首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
冬眠蟾蜍长足卵母胞胞,经手工剥除其卵巢膜、滤泡膜、透明带和质膜,包埋在琼脂块里,孕酮作用3小时(18±1℃)后,该细胞质团块中出现促成熟活性物质(MPF);将含有此MPF的微量卵质(约50毫微升),注入未经激素处理的卵球,能诱发后者恢复减数分裂,胚泡破裂,排出第一极体,正常抵达第二次成熟分裂中期。如果在去除上述卵外和卵表膜层结构的同时,剔除其细胞核(胚泡),然后包裹在琼脂中,经孕酮处理3小时左右,照样能够诱发产生促成熟活性物质;微量细胞质的转移,照样能使未经激素处理的受体卵正常成熟。随着供体卵质块与孕酮接触时间的延长,其诱发受体卵成熟的百分率逐渐增高。孕酮处理后9小时的供体卵质块,几乎全部能使受体卵正常成熟。上述结果表明,在本实验处理的条件下,孕酮诱发中华大蟾蜍卵母细胞形成促成熟活性物质的过程,既不依赖于卵表透明带与质膜,也不依赖于细胞核,而是细胞质自身活动的结果;显然,孕酮诱发蟾蜍卵母细胞成熟的初始作用部位是在细胞质。  相似文献   

2.
冬眠蟾蜍的长足卵母细胞,只需要与垂体促性腺激素作短暂的接触,在其细胞核尚未破裂以前,转入生理水培养,即可恢复成熟分裂,由第一次成熟分裂前期,发育到第二次成熟分裂中期。在垂体浸出液作用下,有核或去核的卵母细胞的细胞质中,都会出现促成熟的活性物质(MPF)。含有这种促成熟因子的微量卵质,一旦注入未经激素处理的卵球,即能诱发后者正常成熟。可是,在同一激素的作用下,卵母细胞细胞核(胚泡)的内含物,却不能诱发未经激素处理的卵球胚泡破裂,继续进行成熟分裂。卵母细胞的细胞质,既然可以不依赖于其细胞核的存在而形成促成熟的活性物质,而蛋白质合成的抑制剂又能妨障此活性物质的产生,这说明,激素导致卵母细胞胚泡破裂和继续减数分裂,所涉及的主要是翻译水平上的蛋白质合成问题。激素对卵母细胞细胞核的作用是间接的,是通过细胞质的活动予以调控的。  相似文献   

3.
缺钙处理的中华大蟾蜍卵母细胞,在孕酮作用下,仍能显示与恢复成熟分裂有关的早期启动变化,即卵内cAMP含量下降。但在缺钙条件下,孕酮不能促使卵母细胞进一步产生具有生物活性的促成熟因子,这可能与缺钙条件下卵母细胞内蛋白质磷酸化反应普遍低下有关。在外环境中有足量钙离子的条件下,即使无孕酮刺激,二价阳离子载体A_(23187)亦能诱发卵母细胞GVBD。这些结果无疑证明外源钙离子内流,以及由此可能导致的卵内游离钙离子增加,与卵母细胞恢复和完成成熟分裂有密切关系。  相似文献   

4.
采用体外培养的方法,研究斑马鱼卵母细胞的成熟过程。Ⅳ时相初级卵母细胞在o.5μg/m1 17a-羟基孕酮的EM-199培养液中,80%氧气,25℃的体外培养条件下,在40min内,胚泡(GV)逐渐由卵母细胞中央至动物极边缘l/2处移到动物极边缘,进八V时相卵母细胞。30min后胚泡破裂(GVBD),胚泡破裂率为59%。此种卵母细胞继续培养2h才完全成熟。成熟卵不能从滤泡膜中自然排出。冷开水中剥离其外边的滤泡膜后加入具有受精能力的精子,即能使成熟卵受精,受精膜举起,胚盘在动物极形成。其后受精卵的分裂、发育等与自然成熟受精卵相同。以发育至囊胚为受精标准,这种体外成熟卵受精率为78%。这是斑马鱼卵母细胞体外培养成熟的首例报道。鱼类卵母细胞体外成熟技术的建立,为外源基因卵母细胞胚泡内转移奠定了基础。  相似文献   

