 forBacillus sp. S-1. Both strains secrete enzymes that possess amylolytic and pullulanolytic acitivities. Extracellular crude enzymes of both isolates gave maltotriose as the major product formed from soluble starch and pullulan hydrolysis. Compared to other alkalophilic microbes such asMicrococcus sp. (0.57 units ml–1),Bacillus sp. KSM-1876 (0.56 units ml–1) andBacillus No. 202-1 (1.89 units ml–1) these isolates secreted extremely high concentrations (7.0 units ml–1 forBacillus sp. S-1 and 7.6 units ml–1 forMicrococcus sp. Y-1) of pullulanases in batch culture. The pullulanase activities from both strains were mostly found in the culture medium (85–90%). The extracellular enzymes of both bacteria were alkalophilic and moderately thermoactive; optimal activity was detected at pH 8.0–10.0 and between 50 and 60°C. Even at pH 12.0, 65% of original Y-1 pullulanase activity and 10% of S-1 pullulanase activity remained. The two newly isolated strains had broad pH ranges and moderate thermostability for their enzyme activities. These result strongly indicate that these new bacterial isolates have potential as producers of pullulanases for use in the starch industry.  相似文献   

9.
Summary Thirty strains of microorganisms (bacteria, yeasts, fungi and green algae) were tested as resting free cells for their ability to transform acetyldimethylphenylsilane (1) enantioselectively into (R)-(1-hydroxyethyl)dimethylphenylsilane [(R)–2]. The biotransformations were monitored by GC (packed OV-17 column) and the enantiomeric purities of the products isolated were determined by HPLC (cellulose triacetate column, UV detection). All microorganisms tested were found to reduce 1 enantioselectively to give (R)-2. Under the test conditions used, the yeastTrigonopsis variabilis (DSM 70714) was found to exhibit the highest specific activity (1.5 mg product x g cell wet mass–1 x min–1), whereas the highest enantioselectivities were observed for the bacteriaAcinetobacter calcoaceticus (ATCC 31012) (>95% ee),Brevibacterium species (ATCC 21860) (90% ee) andCorynebacterium dioxydans (ATCC 21766) (>95% ee), the yeastCandida humicola (DSM 70067) (90% ee), the fungusCunninghamella elegans (ATCC 26269) (94% ee), as well as the cyanobacteriumSynechococcus leopoliensis (94% ee). From the green algae tested,Chlamydomonas reinhardii showed the highest enantioselectivity (85% ee).  相似文献   

10.
Summary The oxidation of propene by resting-cells of ethene-grown Mycobacterium E3 was inactivated by 1,2-epoxypropane. Inactivation increased with increasing epoxide concentrations with 50% inactivation at approximately 30 mM epoxide. Other lower epoxides as epoxyethane and 1,2-epoxybutane also inactivated oxidation of propene as well as of other alkenes. Propene oxidation by resting-cells of ethane-grown Mycobacterium E20 and resting-cells of methane-grown Methylosinus trichosporium OB3b was inactivated for 50% at much lower 1,2-epoxypropane concentrations of approximately 1 and 3 mM respectively. It was demonstrated that in vivo the predominant effect of 1,2-epoxypropane was on the epoxidizing enzyme, i.e. alkene mono-oxygenase (strain E3), alkane mono-oxygenase (strain E20) and methane mono-oxygenase (methylotroph) and that the effect of the epoxide on the alkene mono-oxygenase was irreversible.  相似文献   

