首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Posttranslational modification of proteins by phosphorylation is involved in regulation of sperm function. Protein phosphatase 1 gamma isoform 2 (PPP1CC_v2) and protein YWHA (also known as 14-3-3) are likely to be key molecules in pathways involving sperm protein phosphorylation. We have shown that phosphorylated PPP1CC_v2 is bound to protein YWHAZ in spermatozoa. In somatic cells, protein YWHA is known to bind a number of phosphoproteins involved in signaling and energy metabolism. Thus, in addition to PPP1CC_v2, it is likely that sperm contain other YWHA-binding proteins. A goal of the present study was to identify these sperm YWHA-binding proteins. The binding proteins were isolated by affinity chromatography with GST-YWHAZ followed by elution with a peptide, R-11, which is known to disrupt YWHA complexes. The YWHA-binding proteins in sperm can be classified as those involved in fertilization, acrosome reaction, energy metabolism, protein folding, and ubiquitin-mediated proteolysis. A subset of these putative YWHA-binding proteins contain known amino acid consensus motifs, not only for YWHA binding but also for PPP1C binding. Identification of sperm PPP1CC_v2-binding proteins by microcystin-agarose chromatography confirmed that PPP1CC_v2 and YWHA interactomes contain several common proteins. These are metabolic enzymes phosphoglycerate kinase 2, hexokinase 1, and glucose phosphate isomerase; proteins involved in sperm-egg fusion; angiotensin-converting enzyme, sperm adhesion molecule, and chaperones; heat shock 70-kDa protein 5 (glucose-regulated protein 78 kDa; and heat shock 70-kDa protein 1-like. These proteins are likely to be phosphoproteins and potential PPP1CC_v2 substrates. Our data suggest that in addition to potential regulation of a number of important sperm functions, YWHA may act as an adaptor molecule for a subset of PPP1CC_v2 substrates.  相似文献   

2.
The oocyte cytoplasmic lattices (CPLs) have long been predicted to function as a storage form for the maternal contribution of ribosomes to the early embryo. Our previous studies have demonstrated that ribosomal component S6 is stored in the oocyte CPLs and peptidylarginine deiminase 6 (PADI6) is critical for CPLs formation. Additionally, we found that depletion of PADI6 reduced de novo protein synthesis prior to the maternal-to-embryonic transition, therefore causing embryos to arrest at the 2-cell stage. Here, we present evidence further supporting the association of ribosomes with the CPLs by demonstrating that rRNAs are dramatically decreased in Padi6 KO oocytes. We also show that the abundance and localization of mRNAs is affected upon PADI6 depletion, suggesting that mRNAs are very possibly associated with CPLs. Consistent with this observation, the amount of the major RNA binding protein, MSY2, that is associated with the insoluble fraction of the oocytes after Triton X-100 extraction is also markedly decreased in the Padi6 KO oocytes. Furthermore, treatment of the oocytes with RNase A followed by Triton X-100 extraction severely impairs the localization of PADI6 and MSY2 in oocytes. These results indicate that mRNAs, possibly in a complex with MSY2 and PADI6, are bound in the CPLs and may play a role in securing the mRNA-MSY2 complex to the CPLs.  相似文献   

3.
4.
类风湿关节炎(RA)是一种病因和发病机制尚不清楚的自身免疫疾病,一般认为是由多种遗传因素和环境因素共同作用的结果。遗传因素中以组织相容性白细胞抗原HLA最为重要,另外作为非HLA的肽基精氨酸脱亚胺酶4(PADI4)也参与了RA的发病。PADI4是一种翻译后修饰酶,可在钙离子存在的情况下将精氨酸残基转化为瓜氨酸残基,瓜氨酸化后的蛋白质往往改变其分子构象,从而导致其生化活性亦发生改变。在不用种族的人群中,PADI4基因多态性与RA的易感性不尽相同。PADI4在RA患者血清中含量明显升高,在机体内产生自身抗PADI4抗体,并且PADI4瓜氨酸化多种蛋白质引起机体自身的免疫反应参与RA的发生与发展。近些年来的其他研究表明PAID4也参与了肿瘤、溃疡性结肠炎、多发性硬化症的发病。尽管针对PADI4的研究已经取得了很多重大进展,但是仍然存在很多悬而未决的问题等待科研工作者进一步的研究和证实。  相似文献   