5.
在两栖类,孕酮诱导的cAMP水平下降既是卵球成熟的早期必要变化之一,同时对成熟启动来说又是充分的条件。cAMP水平下降是中华大蟾蜍卵母细胞成熟启动信号,但其卵质是否能产生MPF,还有赖于其它因子的存在。孕酮的受体不但存在于两栖类卵母细胞的质膜上,在细胞质内同样存在。卵母细胞的质膜不是孕酮诱发成熟的唯一作用位点。中华大蟾蜍卵母细胞的质膜和细胞质中的膜层上都有腺苷酸环化酶活性存在。孕酮不但??能通过抑制质膜上的,而且还能抑制细胞质中膜层上的腺苷酸环化酶活性,降低细胞内cAMP水平,诱发卵母细胞成熟。  相似文献   

6.
斑马鱼卵细胞的体外成熟及成熟卵的受精发育   总被引:1,自引:0,他引:1  
采用体外培养的方法,研究斑马鱼卵母细胞的成熟过程。Ⅵ时相初级卵母细胞在0.5μg/ml 17a-羟基孕酮的EM-199培养液中,80%氧气,25℃的体外培养条件下,在40min内,胚泡逐渐由卵母细胞中央至动物极边缘1/2处移到动物边缘,进入Ⅴ时相卵母细胞。30min后胚泡破裂,胚泡破裂率为59%,此种卵母细胞继续培养2h才完全成熟,成熟卵不能不滤泡膜中自然排出。冷开水中剥离其外边的滤泡膜后加入具有  相似文献   

7.
为进行细胞膜的生物化学分析,必先分离出纯净的细胞膜.选用哺乳动物红细胞制备细胞膜是目前常用的方法,一般多在一步溶血法的基础上,用高速离心分离制备.由于高速离心机设备目前国内尚不普及,我们尝试在低速离心(4℃,1,200×g,离心45分钟)条件下,进行人红细胞影泡制备.所谓“影泡”,即哺乳动物红细胞溶血去除血红蛋白后,分离到的细胞质膜.成熟的哺乳动物红细胞中没有通常真核细胞所含的任何细胞器.经制备,容易得到纯净的细胞膜,并且材料来源方便,故红细胞影泡是目前研究细胞膜结构功能时常用的一种膜制剂.  相似文献   

8.
羟自由基对人红细胞氧化囊泡化的作用   总被引:2,自引:0,他引:2  
红细胞经氧化处理后,发现红细胞膜区带1、2、2.1及3易形成高聚物,同时Hb亦有氧化变性。氧化过程中磷脂(PS、PE)逐渐减少,根据此结果提出氧化产生囊泡化的机制是:首先Hb氧化变性,膜骨架蛋白聚集,从而网架松散,膜磷脂脱离骨架的束缚,膜脂质与膜整合蛋白形成小囊泡从红细胞上脱落。  相似文献   

9.
红细胞经氧化处理后,发现红细胞膜区带1、2、2.1及3易形成高聚物,同时Hb亦有氧化变性。氧化过程中磷脂(PS、PE)逐渐减少,根据此结果提出氧化产生囊泡化的机制是:首先Hb氧化变性,膜骨架蛋白聚集,从而网架松散,膜磷脂脱离骨架的束缚,膜脂质与膜整合蛋白形成小囊泡从红细胞上脱落。  相似文献   

10.
在孕酮诱导的蟾蜍卵母细胞成熟过程中,ODC活性约增加2倍。佛波酯PMA能促进孕酮诱导的成熟速度,而对ODC的活性无明显影响。精胺对ODC活性有显著的作用:当卵母细胞培养在含5mmol/L精胺的碱性任氏生理盐水(pH11.6)中时,ODC活性下降17%,而孕酮诱导的成熟速度却大为增加;当精胺注入卵母细胞后。ODC活性明显下降,而且即使孕酮诱导的ODC活性增加完全被抑制,仍有80%以上的卵母细胞发生GVBD。上述结果充分表明,ODC活性的变化不参与孕酮诱导蟾蜍卵母细胞成熟的调控过程。由于在孕酮处理的卵母细胞中,ODC活性的增加发生在精胺水平下降之后,又外源精胺能大幅度抑制卵内ODC活性,故精胺很可能是卵母细胞ODC活性的调节物。  相似文献   

