首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extensive cyanobacterial mats cover the intertidal zone near Guerrero Negro, Baja California Sur. These mats are exposed to extreme desiccation and osmotic stress between tidal flows and rains, and spend most of the time dry and metabolically inactive. Therefore, periods of hydration are extremely important for growth as well as for repair of cellular damage from desiccation and ultraviolet radiation (UVR) accrued when the mat is dry. PAM fluorometry in conjunction with carbon incorporation assays were used to determine the effects of salinity, irradiance and UVR on the recovery of photosynthetic activity in these mats after an extended period of desiccation. The mat used in our study was primary composed of Lyngbya sp. Photosynthetic activity recovery rates (using PAM fluorometry) decreased with increasing salinity. This trend was similar under high and low light intensities, but rates were significantly lower under low light. Alternatively, the carbon incorporation method showed rates increased faster in salinities of 27 and 55 ppt than in salinities of 0 or 75 ppt. The Lyngbya mat also failed to recover photosynthetic potential in the dark. Although these mats recovered faster under high intensity light, the effect of salinity on photosynthesis is more complex. UVR did not affect the recovery of photosynthetic activity, no matter which method was used. This lack of effect is most likely due to the high content of the UVR screening pigment, scytonemin, in the upper layer of the mat.  相似文献   

2.
Two new isolates of halotolerant chlorophyte algae from the Salt Plains National Wildlife Refuge in Oklahoma, USA, tentatively identified as Dunaliella sp. Teodoresco and Nannochloris sp. Naumann, were characterized with respect to interaction between growth salinity and short‐term heat tolerance. Cells were cultured at 23–25° C over a wide range of salinity. In both species, salinity alone had little effect on maximum photochemical yield (measured by pulse modulated fluorescence) and integrity of the light harvesting system (77 K fluorescence emission spectra). In contrast, Nannochloris exhibited decreasing growth rate (μ), light‐saturated photosynthetic capacity (Pcellmax), respiration (Rd), light‐harvesting efficiency (αcell), and chl content with increasing salinity. Cultures were heated for 2 h near their upper temperature limits (41.5° C for Dunaliella and 45° C for Nannochloris grown at 50 psu). Dunaliella was progressively more heat‐tolerant with increasing salinity. Photochemical yield of cells at 100 and 50 psu was inhibited by about 15% and 40%, respectively, and largely recovered within 30 min after return to 23° C. Thermal inhibition of photochemical yield in Nannochloris was about 45% at both 50 and 100 psu, but recovery was slower at 100 psu. At 20 psu, both species were almost 90% inhibited by high temperature and required more than a day to recover. In both species, 2 h of heating increased the PSI:PSII fluorescence emission ratio (714:690 nm) at all salinities. This ratio largely recovered within 24 h in Dunaliella at 50 and 100 psu and partially recovered in Nannochloris at 100 psu, but cells of both species heated at 20 psu were chlorotic the next day.  相似文献   

3.
The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.  相似文献   

4.
Lipophilic pigments were examined in microbial mat communities dominated by cyanobacteria in the intertidal zone and by diatoms in the subtidal and sublittoral zones of Hamelin Pool, Shark Bay, Western Australia. These microbial mats have evolutionary significance because of their similarity to lithified stromatolites from the Proterozoic and Early Paleozoic eras. Fucoxanthin, diatoxanthin, diadinoxanthin, β-carotene, and chlorophylls a and c characterized the diatom mats, whereas cyanobacterial mats contained myxoxanthophyll zeaxanthin, echinenone, β-carotene, chlorophyll a and, in some cases, sheath pigment. The presence of bacteriochlorophyll a with in the mats suggest a close association of photosynthetic bacteria with diatoms and cyanobacteria. The high carotenoids: chlorophyll a ratios (0.84–2.44 wt/wt) in the diatom mats suggest that carotenoids served a photoprotective function in this high light environment. By contrast, cyanobacterial sheath pigment may have largely supplanted the photoprotective role of carotenoids in the intertidal mats.  相似文献   

5.
Photosynthetic parameters, including net O2 evolution, pigment content and fast chlorophyll a (Chl a) fluorescence kinetics, were studied in mature thalli of Gelidium amansii, a marine agar-producing red seaweed, exposed to different salinities (0–35?psu) for 10 days. The results showed that the net O2 evolution at 25–32?psu was unchanged, but significantly decreased at either lower or higher salinities. Hypo-saline (15?psu and below) and hyper-saline (35?psu) conditions induced significant losses of Chl a, carotenoids and phycobiliproteins, which correlated with the decrease in the absorption flux per cross-section of fronds (ABS/CSo). Polyphasic fluorescence transients revealed that salinities at 10 and 35?psu both caused multiple effects on photosynthetic electron transport. Algae exposed to low salinity at 10?psu showed extensive damage to the donor side of the oxygen-evolving complex (OEC), reaction centre and acceptor side of PSII. Data on net O2 evolution showed that 35?psu salinity was more destructive than 10?psu, with the absence of marked osmotic injury to the OEC. The results of this study indicate the possibility of G. amansii cultivation in estuarine waters with 20–32?psu salinity.  相似文献   