11.
Nocardioides sp. strain JS614 grows on the C2 alkenes ethene (Eth), vinyl chloride, and vinyl fluoride as sole carbon sources. The presence of 400–800 μM ethene oxide (EtO) extended the growth substrate range to propene (C3) and butene (C4). Propene-dependent growth of JS614 was CO2 dependent and was prevented by the carboxylase/reductase inhibitor 2-bromoethanesulfonic acid, sodium salt (BES), while growth on Eth was not CO2 dependent or BES sensitive. Although unable to promote growth, both propene and propene oxide (PrO)-induced expression of the genes encoding the alpha subunit of alkene monooxygenase (etnC) and epoxyethane CoM transferase (etnE) to similar levels as did Eth and EtO. Propene was transformed by Eth-grown and propene-grown/EtO-induced JS614 to PrO at a rate 4.2 times faster than PrO was consumed. As a result PrO accumulated in growth medium to 900 μM during EtO-induced growth on propene. PrO (50–100 μM) exerted inhibitory effects on growth of JS614 on both acetate and Eth, and on EtO-induced growth on Eth. However, higher EtO concentrations (300–400 μM) overcame the negative effects of PrO on Eth-dependent growth.  相似文献   

12.
In epoxide hydrolase from Agrobacterium radiobacter (EchA), phenylalanine 108 flanks the nucleophilic aspartate and forms part of the substrate-binding pocket. The influence of mutations at this position on the activity and enantioselectivity of the enzyme was investigated. Screening for improved enantioselectivity towards para-nitrophenyl glycidyl ether (pNPGE) using spectrophotometric progress curve analysis yielded five different mutants with 3- to 7-fold improved enantioselectivity. The increase in enantioselectivity was in most cases the result of an enhanced catalytic efficiency toward the preferred enantiomer. Several mutations at position F108 resulted in a higher activity toward cis-disubstituted meso-epoxides, which were converted to a single product enantiomer. Mutant F108C converted cis-2,3-epoxybutane to (2R,3R)-2,3-butanediol of >99% ee with a 7-fold improved activity, and mutant F108A hydrolyzed cyclohexene oxide to (1R,2R)-1,2-cyclohexanediol of >99% ee with a more than 150-fold higher activity than wild-type enzyme. It is concluded that single amino acid substitutions in the active site of epoxide hydrolase can result in enzyme variants with catalytic properties that are suitable for preparative scale production of (S)-epoxides and chiral vicinal diols in high yield and with excellent ee.  相似文献   

13.
A bacterium that assimilates (S)-3-chloro-1,2-propanediol [monochlorohydrin (MCH)] was isolated from soil by enrichment culture. The bacterium was identified as Pseudomonas sp. by taxonomic studies. The strain grew in a medium containing racemic MCH as a source of carbon and degraded (S)-MCH stereoselectively, liberating chloride ions. The residual isomer was the (R)-form [99.5% enantiomeric excess (ee)], which was obtained from the racemate in a final yield of 36% by using this strain. Subsequently, highly optically active (R)-glycidol (GLD) (99.3% ee) was prepared from the (R)-MCH obtained by reaction in alkaline solution. The cell-free extracts of the cells had both dehalogenating and epoxide-opening activities, which converted various halohydrins to the corresponding epoxides and epoxides to the corresponding diols, respectively. Correspondence to: T. Suzuki  相似文献   

14.
A collection of 216 well-characterized strains ofStaphylococcus, Micrococcus andStomatococcus was examined by a commercially available STAPHYtest system (Lachema, Brno, Czechoslovakia). The results of STAPHYtest agreed with those of conventional tests. The STAPHYtest permitted a clear-cut separation ofStaphylococcus fromMicrococcus andStomatococcus strains and correctly identified 104 of 145 (72%)Staphylococcus strains after 24 h of incubation. However, it allowed the identification only of 19 of 29 validly publishedStaphylococcus species. The STAPHYtest proved to be a simple and rapid system for the separation of staphylococci from micrococci and for the identification of most frequent clinically significant staphylococci.  相似文献   