5.
A key intracellular event during capacitation is protein tyrosine phosphorylation, but its involvement during sperm interaction with the oocyte has not been investigated. Glucose is necessary to achieve fertilization and thus may have an influence on sperm protein tyrosine phosphorylation. The objectives of this study were to 1) visualize protein tyrosine phosphorylation patterns in sperm during capacitation and interaction with the oocyte and 2) determine the influence of glucose. Protein tyrosine phosphorylation was investigated by Western analysis and immunofluorescence. Protein tyrosine phosphorylation was increased during capacitation, and immunofluorescence revealed that zona binding and gamete fusion were correlated with an increase in tyrosine phosphorylation of proteins in the midpiece. During capacitation, the absence of glucose led to a delay in the appearance of protein tyrosine phosphorylation. Following binding to the zona pellucida and the oolemma, tyrosine phosphorylation in the flagellum was also delayed in the absence of glucose and resulted in a significant inhibition of the midpiece phosphorylation. The correlation between successful gamete fusion and the tyrosine phosphorylation of midpiece proteins suggests that the effect of glucose on sperm-oocyte interaction is mediated through regulation of protein tyrosine phosphorylation in a specific area of the fertilizing sperm.  相似文献   

6.
7.
Egg activation is the series of events that must occur for a mature oocyte to become capable of supporting embryogenesis. These events include changes to the egg's outer coverings, the resumption and completion of meiosis, the translation of new proteins, and the degradation of specific maternal mRNAs. While we know some of the molecules that direct the initial events of egg activation, it remains unclear how multiple pathways are coordinated to change the cellular state from mature oocyte to activated egg. Using a proteomic approach we have identified new candidates for the regulation and progression of egg activation. Reasoning that phosphorylation can simultaneously and rapidly modulate the activity of many proteins, we identified proteins that are post-translationally modified during the transition from oocyte to activated egg in Drosophila melanogaster. We find that at least 311 proteins change in phosphorylation state between mature oocytes and activated eggs. These proteins fall into various functional classes related to the events of egg activation including calcium binding, proteolysis, and protein translation. Our set of candidates includes genes already associated with egg activation, as well as many genes not previously studied during this developmental period. RNAi knockdown of a subset of these genes revealed a new gene, mrityu, necessary for embryonic development past the first mitosis. Thus, by identifying phospho-modulated proteins we have produced a focused candidate set for future genetic studies to test their roles in egg activation and the initiation of embryogenesis.  相似文献   

8.
DNA methylation is a central epigenetic modification in mammals, with essential roles in development and disease. De novo DNA methyltransferases establish DNA methylation patterns in specific regions within the genome by mechanisms that remain poorly understood. Here we show that protein citrullination by peptidylarginine deiminase 4 (PADI4) affects the function of the DNA methyltransferase DNMT3A. We found that DNMT3A and PADI4 interact, from overexpressed as well as untransfected cells, and associate with each other''s enzymatic activity. Both in vitro and in vivo, PADI4 was shown to citrullinate DNMT3A. We identified a sequence upstream of the PWWP domain of DNMT3A as its primary region citrullinated by PADI4. Increasing the PADI4 level caused the DNMT3A protein level to increase as well, provided that the PADI4 was catalytically active, and RNAi targeting PADI4 caused reduced DNMT3A levels. Accordingly, pulse-chase experiments revealed stabilization of the DNMT3A protein by catalytically active PADI4. Citrullination and increased expression of native DNMT3A by PADI4 were confirmed in PADI4-knockout MEFs. Finally, we showed that PADI4 overexpression increases DNA methyltransferase activity in a catalytic-dependent manner and use bisulfite pyrosequencing to demonstrate that PADI4 knockdown causes significant reduction of CpG methylation at the p21 promoter, a known target of DNMT3A and PADI4. Protein citrullination by PADI4 thus emerges as a novel mechanism for controlling a de novo DNA methyltransferase. Our results shed new light on how post-translational modifications might contribute to shaping the genomic CpG methylation landscape.  相似文献   