6.
Anemones are frequently found in rocky intertidal coasts. As they have highly permeable body surfaces, exposure to the air or to salinity variations inside tidal pools can represent intense osmotic and ionic challenges. The intertidal Bunodosoma caissarum has been compared with the subtidal Anemonia sargassensis concerning their response to air exposure or salinity changes. B. caissarum maintains tissue hydration through mucus production and dome-shape formation when challenged with air exposure or extreme salinities (fresh water or hypersaline seawater, 45 psu) for 1-2h. Upon exposure to mild osmotic shocks for 6h (hyposmotic: 25 psu, or hyperosmotic: 37 psu), B. caissarum was able to maintain its coelenteron fluid (CF) osmolality stable, but only in 25 psu. A. sargassensis CF osmolality followed the external medium in both salinities. Isolated cells of the pedal disc of B. caissarum showed full capacity for calcium-dependent regulatory volume decrease (RVD) upon 20% hyposmotic shock, at least partially involving the release of KCl via K(+)-Cl(-) cotransport, and also of organic osmolytes. Aquaporins (HgCl(2)-inhibited) likely participate in this process. Cells of A. sargassensis showed partial RVD, after 20 min. Cells from both species were not capable of regulatory volume increase upon hyperosmotic shock (20%). Whole organism and cellular mechanisms allow B. caissarum to live in the challenging intertidal habitat, frequently facing air exposure and seawater dilution.  相似文献   

7.
Epiphyton associated with thick, floating mats of the common duckweed (Lemna minor L.) was studied at four sites in western Canada between 1985 and 1988. Maximum epiphyton abundance generally occurred in spring as biomass of the duckweed mat was increasing. Epiphytic biomass was low during summer and increased at some sites in autumn with mat decomposition. The community was composed mostly of diatoms and, during summer, photosynthetic bacteria. Species richness of the diatom flora was low, suggesting that duckweed mats are environments to which few species are adapted. Photosynthesis - irradiance curves indicated that duckweed epiphyton was not adapted to low light levels that occurred in the mat (< 1 % of ambient), suggesting they may survive via other means of nutrition. The mat phyllosphere was also characterized by wide spatial and temporal variation in temperature, and sharp vertical profiles of dissolved oxygen and nutrients.  相似文献   

8.
Aeroterrestrial filamentous green algae of the genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crusts, which occur worldwide in arid and semiarid habitats including alpine regions. In the present study, Klebsormidium crenulatum (Kütz.) Lokhorst was isolated from an alpine soil crust above the timberline of the Austrian Alps. Growth responses, photosynthetic performance, and desiccation tolerance were measured under controlled laboratory conditions. K. crenulatum exhibited optimal growth and the highest photosynthetic efficiency under relatively low photon fluence densities (30 and 21.9 μmol photons · m?2 · s?1, respectively), indicating low‐light requirements. It grew in a narrow range of salinities between 1.2 and 15 practical salinity units (psu), pointing to a pronounced stenohaline response pattern. Increasing temperatures from 5°C to 40°C led to different effects on photosynthetic oxygen evolution and respiratory oxygen consumption in K. crenulatum. While at low temperatures (5°C–10°C) photosynthesis was relatively high, respiration was not detectable or was at a very low level. Conversely, at the highest temperature of 40°C, photosynthesis was inhibited, and respiration unaffected, indicating strong differences in temperature sensitivity between both physiological processes. K. crenulatum was capable of photosynthesizing efficiently for up to 2.5 h under desiccation, followed by a decrease to 15% of the initial value after 3 h. Complete recovery took place within 2 h after rehydration. All ecophysiological data explain the widespread abundance of K. crenulatum in soil crusts of the alpine regions of the European Alps.  相似文献   

9.
The algal mats of a number of hot springs in the Lower Geyser Basin of Yellowstone National Park were destroyed by a brief violent hailstorm on August 30, 1967. The rate of recovery of the algal mat at Mushroom Spring was studied by quantitative methods. In the temperature range of 65–71 C a unicellular cyanophycean alga is the sole photosynthetic component. The doubling times during the recovery period for three stations were: Station I (71 C), 17 days; station II (68 C), 10.5 days; station III (65 C), 10 days. The algal mat had returned to apparently normal size by 152 days after the catastrophe. The significance of these observations for the conservation of hot spring communities is discussed.  相似文献   