11.
Cytochrome P450 lanosterol 14alpha-demethylase (CYP51) is a key enzyme in sterols and steroids biosynthesis that can induce meiotic resumption in mouse oocytes. The present study investigated the expression mechanism and function of CYP51 during FSH-induced mouse cumulus oocyte complexes (COCs) meiotic resumption. FSH increased cAMP-dependent protein kinase (PKA) RIIbeta level and induced cAMP response element-binding protein (CREB) phosphorylation and CYP51 expression in cumulus cells before oocyte meiotic resumption. Moreover, CYP51 and epidermal growth factor (EGF)-like factor [amphiregulin (AR)] expression were blocked by (2)-naphthol-AS-Ephosphate (KG-501) (a drug interrupting the formation of CREB functional complex). KG-501 and RS21607 (a specific inhibitor of CYP51 activity) inhibited oocyte meiotic resumption, which can be partially rescued by progesterone. These two inhibitors also inhibited FSH-induced MAPK phosphorylation. EGF could rescue the suppression by KG-501 but not RS21607. Furthermore, type II PKA analog pairs, N(6)-monobutyryl-cAMP plus 8-bromo-cAMP, increased PKA RIIbeta level and mimicked the action of FSH, including CREB phosphorylation, AR and CYP51 expression, MAPK activation, and oocyte maturation. All these data suggest that CYP51 plays a critical role in FSH-induced meiotic resumption of mouse oocytes. CYP51 and AR gene expression in cumulus cells are triggered by FSH via a type II PKA/CREB-dependent signal pathway. Our study also implicates that CYP51 activity in cumulus cells participates in EGF receptor signaling-regulated oocyte meiotic resumption.  相似文献   

12.
Trichlorfon (TCF), an organophosphate insecticide and potent inhibitor of choline esterases, was previously shown to induce first meiotic nondisjunction and spindle aberrations in isolated, follicle cell-denuded mouse oocytes maturing in vitro. To explore dose-response and direct and indirect, potentially synergistic effects of TCF on the somatic cells and the oocyte within a follicle, we presently employed preantral follicle culture. 100 microg/ml TCF added at the time of hormonally stimulated resumption of meiosis of follicle cell-enclosed mouse oocytes, 16 h before in vitro ovulation, induced significant rises in first meiotic nondisjunction in oocytes from preantral follicle culture. Lower concentrations (6 microg/ml TCF) disturbed polar body formation. Nuclear maturation to meiosis II in absence of cytokinesis resulted in significant increases in polyploidy. Oocytes maturing in follicles in the presence of TCF had aberrant second meiotic spindles. Influences of TCF on somatic cell function were evident by reduced follicular mucification in vitro and deceased progesterone production. In contrast to TCF, acetylcholine (0.1-100 microM) increased progesterone production. The observations therefore suggest that TCF influences oocyte maturation and folliculogenesis directly and indirectly. High TCF is aneugenic at first meiotic division in oocytes, irrespective of the presence or absence of follicle cells. At lower concentrations TCF interferes with spindle formation, chromosome congression at meiosis II, and coordination of nuclear and cytoplasmic maturation, posing risks for second meiotic errors. The observations suggest that chronic TCF exposure during maturation in the follicle may predispose oocytes to the formation of chromosomally unbalanced preimplantation embryos after fertilization.  相似文献   

13.
Fertilization-competent amphibian eggs (metaphase II) are programmed to undergo an actin-myosin based contraction of the cortical cytoplasm (i.e., cortical contraction) in response to an elevation of intracellular-free calcium which accompanies fertilization. This ability to undergo cortical contraction is acquired within a few hours after the meiotically-arrested oocyte is triggered to resume meiosis by exposure to progesterone. This report examines the timing of changes in the contractile potential of the cortical cytoplasm as the oocyte becomes the egg, and in addition, the signal transduction events which induce these changes. We use the bisected oocyte system developed by Christensen et al. ('84; Nature 310: 150-151) to assess the changes in cortical potential during the meiotic resumption. Immediately after progesterone treatment (less than 5% of the way through the meiotic resumption) the cortex acquires the ability to form a contractile ring, an ability which gradually disappears during the meiotic resumption. Eighty percent of the way through the meiotic resumption the cortex of the hemisphere rapidly acquires the ability to undergo cortical contraction. In contrast, when bisected in a medium containing protein kinase C (PKC) agonists, the cortex of the hemisphere undergoes cortical contraction much earlier (i.e., 50% through the meiotic resumption). In addition, treatment of oocytes with PKC agonists alone can mimic the complete spectrum of changes in cortical potential induced by progesterone, suggesting that PKC has a role in reorganization of the cortical cytoskeleton which occurs as a normal response to progesterone. In support of this, antagonists of PKC block the progesterone-induced reorganization of the cortical cytoskeleton.  相似文献   

