首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Light and electron microscope observations characterized the layers that comprise Vigna vexillata L. pollen walls, and identified the timing of their development. Exine sculpturings form an unusually coarse ektexinous reticulum. The structure of the ektexine is granular; this differs from the columellate/tectate type of structure typical of most angiosperm pollen. The ektexine overlies a homogeneous-to-lamellar, electron-dense endexine, which in turn surrounds a thick, microfibrillar intine. Pollen grains are triporate and operculate, with Zwischenkörper and thickened intine underlying the apertures. The ektexine forms during the tetrad period of microspore development, the endexine and Zwischenkörper during the free microspore stage, and the intine during the bicelled (pollen) stage. Coarsely reticulate exine sculpturings and the granular structure of the patterned exine wall of the pollen grains are features that make this species suitable for detailed studies of pollen wall pattern formation.  相似文献   

2.
Development of the exine and viscin threads in Oenothera was studied by a combination of transmission electron microscopy and field emission scanning electron microscopy. Exine formation is initiated in the early tetrad stage by plate-like structures of preexine formed evenly around the microspore within a callosic wall. In the late tetrad stage, an endexine accumulates on white-lined lamellae underneath the preexine. After dissolution of the callosic wall, the preexine develops into beaded ektexine which is differentiated into an undulate tectum-like layer and columellae-like components. Interwoven fibrous strings connect the developing ektexine and the surface of the tapetal cells, and later develop into the viscin threads. These developmental processes imply that the columellae-like components are different in structure from the columellae of other angiosperms and that the formation of viscin threads is associated with the tapetal cells.  相似文献   

3.
Hesse M 《Protoplasma》2006,228(1-3):145-149
Summary. In the family Araceae, the members of all subfamilies except Aroideae follow the conventional mode of exine formation pattern, which conforms with the textbook view of sporoderm stratification and chemistry (sporopollenin ektexine formed before the endexine). Only members of the subfamily Aroideae show a quite uncommon mode of exine formation pattern, with an endexine formed prior to the nonsporopollenin, polysaccharidic outer exine layer. The intine is formed simultaneously with this non-sporopollenin layer. From the differing timetable and especially from the different origin it is concluded that this outer exine layer is not homologous to the angiosperm ektexine. The fundamental question, why members of the Aroideae lack an elaborated sporopollenin ektexine, is discussed in terms of functionality of the nonsporopollenin outer exine layer. It seems that a major change in aroid evolution took place at the point when the family phylogenetically and ecologically shifted from bisexual (most subfamilies) to unisexual flowers (Aroideae only). The hypothesis is that ephemeral spathes and the absence of sporopollenin are the consequence of an adaptive syndrome for a short pollination time window in many members of the Aroideae, with short-lived pollen, an energetically not costly pollen wall, rapid germination of pollen tube, and brief receptivity of stigma. Correspondence and reprints: Institute of Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria.  相似文献   

4.
Anger EM  Weber M 《Annals of botany》2006,97(2):239-244
BACKGROUND AND AIMS: Arum alpinum has a quite uncommon pollen wall. A sporopolleninous ektexine is missing. The outermost pollen wall layer is formed by the endexine which is covered by polysaccharidic ornamentation elements. An ontogenetical investigation was accomplished to clarify pollen-wall development, with special reference to callose and pollen-wall development. METHODS: Plants of Arum alpinum grown in their natural habitat were collected once a week within the vegetative period and processed for semi- and ultra-thin sectioning. KEY RESULTS: At any stage of pollen-wall formation callose is missing. Microspores are released from the tetrad by invagination of the amoeboid tapetum. The polysaccharidic wall ornamentations are formed by the tapetum. CONCLUSIONS: There appears to be no truth in the dogma that callose is essential for microspore separation and release from the tetrad. The lack of callose does not influence fertility but could be the reason for the uncommon pollen wall, where a sporopolleninous ektexine is missing.  相似文献   