9.
10.
Peptidylarginine deiminases (PADIs) convert peptidylarginine into citrulline via posttranslational modification. One member of the family, PADI4, plays an important role in immune cell differentiation and cell death. To elucidate the participation of PADI4 in haematopoietic cell death, we examine whether inducible overexpression of PADI4 enhances the apoptotic cell death. PADI4 reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells and human acute T leukemia Jurkat cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G1 appearance, loss of mitochondrial membrane potential (Δψm), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following PADI4 overexpression, cells arrest in G1 phase significantly before their entrance into apoptotic cell death. PADI4 increases tumor suppressor p53 and its downstream p21 to control cell cycle. In the detections of protein expression and kinase activity, all protein levels of cyclin-dependent kinases (CDKs) and cyclins are not reduced except cyclin D, however, CDK2 (G1 entry S phase) and CDK1 (G2 entry M phase) enzyme activities are inhibited by conditionally inducible PADI4. p53 also expands its other downstream Bax to induce cytochrome c release from mitochondria. According to these data, we suggest that PADI4 induces apoptosis mainly through cell cycle arrest and mitochondria-mediated pathway. Furthermore, p53 features in PADI4-induced apoptosis by increasing intracellular p21 to control cell cycle and by Bax accumulation to decline Bcl-2 function, destroy Δψm, release cytochrome c to cytoplasm and activate the caspase cascade.  相似文献   

11.
Xenopus laevis eggs pricked or microinjected with water or saline in medium containing a limited quantity of free Ca (1.0 to 2.0 microM) remain unactivated for at least 6 hr, even after transfer to oocyte medium containing Ca at higher concentrations (0.5-1.0 mM). These injected eggs, when later pricked in oocyte medium or exposed to A23187 or urethane are fully capable of activation. This confirms the observations of Wangh ('89). However, eggs injected in this Ca-limited medium (CaLM) with 6-DMAP as well as those simply exposed to this drug undergo changes characteristic of activation, including cortical contraction, cortical granule breakdown, a loss of MPF and CSF activities, and pronuclear formation. The time required for 6-DMAP to induce egg activation is inversely correlated to its concentration. Interestingly, eggs that have been injected with EGTA, and thus are unable to respond to activation stimuli such as pricking and A23187 or urethane treatment, can also be activated by exposure to 6-DMAP. In contrast, eggs exposed to or injected with a 6-DMAP analogue (6-aminopurine or puromycin) or a protein synthesis inhibitor (cycloheximide or emetine or puromycin) are not activated. As well, eggs injected in CaLM with 6-DMAP simultaneously with a phosphatase inhibitor (NaF or ammonium molybdate) fail to become activated. Although 6-DMAP-activated eggs remain at the pronucleus stage so long as 6-DMAP is present, they resume cell cycle activities after the drug is withdrawn. They form cleavage furrows, disassemble pronuclear envelopes, and recondense chromosomes. Also, MPF activity reappears and cycles at least twice, peaking each time shortly before cleavage furrow formation. These results suggest that activation of Xenopus eggs arrested at metaphase II by inhibition of protein phosphorylation does not require intracellular Ca release and that maintenance of the egg at metaphase II depends upon continuous protein phosphorylation.  相似文献   

12.
Evidence is presented for the reversible activation-inactivation of the microsomal ecdysone 20-monooxygenase from fat body of the cotton leafworm, Spodoptera littoralis, in a manner commensurate with reversible changes in its phosphorylation state. The activity of the monooxygenase was higher following preincubation with fluoride (an inhibitor of phosphoprotein phosphatases) than in its absence. Preincubation with alkaline phosphatase or with cAMP-dependent protein kinase resulted in appreciable diminution or enhancement, respectively, in monooxygenase activity. Activation of ecdysone 20-monooxygenase activity could also be effected by incubation with a cytosolic fraction in the presence of cAMP, ATP, and fluoride; this activation was prevented by a cAMP-dependent protein kinase inhibitor. Similarly, inactivation of the monooxygenase was achieved by preincubation with cytosol, the effect being enhanced by Ca2+-calmodulin or by Mg2+ ions. The combined results provide indirect evidence that the microsomal ecdysone 20-monooxygenase exists in an active phosphorylated form and an inactive dephosphorylated form, interconvertible by a cAMP-dependent protein kinase and a phosphoprotein phosphatase.  相似文献   