15.
A triazine dye, Cibacron blue 3G-A (CB), is an inhibitor of cell separation of staphylococcal spp. therefore, we examined the effect of CB on growth of grampositive bacteria other than Staphylococcus. CB added to the medium of growing cultures of strains of genus Micrococcus, Streptococcus, Lactobacillus and Bacillus caused inhibition of cell separation. Moreover, in case of Bacillus and Lactobacillus, individual cells were elongated as filament. Strains of the genus Micrococcus were as sensitive to CB as genus Staphylococcus in which the minimum concentrations of CB needed for inhibition of cell separation ranged from 15 to 100 M. Other strains belong to genus Streptococcus, Bacillus and Lactobacillus were less sensitive; the minimum concentrations were 100 M–25 mM.  相似文献   

16.
Staphylococcus sp. strain S3/C desulfurized dibenzothiophene/n-hexadecane (3 mg ml–1) in a hydrocarbon aqueous biphasic culture. The resting cells decreased the sulfur content of the hydrocarbon phase by 57% at 2.2 mg l–1 h–1 in the absence of any additional carbon and sulfur source.  相似文献   

17.
A biotransformation process was developed for the production of (S)-ketoprofen by enantioseletive hydrolysis of racemic ketoprofen ester using the mutant Trichosporon laibacchii strain CBS 5791. A satisfactory result was obtained, in which the E was 82.5, with an ee of 0.94 and a conversion of 0.47 under the optimum hydrolysis conditions [E is enantiomeric ratio, E=ln[1–X(1+ee)]/ln[1–X(1–ee)]; ee is enantiomeric excess, ee=(CSCR)/(CS+CR): temperature of hydrolysis was 23°C]. The medium used in biotransformation was a mixture of growth broth and biotransformation broth at a ratio of 1:9, the concentration of Tween 80 was 15 g/l, the time of hydrolysis, 72 h. These results are promising for further scale-up. Tween 80 significantly improved lipase enantioselectivity and activity at the optimum concentration.  相似文献   

18.
(1R,2S)-1-(3′-Chloro-4′-methoxyphenyl)-1,2- propanediol (Trametol, 3), a metabolite of the fungus Trametes sp. IVP-F640 and Bjerkandera sp. BOS55, was synthesized by employing Sharpless asymmetric dihydroxylation as the key step. Similarly, the (1R,2S)-isomer of 1-(3′,5′-dichloro-4′-methoxyphenyl)-1,2-propanediol (4), another metabolite of Bjerkandera sp. BOS55, was synthesized by asymmetric dihydroxylation.  相似文献   

19.
Summary Ethanol, ethylacetate and ethene were tested as no-substrates to improve prolonged 1,2-epoxypropane formation from propene by immobilized cells of three strains (Eu1, 2W, E3) of ethene-utilizing Mycobacteria. Cells grown either on ethene or on both ethene and ethanol were immobilised on lava and the effect of co-substrates on 1,2-epoxypropane formation from propene was recorded in a gas/solid bioreactor. The rate of 1,2-epoxypropane formation by immobilized cells of strains Eu1 and 2W was significantly enhanced when ethanol or ethylacetate were supplied simultaneously with propene, while biocatalysis during a prolonged period of time was achieved in the presence of ethylacetate. Co-substrates had no beneficial effect on 1,2-epoxypropane formation by strain E3. It was possible to increase the 1,2-epoxypropane formation rate by immobilized cells over a period of three weeks of operation by supplying propene and ethene alternately.  相似文献   

20.
Different microorganisms (MOs) were used to carry out the enantioselective reduction of ethyl-2-oxo-4-phenylbutanoate to (S)-(+)-2-hydroxy-4-phenylbutanoate or (R)-(+)-2-hydroxy-4-phenylbutanoate. Commercially available Saccharomyces cerevisiae and Dekera sp. led to over 92% ee of (S)-(+)-2-hydroxy-4-phenylbutanoate. Kluyveromyces marxianus gave the opposite isomer with 32% ee (R). All reactions, except those with Hansenula sp., proceeded to greater than 90% conversion. This the first report on the use of Dekera sp., Hansenula sp. and K. marxianus in the reduction of α-ketoesters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号