5.
Developmental process of structure-less exine is studied in a hydrophilous plant,Ceratophyllum demersum L., with electron microscopy. The plant shows a characteristic feature in tetrad formation. A callose wall is not synthesized and exine initiation does not occur during the tetrad stage. After release of microspores, a trilaminar layer with two electron-dense lines is formed in the surface of each microspore. The trilaminar layer develops to a thin structure-less exine that is considered to consist of only an endexine. The unusual exine would be an adaptive feature for submersed pollination in fresh water.  相似文献   

6.
Wall development of tricolpate pollen of sunflower was studied by light and by scanning and transmission electron microscopy. The wall and colpi are initiated during the tetrad stage, producing a young, spinulate, two-layered exine (ektexine and endexine) separated by a “spacer layer.” After release from the tetrads, the individual microspores round up and enlarge. The exine layers increase in thickness and complexity from sporopollenin contributed by the tapetum and microspores. During the mid-vacuolate microspore stage, the tapetum becomes plasmodial and surrounds the developing microspores. At the vacuolate pollen stage, after the wall and colpi are completely formed, the plasmodial tapetum breaks down and releases its contents into the locule. Some of the contents are presumably utilized by the pollen to make storage reserves while other components, such as lipids and proteins, fill the spaces within the pollen wall exine. Pollen wall ontogeny provides a scheme of terms for mature composite walls in general. The various events associated with microsporogenesis in sunflower are compared with those reported in other pertinent studies.  相似文献   

7.
During a routine screening of pollen fertility in the n = 2 chromosome race of Haplopappus gracilis, a spineless pollen wall mutation was discovered that renders the otherwise functional pollen grains completely unrecognizable as Compositae pollen. Normal Haplopappus pollen is characterized by an outer layer, the ektexine, consisting of large spines supported by a roof (tectum), which in turn is supported by collumellae that are joined basally. A large cavity (cavea) stretches from aperture to aperture and separates columellae bases from the final ektexine unit, the foot layer. The spines, tectum, columellae, and columellae bases are filled with perforations (internal foramina), while the foot layer is without them. Immediately underlying the foot layer is a thickened, lamellate, disrupted, internal foramina-free second exine layer, the endexine. In contrast, the mutant pollen ektexine is a jumble of components with randomly dispersed spines as the only clearly definable unit. The endexine layer is similar to the endexine in normal pollen. The mutation apparently disrupts only the organization of ektexine units, and mutant pollen appears to be without the caveae and foot layer characteristic of normal pollen. In genetic tests, the mutant allele is recessive. There is a simple Mendelian pattern of inheritance of the mutant gene, and its phenotype is under sporophytic control.  相似文献   

8.
Koichi Uehara  Norio Sahashi 《Grana》2013,52(6):267-274
Pollen wall development in Cryptomeria japonica was observed by scanning and transmission electron microscopy. The pollen of C. japonica is characterized by a non-saccate, projecting papilla. The exine of C. japonica consists of the outer granular ectexine and the inner lamellated endexine. At the tetrad stage, the initial granular layer of the pro-ectexine first forms on the microspore plasma membrane. The tripartite lamellae of the pro-endexine form under the pro-ectexine. The prosporopollenin material is deposited on the pro-ectexine and pro-endexine at the free spore stage. The ectexine granule increases its volume and the endexine lamellae thicken. The papilla protrudes during the tetrad stage. The tip of the papilla bends laterally where the exine is thinner. Exine construction in C. japonica is similar to that of Cunninghamia; however, the amount and size of the granular ectexine and lamellated endexine differ. The conspicuous papilla protrudes and bends during the tetrad period.  相似文献   