13.
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.  相似文献   

14.
Rat brain tryptophan 5-monooxygenase was activated by incubation with ATP, Mg2+, calmodulin, and micromolar concentrations of Ca2+. The activating activity was resolved into two distinct peaks upon gel filtration on Sepharose CL-6B: one, Ca2+-, calmodulin-dependent protein kinase, and the other, a heat-labile activator protein. The activator protein was purified to apparent homogeneity from rat brain by a procedure involving calmodulin-Sepharose 4B, Sephadex G-150, and phenyl-Sepharose CL-4B column chromatography. The molecular weight of the activator protein was determined to be 70,000 by sedimentation equilibrium and by gel filtration on Sephadex G-150. The protein gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of which was estimated to be 35,000, indicating that the protein might be composed of two identical subunits. Analysis of cross-linked activator protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis also suggested that the protein might be a dimer of identical subunits. Some other molecular properties of the activator protein were: sedimentation coefficient, 4.3 S; Stokes radius, 3.6 nm; diffusion coefficient, 6.0 x 10(-7) cm2/s; frictional ratio, 1.32; and partial specific volume, 0.73 cm3/g. The activator protein activated tyrosine 5-monooxygenase as well as tryptophan 5-monooxygenase in the presence of ATP, Mg2+, Ca2+, calmodulin, and Ca2+-, calmodulin-dependent protein kinase.  相似文献   

15.
Addition of adenosine 3':5'-monophosphate (cAMP) to high speed supernatant preparations obtained from rat brain caused a 3- to 4-fold increase in tyrosine 3-monooxygenase (tyrosine hydroxylase) activity. The tyrosine 3-monooxygenase remained in an activated state upon removal of the cAMP by passing the enzyme through a Sephadex G-25 column. Substances which inhibit cAMP-dependent protein kinase, namely, EDTA, ADP, and adenosine, and protein kinase modulator, each antagonized the activation of tyrosine 3-monooxygenase produced by cAMP. Furthermore, addition of partially purified brain cAMP-dependent protein kinase caused a several-fold increase in tyrosin 3-monooxygenase activity. The activation of tyrosine 3-monooxygenase by added cAMP and protein kinase required the presence of ATP and Mg-2+. These data suggests that the cAMP activation of tyrosine 3-monooxygenase may be mediated by a cAMP-dependent protein kinase.  相似文献   

16.
Selected for its high relative abundance, a protein spot of MW approximately 75 kDa, pI 5.5 was cored from a Coomassie-stained two-dimensional gel of proteins from 2850 zona-free metaphase II mouse eggs and analyzed by tandem mass spectrometry (TMS), and novel microsequences were identified that indicated a previously uncharacterized egg protein. A 2.4-kb cDNA was then amplified from a mouse ovarian adapter-ligated cDNA library by RACE-PCR, and a unique 2043-bp open reading frame was defined encoding a 681-amino-acid protein. Comparison of the deduced amino acid sequence with the nonredundant database demonstrated that the protein was approximately 40% identical to the calcium-dependent peptidylarginine deiminase (PAD) enzyme family. Northern blotting, RT-PCR, and in situ hybridization analyses indicated that the protein was abundantly expressed in the ovary, weakly expressed in the testis, and absent from other tissues. Based on the homology with PADs and its oocyte-abundant expression pattern, the protein was designated ePAD, for egg and embryo-abundant peptidylarginine deiminase-like protein. Anti-recombinant ePAD monospecific antibodies localized the molecule to the cytoplasm of oocytes in primordial, primary, secondary, and Graafian follicles in ovarian sections, while no other ovarian cell type was stained. ePAD was also expressed in the immature oocyte, mature egg, and through the blastocyst stage of embryonic development, where expression levels began to decrease. Immunoelectron microscopy localized ePAD to egg cytoplasmic sheets, a unique keratin-containing intermediate filament structure found only in mammalian eggs and in early embryos, and known to undergo reorganization at critical stages of development. Previous reports that PAD-mediated deimination of epithelial cell keratin results in cytoskeletal remodeling suggest a possible role for ePAD in cytoskeletal reorganization in the egg and early embryo.  相似文献   