10.
The chlorophyllous spores of Equisetum survive desiccation, yet cannot tolerate this quiescent state for more than ~2 wk. The hypothesis that spore viability of Equisetum hyemale L. is limited by inhibition of photosynthetic recovery was tested using chlorophyll a fluorescence and oxygen-exchange analyses. Experimental spores were desiccated at 2% relative humidity and 25C for time periods of 24 h, 1 wk, and 2 wk, and then rehydrated at 200 mmol photons/m2s (PAR) and 25C for up to 24 h. Spores desiccated for 24 h recovered photosynthetic competence very rapidly during rehydration, reaching the O2 compensation point in 6.3 ~ 0.3 (mean +/- SE) min. Recovery of photosynthetic performance of spores desiccated for 1 wk was slower, as judged by significantly slower increases of (1) photochemical efficiency of photosystem (PS) II, (2) PS II quinoneB-reducing center concentration, (3) quinoneB concentration, (4) water-oxidation activity, (5) rate of light-induced O2 evolution, and (6) apparent quantum yield of net O2 exchange. Photosystem-II and whole-spore photosynthetic competence of 2-wk desiccated spores was increasingly impaired, and did not recover during rehydration. Origin fluorescence yield and dark respiration were not affected by desiccation time following rehydration. The results suggest that the extremely short viability of disseminated spores of Equisetum hyemale is due to the inability to recover losses of water oxidation and photosystem II-core function following 2 wk of desiccation.  相似文献   

11.
A miniaturized and low-cost assay for algal growth and loss rates, and estimation of compensation light was developed and optimized. Microalgal cultures were grown in white 96-well microplates to estimate specific growth rates at six temperatures, five salinities and eight light levels. Data from black 24-well microplates at six temperatures, five salinities and five light conditions were used in addition to estimate loss rates and compensation light. Absorption and reflection of light were different in the white and black microplates. Growth rates were estimated from daily in vivo fluorescence (IVF) measurements using a microplate reader fitted with a fluorometer. To validate the microplate algal growth assay, IVF was compared with cell counting by flow cytometry. Maximal growth rate for the test alga Pseudochattonella farcimen (Heterokonta) was estimated to 0.52?±?0.05 day?1 at optimal temperatures ranging from 9 to 14°C and salinities 18–26 psu. Lowest value of compensation light as photosynthetic photon flux density (PPFD) was 4.2?±?1.2 μmol photons m?2 s?1, and lowest saturation light, 34.1?±?3.7 μmol photons m?2 s?1, was observed in the temperature range 5–11°C and salinity range 23–28 psu. Minimum loss rate was obtained at temperatures 5–8°C and salinities 26–31 psu. Blooms of P. farcimen have been recorded in nature under conditions similar to those minimizing loss rates rather than maximizing growth rates in this study. The microalgal assay described here allows for a large number of conditions to be tested, and accurate optimal conditions for growth and loss rates to be obtained.  相似文献   

12.
Desiccation and recovery of antarctic cyanobacterial mats   总被引:2,自引:2,他引:0  
Summary The ability of cyanobacterial mats from Antarctic ponds and streams to recover from desiccation is described. Mats dominated by Nostoc dehydrated rapidly and were dry within 5 h of exposure. Nostoc mats recovered to pre-desiccation rates of photosynthesis and respiration within as little as 10 min of rewetting. Recovery of acetylene reduction activity was slower (>24 h). Phormidium dominated mats were less tolerant of desiccation, and recovery on rewetting from air-drying was not complete after 10 days. Viable diaspores were, however, found in Phormidium mats which had been exposed for 3 years. Partial hydration during aerial exposure improved the survival of Phormidium mats, but appeared to slow the recovery of Nostoc mats on subsequent rewetting.  相似文献   