9.
In the microspore tetrad period the exine begins as rods that originate from the plasma membrane. These rods are exine units that on further development become columellae as well as part of the tectum, foot layer and “transitory endexine”. The primexine matrix is very thin in the future sites of the pores. At these sites the plasma membrane and its surface coating (glycocalyx) are without exine units and adjacent to the callose envelope. The exine around the aperture margin is characterized by units of reduced height. After the exine units and primexine matrix have become ca 0.2 μm in height a fibrillar zone forms under the aperture margin. It is the exine units around the aperture that are templates for exine processes on apertures of mature pollen. Oblique sections of the early exine show that the tectum consists of the distal portions of close-packed exine units. The exine enlarges in the free microspore period but initially its substructure (tectum, columellae, foot layer and transitory endexine) is not homogeneous and unit structures are visible until after the vacuolate microspore period. There are indications of a commissural line/plane (junction plane) which separates the foot layer from the endexine during early development. Our observations of development in Echinodorus pollen extend a growing number of reports of “transitory endexines” in monocot pollen. The exine unit-structures become 0.2 μm or more in diameter and many columellae are composed of only one exine unit. Spinules become exceptionally tall, many protruding ca 0.7 μm above the level of the tectum as units only ca 0.1 μm in diameter. The outer portion of the tectum fills in around spinules and by maturity they are microechinate with their bases spread out to ca 1 μm or more. Unit structures can be seen with SEM in mature pollen following oxidation by plasma ashing and in the tapetum these units are arranged both radially, as in spinules, and parallel with the tapetal surfaces. There are clear indications of such an arrangement of units in untreated fresh pollen. Units comprising the basal part of the exine are not completely fused by sporopollenin accumulated during development. This would seem to be a characteristic feature, based on published work, of the alismacean pollen. Our use of a tracer shows, however, that there is considerable space within or between exine structure of mature Echinodorus pollen. Based upon the ca 0.1 μm size of exine-units formed early in development and exine components seen after oxidative treatment it seems that the early (primary) accumulated sporopollenin has greater resistance to oxidation than sporopollenin added, secondarily, around and between units later in development. Both primarily and secondarily accumulated sporopollenin are resistant to acetolysis but published work indicates that acetolysis alters exine material. At the microspore tetrad time and until the vacuolate stages tapetal cells are arranged as in secretory tapetums. During early microspore stages there are orbicules at the inner surface of tapetal cells. At free microspore period tapetal cells greatly elongate into the loculus and surround the microspores. By the end of the microspore vacuolate period tapetal cells release their cellular contents and microspores are for a time enveloped by tapetal organelles and translocation material.  相似文献   

10.
The pollen grains of Heliotropium europaeum are heterocolpate, with alternation of 3 colpori and 3 pseudocolpi. The exine is characterized by a scabrate and thick tectum, massive columellae with a granular appearance and a thick nexine. The thickening of the intine at the apertural level makes the interpretation of this zone difficult. The ontogenetic study helped to understand the ultrastructure of the exine and the apertures. The different steps are as follows. The primexine matrix is formed during the beginning of the tetrad stage; it consists of an outer thick and electron dense zone and an inner one, less dense to electrons. The tectum and the infratectum begin to form in the outer zone of the matrix, towards the middle of the tetrad stage. The infratectum consists of a network of columellae variable in thickness and oriented in different directions. The foot layer is lacking. The endexine is formed on a lamella system during the callose loss and microspore separation. The endexine becomes compact very early on its inner part. The apertures are initiated during the tetrad stage; a granulo-fibrillar oncus develops. At the free microspore stage, the oncus gets fibrillar and is bordered by endexine lamellae on its outer side and by endexine granulations on its inner one and laterally. The intine is set at the end of this stage. At the vacuolated microspore stage, the intine shows three layers: two thin, clear and homogeneous layers, one outside and the other inside, and a thick middle layer that forms the zwischenkörper, crossed by trabecula, in the apertural areas.  相似文献   