14.
Compared with oocytes matured in vivo, in vitro-matured oocytes are compromised in their capacity to support early embryo development. Delaying spontaneous in vitro meiotic maturation using specific phosphodiesterase (PDE) isoenzyme inhibitors may permit more complete oocyte cytoplasmic maturation, possibly by prolonging cumulus cell (CC)-oocyte gap junctional communication during meiotic resumption. This study aimed to investigate the effect of the isoenzyme 3- (oocyte) and isoenzyme 4- (granulosa cell) specific PDE inhibitors on the kinetics of in vitro maturation and on subsequent oocyte developmental competence. Cumulus-oocyte complexes from antral bovine follicles were isolated and cultured in the presence of the specific PDE inhibitors milrinone (type 3) or rolipram (type 4) (100 microM). In the presence of FSH, both PDE inhibitors only slightly extended CC-oocyte gap junctional communication over the first 9 h, but they completely blocked meiotic resumption during this period (P < 0.001). The indefinite inhibitory effect of milrinone on meiotic resumption (30% at germinal vesicle stage after 48 h) was overridden by 24 h when treated with FSH, but not with hCG, suggesting a form of induced meiotic resumption. Oocytes treated with FSH with or without either PDE inhibitor were inseminated at either 24, 26, or 28 h. Treated with either the type 3 or type 4 PDE inhibitor significantly (P < 0.05) increased embryo development to the blastocyst stage by 33%-39% (to an average of 52% blastocysts) compared with control oocytes (38%) after insemination at 28 h, and significantly (P < 0.05) increased blastocyst cell numbers when inseminated at 24 h. These results suggest that delayed spontaneous meiotic maturation, coupled with extended gap junctional communication between the CCs and the oocyte has a positive effect on oocyte cytoplasmic maturation, thereby improving oocyte developmental potential.  相似文献   

15.
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3′,5′‐cyclic monophosphate (cAMP), guanosine 3′,5′‐cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase‐promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin‐dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase‐II (M‐II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M‐II arrest in rat oocytes.  相似文献   

16.
Protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in cumulus cells are involved in FSH-induced meiotic resumption of cumulus-enclosed oocytes (CEOs), but their regulation and cross talk are unknown. The present experiments were designed to investigate 1) the possible involvement of MAPK cascade in PKC-induced meiotic resumption; 2) the regulation of PKC on MAPK activity in FSH-induced oocyte maturation; and 3) the pattern of PKC and MAPK function in induced meiotic resumption of mouse oocytes. PKC activators, phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl-2-acetyl-sn-glycerol (OAG), induced the meiotic resumption of CEOs and activation of MAPK in cumulus cells, whereas this effect could be abolished by PKC inhibitors, calphostin C and chelerythrine, or MEK inhibitor U0126. These results suggest that PKC might induce the meiotic reinitiation of CEOs by activating MAPK in cumulus cells. Both PKC inhibitors and U0126 inhibited the FSH-induced germinal vesicle breakdown (GVBD) of oocytes and MAPK activation in cumulus cells, suggesting that PKC and MAPK are involved in FSH-induced GVBD of mouse CEOs. Protein synthesis inhibitor cycloheximide (CHX) inhibited FSH- or PMA-induced oocyte meiotic resumption, but not the MAPK activation in cumulus cells. FSH and PKC activators induced the GVBD in denuded oocytes cocultured with cumulus cells in hypoxanthine (HX)-supplemented medium, and this effect could be reversed by U0126. Thus, when activated by FSH and PKC, MAPK may stimulate the synthesis of specific proteins in cumulus cells followed by secretion of an unknown positive factor that is capable of inducing GVBD in oocytes.  相似文献   