13.
K. B. Schwab  U. Schreiber  U. Heber 《Planta》1989,177(2):217-227
Using non-invasive techniques (CO2 gas exchange, light scattering, light absorption, chlorophyll fluorescence, chlorophyll luminescence), we have analysed the response of respiration and photosynthesis to dehydration and rehydration of leaves of the resurrection plants Craterostigma plantagineum Hochst., Ramonda mykoni Reichb. and Ceterach officinarum Lam. et DC. and of the drought-sensitive mesophyte spinach (Spinacia oleracea L.). The following observations were made: (i) The rate of water loss during wilting of detached leaves of drought-tolerant resurrection plants was similar to that for leaves of the sensitive mesophyte, spinach. Leaves of Mediterranean xerophytes lost water much more slowly. (ii) Below a residual water content of about 20%, leaves of spinach did not recover turgor on rewatering, whereas leaves of the resurrection plants did. (iii) Respiration was less sensitive to the loss of water during wilting in the resurrection plants than in spinach. (iv) The sensitivity of photosynthesis to dehydration was similar in spinach and the resurrection plants. Up to a water loss of 50% from the leaves, photosynthesis was limited by stomatal closure, not by inhibition of reactions of the photosynthetic apparatus. Photosynthesis was inhibited and stomates reopened when loss of water became excessive. (v) After the leaves had lost 80% of their water or more, the light-dependent reactions of photosynthetic membranes were further inhibited by rewatering in spinach; they recovered in the resurrection plants. (vi) In desiccated leaves of the resurrection plants, slow rehydration reactivated mitochondrial gas exchange faster than photosynthetic membrane reactions. Photosynthetic carbon assimilation recovered only slowly.  相似文献   

14.
Previously reported transplantation experiments in the field showed that Gastroclonium coulteri (Harvey) Kylin could survive above its normal intertidal range (0.0–0.5 m above MLLW), except during periods of daytime low tides in spring. Net photosynthetic rate measurements in the laboratory were performed to determine which physical factors might determine the upper boundary for this species in the intertidal zone. Maximum net photosynthesis occurred between 15 and 20° C, but remained positive between 4 and 35° C. The air temperature extremes observed in the field were 2° C (only seen once) and 26° C. Net photosynthesis increased as expected with light intensity to the highest value obtainable in the laboratory, 1400 μEin m?2 s?1. Plants collected from the field under higher light intensity (up to 2000 μEin m?2 s?2) also showed high rates of photosynthesis. Neither the temperature nor light levels observed in the field were directly damaging to photosynthesis. Desiccation, however, resulted in a sharp decrease in both photosynthesis and respiration. G. coulteri fully recovered from successive daily treatments of about 35% desiccation, but not from successive treatments of 50% desiccation. One exposure to 70% desiccation allowed no recovery of photosynthetic capacity.  相似文献   

15.
16.
Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures typically used in benthic viral ecology were applied to the complex matrix of microbial mats but were found to inefficiently extract viruses. Here, we present a method for extraction and quantification of viruses from photosynthetic microbial mats using epifluorescence microscopy (EFM) and flow cytometry (FCM). A combination of EDTA addition, probe sonication, and enzyme treatment applied to a glutaraldehyde-fixed sample resulted in a substantially higher viral (5- to 33-fold) extraction efficiency and reduced background noise compared to previously published methods. Using this method, it was found that in general, intertidal photosynthetic microbial mats harbor very high viral abundances (2.8 × 1010 ± 0.3 × 1010 g−1) compared with benthic habitats (107 to 109 g−1). This procedure also showed 4.5- and 4-fold-increased efficacies of extraction of viruses and bacteria, respectively, from intertidal sediments, allowing a single method to be used for the microbial mat and underlying sediment.  相似文献   

17.
The effects of inhibition of protein synthesis on whole-plant CO(2) exchange and on protein synthesis during hydration of the resurrection plant Selaginella lepidophylla (Hook and Grev.) were examined. Both chloramphenicol and cycloheximide inhibited the redevelopment of photosynthetic capacity which normally occurs within 24 hours of hydration in the light. The inhibitory effect of chloramphenicol was greater than that of cycloheximide. The onset of chloramphenicol inhibition of net photosynthesis occurred only after 12 hours of hydration. Cycloheximide stimulated net CO(2) influx early after rehydration and inhibited net CO(2) influx after 14 hours of hydration. Total protein synthesis, as measured by l-[(35)S]methionine incorporation, increased through 24 hours of hydration. Based upon the results obtained with the protein synthesis inhibitors, most protein synthesis within the first 12 hours of hydration was cytoplasm-directed, whereas the rate of organelle-directed protein synthesis remained low until 12 hours of hydration and increased rapidly thereafter. These data suggest that both organelle- and cytoplasm-directed protein synthesis are necessary for full photosynthetic recovery during rehydration of S. lepidophylla.  相似文献   