11.
Pollen wall development of Sciadopitys verticillata was observed by transmission electron microscopy. The pollen of S. verticillata is non-saccate and spherical, and the exine consists of the outer thick, sculptured ectexine and the inner lamellated endexine. At the early tetrad stage, the initial ectexine and lamellae of the initial endexine begin to form on the microspore plasma membrane. The ectexine granules gradually swell. Deposition of sporopollenin materials on the ectexine granules then results it their becoming partially connected to each other. Identification of the original small ectexine granules then becomes difficult, and, finally, the ectexine appears as a homogeneous, partially discontinuous layer. The granules of the early ectexine cannot be identified. At maturity, there are four to five endexine lamellae. Recent molecular data have shown that Sciadopitys first branches off from the Cupressaceae plus Taxaceae clade, which is characterized by granular exine. Although the ectexine of Sciadopitys is similar to that of the Cupressaceae during initial development, the morphology of the ectexine is significantly different in the mature pollen. The initial stage of pollen development clearly shows the structural homology of the granular ectexine. Divergence of the exine structure occurs in the later stages.  相似文献   

12.
Brasenia is a monotypic genus sporadically distributed throughout the Americas, Asia, Australia, and Africa. It is one of eight genera that comprise the two families of Nymphaeales, or water lilies: Cabombaceae (Brasenia, Cabomba) and Nymphaeaceae (Victoria, Euryale, Nymphaea, Ondinea, Barclaya, Nuphar). Evidence from a range of studies indicates that Nymphaeales are among the most primitive angiosperms. Despite their phylogenetic utility, pollen developmental characters are not well known in Brasenia. This paper is the first to describe the complete pollen developmental sequence in Brasenia schreberi. Anthers at the microspore mother cell, tetrad, free microspore, and mature pollen grain stages were studied using combined scanning electron, transmission electron, and light microscopy. Both tetragonal and decussate tetrads have been identified in Brasenia, indicating successive microsporogenesis. The exine is tectate-columellate. The tetrad stage proceeds rapidly, and the infratectal columellae are the first exine elements to form. Development of the tectum and the foot layer is initiated later during the tetrad stage, with the tectum forming discontinuously. The endexine lamellae form during the free microspore stage, and their development varies in the apertural and non-apertural regions of the pollen wall. Degradation of the secretory tapetum also occurs during the free microspore stage. Unlike other water lilies, Brasenia is wind-pollinated, and several pollen characters appear to be correlated with this pollination syndrome. The adaptive significance of these characters, in contrast to those of the fly-pollinated genus Cabomba, has been considered. Brasenia does not produce pollenkitt nor develop tectal microchannels as does Cabomba. Instead, the discontinuity of the tectum reduces the amount of sporopollenin in the wall, which may allow for more effective wind dispersal. The importance of reassessing palynological characters in light of new ontogenetic data and the phylogenetic implications of this reevaluation are also discussed.  相似文献   

13.
The pollen wall of tetrads located in different positions of a mature pollinium of Cymbidium goeringii was examined with the electron microscope, and the compositions of wall materials were also tested with different histochemical methods. In all tetrads of a pollinium, the pollen wall can be distingished into an exine and an intine, but the exine may be varied greatly according to the tetrad position in a pollenium. The part of the pollen wall (the outer wall) of the external tetrads, lying close, to the tapetum, is composed of two layers, i.e. the exine, and the intine. Theexine consists of tectum, granulate ectexine and endexine, without foot layer. The intine is cellulose in nature. In the outer wall between different groups of: tetrads and in the inner wall within an individual tetrad, the structure of ectexine becomes simple and the deposition of sporopollenin is roduced The degree of reduction of ectexine nicreases from the outer to inner tetrads in several external layers of a pollinium, and even the internal tetrads have a reduced ectexine or lack of it. The present study also demonstrates that the mechanism of pollen aggregation into a pollinium is built on a combined effect of the following features: (1) connected bridges formed' by intine between two pollens within a tetrad, (2) formation of cytoplasmic channels between two pollens within a tetrad, (3) incomplete cell wall formation within a tetrad, (4) little size of tetrads and compact arrangement of mature tetrads and (5) a sticky viscin material surrounded on the outside of a pollinium.  相似文献   