17.
Ripe Xenopus oocytes in first meiotic prophase when incubated with progesterone in vitro progress synchronously in 3 to 5 h without interphase to second meiotic metaphase where they remain until fertilization or activation. Using highly purified preparations of regulatory and catalytic subunits of adenosine 3':5'-monophosphate-dependent protein kinase from muscle, this progesterone-stimulated cell division sequence was found to be inhibited by microinjection of the catalytic subunit and induced directly in the absence of progesterone after microinjection of regulatory subunit. Dose-response curves revealed that half-maximal effects of regulatory and catalytic subunits occurred at an internal concentration of approximately 0.1 muM. These results indicate that the catalytic subunit is necessary and sufficient to block progesterone-stimulated meiotic cell division. Other experiments revealed that the catalytic subunit was inhibitory only during the first hour after progesterone exposure, suggesting that initial steps in meiotic cell division are affected. Control experiments demonstrate that the muscle cAMP-dependent protein kinase subunits may interact with the endogenous oocyte protein kinase. The results support a model in which meiotic cell division is regulated by a phosphoprotein subject to control by cAMP-dependent protein kinase.  相似文献   

18.
In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation.In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.  相似文献   

19.
Fully grown Xenopus oocytes are physiologically arrested at the G2/prophase border of the first meiotic division. Addition in vitro of progesterone or insulin causes release of the G2/prophase block and stimulates meiotic cell division of the oocyte, leading to maturation of the oocyte into an unfertilized egg. The possibility that the products of polyphosphoinositide breakdown, diacylglycerol and inositol-1,4,5-trisphosphate (IP3-, are involved in oocyte maturation was investigated. Microinjection of IP3 into oocytes just prior to addition of progesterone or insulin accelerated the rate of germinal vesicle breakdown (GVBD) by up to 25%. Half-maximal acceleration occurred at an intracellular IP3 concentration of 1 microM. Treatment of oocytes with the diacylglycerol analog and tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced GVBD in the absence of hormone. Half-maximal induction of GVBD occurred with 150 nM TPA and was blocked by pretreatment of oocytes with 10 nM cholera toxin. Microinjection of highly purified protein kinase C from rat brain into oocytes did not induce maturation but markedly accelerated the rate of insulin-induced oocyte maturation. However, injection of the enzyme had no effect on progesterone action. In oocytes with a basal intracellular pH below 7.6, TPA increased intracellular pH, but GVBD occurred with TPA in Na-substituted medium. Neomycin, a putative inhibitor of polyphosphoinositide breakdown, reversibly inhibited insulin- but not progesterone-induced maturation. Half-maximal inhibition occurred at 1.6 mM neomycin. These results indicate that protein kinase C is capable of regulating oocyte maturation in Xenopus.  相似文献   

20.
The process of oocyte maturation in the canine species is unique among mammals: oocytes are immature at ovulation and the resumption and progression of meiotic maturation occur in the oviduct. This study was performed to investigate (i) the effect of co-culture with infundibulum and ampullar oviductal epithelial cells on the in vitro maturation of canine oocytes and (ii) the culture time necessary to reach full meiotic maturation. For this purpose the oocytes, collected from the ovaries of bitches undergoing ovariectomies, were divided into three groups and cultured for 48 and 72 h with the following systems: (A) TCM 199 + 10% oestrus bitch serum + FSH (0.1 IU.mL(-1)), LH (0.1 IU.mL(-1)) + progesterone (1 microg.mL(-1)) + oestradiol (1 microg.mL(-1)) + cysteamine (100 microM); (B) medium A plus infundibulum cells; (C) medium A plus ampullar cells. Infundibulum and ampullar cells were recovered from the oviducts of bitches at the oestrus stage of their cycle. The results showed that after 48 h of incubation, a significantly higher meiotic resumption (P < 0.01) was observed in the oocytes cultured with infundibulum (59%) and ampullar cells (60.0%), than in the control group (40.0%). There was also a significantly (P < 0.01) higher meiotic progression to the MII in systems B and C (15.6% and 16.7%) than in system A (4.0%). After 72 h of culture, the percentages of meiotic resumption and progression were unchanged. These results showed that both the infundibulum and the ampullar oviductal epithelial cells positively influence the meiotic resumption and progression of canine oocytes and that 48 h are sufficient for the completion of nuclear maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号