18.
Cyanobacterial mats developing in oil-contaminated sabkhas along the African coasts of the Gulf of Suez and in the pristine Solar Lake, Sinai, were collected for laboratory studies. Samples of both mats showed efficient degradation of crude oil in the light, followed by development of an intense bloom of Phormidium spp. and Oscillatoria spp. Isolated cyanobacterial strains, however, did not degrade crude oil in axenic cultures. Strains of sulfate-reducing bacteria and aerobic heterotrophs were capable of degrading model compounds of aliphatic and aromatic hydrocarbons. Results indicate that degradation of oil was done primarily by aerobic heterotrophic bacteria. The oxygenic photosynthesis of oil-insensitive cyanobacteria supplied the molecular oxygen for the efficient aerobic metabolism of organisms, such as Marinobacter sp. The diurnal shifts in environmental conditions at the mat surface, from highly oxic conditions in the light to anaerobic sulfide-rich habitat in the dark, may allow the combined aerobic and anaerobic degradation of crude oil at the mat surface. Hence, coastal cyanobacterial mats may be used for the degradation of coastline oil spills. Oxygen microelectrodes detected a significant inhibition of photosynthetic activity subsequent to oil addition. This prevailed for a few hours and then rapidly recovered. In addition, shifts in bacterial community structure following exposure to oil were determined by denaturing gradient gel electrophoresis of PCR-amplified fractions of 16S rRNA from eubacteria, cyanobacteria and sulfate-reducing bacteria. Since the mats used for the present study were obtained from oil-contaminated environments, they were believed to be preequilibrated for petroleum remediation. The mesocosm system at Eilat provided a unique opportunity to study petroleum degradation by mats formed under different salinities (up to 21%). These mats, dominated by cyanobacteria, can serve as close analogues to the sabkhas contaminated during the Gulf War in Kuwait and Saudi Arabia. Electronic Publication  相似文献   

19.
Zonation of macroalgae in the intertidal zone has been well documented. However, studies of zonation of macroalgae have predominantly examined the distribution of different species rather than the distribution of variants within a species. This study investigated the spatial variation of plastid haplotypes of the mangrove red alga Caloglossa leprieurii (Montagne) J. Agardh at a site in eastern Australia and tests for physiological differences (growth, photosynthesis) between those haplotypes. RUBISCO spacer plastid haplotypes were scored using single-stranded comformational polymorphism, and the population structure at two sites was examined using a nested sampling design comparing between sites, among transects within sites, and among quadrats within transects. Growth rates at various salinities and light intensities and the photosynthesis–irradiance curves of the three main haplotypes were compared. The two sites showed a high degree of genetic differentiation across a short distance, suggesting limited gene flow. The distribution of haplotypes was patchy and did not reflect a zonation pattern along the intertidal gradient. The three haplotypes were physiologically differentiated with haplotype A, with a lower growth rate and a lower photosynthetic efficiency at higher light intensities. There is some evidence of physiological differentiation between life history phases in C. leprieurii with sporophytes having a higher growth rate than females under most conditions. Our results suggest a correlation between our culture results and our population data. Haplotypes (haplotype A) and life history phases (gametophytes) with lower performance (growth and photosynthetic efficiency) under our culture conditions were correlated with a minor representation in the field. This is the first study to integrate population-level data with physiological parameters toward an understanding of the distribution and relative abundance of red algal genetic variants.  相似文献   

20.
Abstract Cyanobacterial mats developed on fine sandy sediments of the upper littoral of the island of Mellum (North Sea). Freshly colonized sediment was dominated by the non-heterocystous, nitrogen-fixing cyanobacterium Oscillatoria limosa . Well established mats in which the cosmopolitan cyanobacterium Microcoleus chthonoplastes was the dominant organism also usually contained O. limosa as a minor component. This mat was about 1 mm thick and contained high biomass. Photosynthesis was maximal at about 150 μm depth and reached values of 280 μmol oxygen. 1−1 · min−1. On the other hand, in the dark, high respiratory activity turned the mat anaerobic within minutes. Freshly colonized sediment consisted of low cyanobacterial biomass loosely attached to the sand grains and present up to a depth of 2.5 mm. Respiratory activity was low and the sediment remained aerobic to a depth of 2 mm throughout the night. Nitrogen fixation (acetylene reduction) was measured during 24-h periods in both types of mats in order to elucidate interactions with oxygenic photosynthesis and oxygen concentration. Acetylene reduction in the mats showed very different diurnal patterns which depended on the type of mat investigated and the time of year. The results indicated that a temporary separation of oxygenic photosynthesis and nitrogen fixation occurred in the mat. Established mats fixed nitrogen predominantly during the transition from dark to light and vice versa, when oxygenic photosynthesis was reduced or absent. Freshly colonized sediment-fixed nitrogen throughout the night but often a stimulation was seen at dawn. The latter showed much higher specific activities than the established type. Also in spring, specific activities were much higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号