14.
Michael Hesse   《Flora》2006,201(6):421-428
The ultrastructure of pollen walls in Araceae is characterized by the absence of a stable sporopollenin outer exine layer in subfamily Aroideae, and by the presence of several distinctive pollen characters typical for the other aroid subfamilies. This article discusses if and to which extent such distinctive pollen characters are mirrored in various classifications of Araceae, basing either on morphological or on molecular data. Accordingly, the pollen characters perfectly reflect the actual subfamily classification, and also recent arrangements of clades in trees basing on molecular data. The actual subfamilies appear no longer eurypalynous, but now strictly stenopalynous. Aside from the (settled) classification problem the fundamental question is addressed why do Aroideae lack an elaborated sporopollenin ektexine. Possible pollination biology benefits, deriving from an absence of an elaborated sporopollenin ektexine in Aroideae, are presented and discussed. Compared with all other subfamilies the most advanced and by far largest subfamily Aroideae has lost several crucial characters and simultaneously acquired corresponding opposed characters, amongst others a non-sporopollenin exine layer and an unusual thick and spongy endexine. Taken together, losses and acquisitions are interpreted as a major paradigm shift in Araceae evolution, which took place according to the fossil record probably in the Paleogene.  相似文献   

15.
对白菜核雄性不育两用系的可育与不育花药进行了超微结构的比较观察。结果显示不育花药的造孢细胞核仁靠边分布:包裹小孢子母细胞的胼胝质厚薄不均匀,不完整等早期异常现象。减数分裂后,四分体细胞中常有多个细胞核。从四分体释放出的小孢子外壁的孢粉素物质不均匀沉积.呈不连续的单层异常结构。最后小孢子通过细胞质收缩方式败育。在可育花药中,绒毡层细胞在小孢子发育后期已显示出退化迹象,同时在细胞中开始积累脂类物质。但在同时期的不育花药中, 绒毡层细胞没有显示出退化的迹象,也不合成脂类物质。从时间上看,败育花药中小孢子母细胞及小孢子的异常在先,绒毡层细胞的异常在后。本研究揭示了白菜核雄性不育花药的超微结构特征, 对我们以前的光学显微镜观察结果予以补充和修正。  相似文献   

16.
白菜核雄性不育花药超微结构的研究   总被引:3,自引:0,他引:3  
对白菜核雄性不育两用系的可育与不育花药进行了超微结构的比较观察。结果显示不育花药的造孢细胞核仁靠边分布;包裹小孢子母细胞的胼胝质厚薄不均匀,不完整等早期异常现象。减数分裂后.四分体细胞中常有多个细胞核。从四分体释放出的小孢子外壁的孢粉素物质不均匀沉积,呈不连续的单层异常结构。最后小孢子通过细胞质收缩方式败育。在可育花药中.绒毡层细胞在小孢子发育后期已显示出退化迹象,同时在细胞中开始积累脂类物质。但在同时期的不育花药中.绒毡层细胞没有显示出退化的迹象,也不合成脂类物质。从时间上看,败育花药中小孢子母细胞及小孢子的异常在先,绒毡层细胞的异常在后。本研究揭示了白菜核雄性不育花药的超微结构特征.对我们以前的光学显微镜观察结果予以补充和修正。  相似文献   

17.
The Nelumbonaceae are a small family of aquatic angiosperms comprising Nelumbo nucifera and Nelumbo lutea. Historically, the genus has been considered to be closely related to Nymphaeales, however new systematic work has allied Nelumbo with lower eudicots, particularly Platanus. In recent years, studies of pollen development have contributed greatly to the understanding of phylogenetic relationships, but little has been known about these events in Nelumbo. In this paper, pollen and anther development are morphologically described for the first time in N. lutea. A comprehensive ontogenetic sequence is documented, including the sporogenous tissue, microspore mother cell, tetrad, free spore, and mature pollen grain stages. The deposition of a microspore mother cell coat and callose wall, the co-occurrence of both tetrahedral and tetragonal tetrads, the formation of a primexine in tetrads, and primexine persistence into the late free spore stage are shown. The majority of exine development occurs during the free spore stage with the deposition of a tectate-columellate ectexine, a lamellate endexine, and an unusual granular layer below and intermixed with the endexine lamellae. A two-layered intine forms rapidly during the earliest mature pollen stage. Major events of anther development documented include the degradation of a secretory-type tapetum during the free spore stage and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The majority of mature pollen grains are tricolpate, however less common monosulcate and diaperturate grains also develop. Co-occurring aperture types in Nelumbo have been suggested to be an important transition in angiosperm aperture number. However, aperture variability in Nelumbo may be correlated with the lateness of aperture ontogeny in the genus, which occurs in the early free spore stage. This character, as well as other details of pollen and anther ontogeny in Nelumbo, are compared to those of Nymphaeales and Platanus in an effort to provide additional insight into systematic and phylogenetic relationships. Although Nelumbo is similar to both groups in several characters, the ontogenetic sequence of the genus is different in many ways.  相似文献   