17.
In Xenopus laevis , nucleoplasmin from fully grown oocytes is not highly phosphorylated, but is more extensively phosphorylated during oocyte maturation to retain this state until mid-blastula transition. Incubation of demembranated sperm with nucleoplasmin from oocytes or mature eggs revealed that egg nucleoplasmin is twice as potent as oocyte nucleoplasmin in removing sperm-specific basic proteins from chromatin (protamine-removing activity: PRA). Dephosphorylation of egg nucleoplasmin by alkaline phosphatase induced a remarkable decline of PRA in nucleoplasmin. Treatment of oocyte nucleoplasmin with cdc2 protein kinase induced an increase of the extent of phosphorylation, but to a level lower than that exhibited by egg nucleoplasmin, suggesting the involvement of other unspecified kinase(s) in phosphorylating nucleoplasmin during oocyte maturation. Incubation of sperm with cdc2 kinase induced selective phosphorylation of sperm-specific basic proteins, accompanied by their enhanced removal from sperm chromatin upon exposure to high-salt solutions. These results suggest that removal of sperm-specific basic proteins from sperm chromatin in fertilized eggs is facilitated by phosphorylation of both nucleoplasmin and sperm-specific basic proteins.  相似文献   

18.
Development of calcium release mechanisms during starfish oocyte maturation   总被引:8,自引:1,他引:7  
In response to the maturation-inducing hormone 1-methyladenine, starfish oocytes acquire increased sensitivity to sperm and inositol trisphosphate (InsP3), stimuli that cause a release of calcium from intracellular stores and a rise in intracellular free calcium. In the immature oocyte, the calcium release in response to 10 sperm entries is less than that seen with a single sperm entry in the mature egg. Likewise, the sensitivity to injected InsP3 is less in the immature oocyte. Approximately 100 times as much InsP3 is required to obtain the same calcium release in an immature oocyte as in a mature egg. However, with saturating amounts of InsP3, immature oocytes and mature eggs release comparable amounts of calcium. These results indicate that although calcium stores are well-developed in the immature oocyte, mechanisms for releasing the calcium develop fully only during oocyte maturation.  相似文献   

19.
2-oxo-3-pentynoate has been characterized as an active-site-directed inhibitor of selected flavoprotein oxidases. Tryptophan 2-monooxygenase is irreversibly inactivated in an active-site-directed fashion. The addition of FAD affords no protection from inactivation, whereas the competitive inhibitor indole-3-acetamide fully protects the enzyme from inactivation. The inactivation follows first-order kinetics for at least five half-lives. The rate of inactivation shows saturation kinetics, consistent with the formation of a reversible complex between the alkylating agent and the enzyme before inactivation occurs. Values of 0.017 +/- 0.0005 min-1 and 44 +/- 7 microM were determined for the limiting rate of inactivation and the apparent dissociation constant for 2-oxo-3-pentynoate, respectively. Tryptic maps of tryptophan 2-monooxygenase treated with 2-oxo-3-pentynoate show that two peptides are alkylated in the absence of indole-3-acetamide but not in its presence. The two peptides were identified by mass spectrometry as residues 333-349 and 503-536. Based upon sequence analysis, cysteine 511 and either cysteine 339 or histidine 338 are the likely sites of modification. In contrast, incubation of D-amino acid oxidase or nitroalkane oxidase with 2-oxo-3-pentynoate results in a loss of 55% or 100%, respectively, of the initial activity. In neither case does a competitive inhibitor affect the rate of inactivation, suggesting that the effect is not due to modification of active-site residues.  相似文献   

20.
The intracellular pH of full-grown Xenopus oocytes increases from 7.2 to 7.6 in response to progesterone stimulation. Phosphorylation of the 40 S ribosomal protein S-6 increases six- to eightfold in these stimulated cells and this phosphorylation coincides with the intracellular alkalization. This is followed by a two- to threefold increase in the protein synthetic rate. Progesterone-treated cells cultured in choline chloride substituted Na-free medium fail to alkalize and S-6 is not phosphorylated. Weak bases, such as trimethylamine, methylamine, and procaine, artificially alkalize the cell cytoplasm and stimulate S-6 phosphorylation in medium containing or lacking sodium. The methylxanthine theophylline, suppresses S-6 phosphorylation and inhibits protein synthesis. This inhibition does not appear to involve cAMP. Rather, theophylline acidifies the oocyte cytoplasm. Thus, S-6 phosphorylation appears to be regulated by the intracellular pH of the cell. In addition, the level of protein synthesis in the oocyte seems to be correlated with the level of S-6 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号