18.
This study aimed to elucidate the anther wall development, pollen wall development, and exine structure of Trochodendron aralioides Siebold and Zuccarini, a tree with primitive vessels but long considered to lack vessel elements in its wood. The anther wall is the basic type: epidermis, endothecium layer, three middle layers, and tapetum. The anther tapetum is glandular and cells are uniseriate. Microspore mother cells undergo meiosis with simultaneous cytokinesis to produce tetrahedral tetrads enclosed within a callose wall. Before development of the protectum, primexine is inserted against the callose, and the plasma membrane is invaginated. Then, the probacula are elongated under the protectum and arise basally from the plasma membrane. The foot layer formation is concomitant with callose wall dissolution. The foot layer is thick, and the endexine is thin. The foot layer and the endexine are both continuous. The intine is initially formed in the vacuolated microspore stage. Hollow Ubisch bodies are observed on the inner surface of the tapetum in free microspore stage. Pollen grains are tricolporate and 2-celled at the time of shedding. The numerous anthers of a single flower are at different development stages in both protandrous and protogynous individuals.  相似文献   

19.
对含笑花药发育中的超微结构变化进行观察,结果显示:(1)花粉发育中有三次液泡变化过程——第一次是小孢子母细胞在形成时内部出现了液泡,这可能与胼胝质壁的形成有关;第二次是在小孢子母细胞减数分裂之前,细胞内壁纤维素降解区域形成液泡,它的功能可能是消化原有的纤维素细胞壁;第三次是在小孢子液泡化时期,形成的大液泡将细胞核挤到边缘,产生极性。(2)含笑花粉在小孢子早期形成花粉外壁外层,花粉外壁内层在小孢子晚期形成,而花粉内壁是在二胞花粉早期形成;花粉成熟时,表面上沉积了绒毡层细胞的降解物而形成了花粉覆盖物。研究认为,含笑花粉原外壁的形成可能与母细胞胼胝质壁有关,而由绒毡层细胞提供的孢粉素物质按一定结构建成了花粉覆盖物。  相似文献   

20.
The primexine matrix is finely granulo-fibrillar up to callose digestion; it becomes distinctly fibrillar at the free microspore stage. The columellae and the tectum are initiated at the middle tetrad stage, the foot layer and the endexine are initiated when the callose wall digestion begins. The columellae are initiated by the deposition of spiral elements around a clear central zone. This hollow aspect of columella disappears when thickening. The foot layer and the endexine are built by the expansion of plasmalemma derived components. The foot layer appears first at the poles, then at the interapertural levels and at last at the apertures while the endexine appears first at the mesoapertures, then it spreads laterally towards the interapertural levels and, at last, at the poles. The gemmae are formed at the free microspore stage over all the tectum. The thickening of the exine takes place essentially during the free microspore stage and continues during the vacuolate microspore one. Apertures are entirely formed before the complete digestion of the callose wall. The ectoapertures are determined by the lacking of the columellae; the sites of the pericolpal cavities and the mesoapertures result from the plasmalemma retraction even before the setting up of the foot layer and the endexine by which they will be delimited respectively afterwards. The endoapertures are determined by the lacking of compact endexine at their level, and merge into a continuous equatorial belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号