首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels. Received: 25 September 1995; Revised: 15 January 1996; Accepted: 20 February 1996  相似文献   

2.
A SybrGreen real-time PCR assay was developed to detect and quantify both total and selected 16S rDNA species of bacteria and archaea involved in the bioleaching of metals from sulfide ores. A set of specific and universal primers based on 16S rDNA sequences was designed and validated for specific detection and quantification of DNA isolated from representative strains of Acidianus brierleyi, Sulfolobus sp., Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, Acidithiobacillus caldus, and Leptospirillum ferrooxidans. An artificial sequence based on 16S rDNA was constructed to quantify total 16S rDNA in mixed DNA samples. The real-time PCR assay was further validated using a mixture of 16S rDNA amplicons derived from the six different species, each added at a known amount. Finally, the real-time PCR assay was used to monitor the change of 16S rDNA copies of four bioleaching strains inoculated into chalcopyrite airlift column reactors operated at different temperatures. The growth dynamics of these strains correlated well with the expected effects of temperature in the chalcopyrite-leaching environment. The suitability of this method for monitoring microbial populations in industrial bioleaching environments is discussed.  相似文献   

3.
Wild crop relatives represent a source of novel alleles for crop genetic improvement. Screening biodiversity for useful or diverse gene homologues has often been based upon the amplification of targeted genes using available sequence information to design primers that amplify the target gene region across species. The crucial requirement of this approach is the presence of sequences with sufficient conservation across species to allow for the design of universal primers. This approach is often not successful with diverse organisms or highly variable genes. Massively parallel sequencing (MPS) can quickly produce large amounts of sequence data and provides a viable option for characterizing homologues of known genes in poorly described genomes. MPS of genomic DNA was used to obtain species‐specific sequence information for 18 rice genes related to domestication characteristics in a wild relative of rice, Microlaena stipoides. Species‐specific primers were available for 16 genes compared with 12 genes using the universal primer method. The use of species‐specific primers had the potential to cover 92% of the sequence of these genes, while traditional universal primers could only be designed to cover 80%. A total of 24 species‐specific primer pairs were used to amplify gene homologues, and 11 primer pairs were successful in capturing six gene homologues. The 23 million, 36‐base pair (bp) paired end reads, equated to an average of 2X genome coverage, facilitated the successful amplification and sequencing of six target gene homologues, illustrating an important approach to the discovery of useful genes in wild crop relatives.  相似文献   

4.
Plants in terrestrial and aquatic environments contain a diverse microbiome. Yet, the chloroplast and mitochondria organelles of the plant eukaryotic cell originate from free‐living cyanobacteria and Rickettsiales. This represents a challenge for sequencing the plant microbiome with universal primers, as ~99% of 16S rRNA sequences may consist of chloroplast and mitochondrial sequences. Peptide nucleic acid clamps offer a potential solution by blocking amplification of host‐associated sequences. We assessed the efficacy of chloroplast and mitochondria‐blocking clamps against a range of microbial taxa from soil, freshwater and marine environments. While we found that the mitochondrial blocking clamps appear to be a robust method for assessing animal‐associated microbiota, Proteobacterial 16S rRNA binds to the chloroplast‐blocking clamp, resulting in a strong sequencing bias against this group. We attribute this bias to a conserved 14‐bp sequence in the Proteobacteria that matches the 17‐bp chloroplast‐blocking clamp sequence. By scanning the Greengenes database, we provide a reference list of nearly 1500 taxa that contain this 14‐bp sequence, including 48 families such as the Rhodobacteraceae, Phyllobacteriaceae, Rhizobiaceae, Kiloniellaceae and Caulobacteraceae. To determine where these taxa are found in nature, we mapped this taxa reference list against the Earth Microbiome Project database. These taxa are abundant in a variety of environments, particularly aquatic and semiaquatic freshwater and marine habitats. To facilitate informed decisions on effective use of organelle‐blocking clamps, we provide a searchable database of microbial taxa in the Greengenes and Silva databases matching various n‐mer oligonucleotides of each PNA sequence.  相似文献   

5.
Universal primers for SSU rRNA genes allow profiling of natural communities by simultaneously amplifying templates from Bacteria, Archaea, and Eukaryota in a single PCR reaction. Despite the potential to show relative abundance for all rRNA genes, universal primers are rarely used, due to various concerns including amplicon length variation and its effect on bioinformatic pipelines. We thus developed 16S and 18S rRNA mock communities and a bioinformatic pipeline to validate this approach. Using these mocks, we show that universal primers (515Y/926R) outperformed eukaryote-specific V4 primers in observed versus expected abundance correlations (slope = 0.88 vs. 0.67–0.79), and mock community members with single mismatches to the primer were strongly underestimated (threefold to eightfold). Using field samples, both primers yielded similar 18S beta-diversity patterns (Mantel test, p < 0.001) but differences in relative proportions of many rarer taxa. To test for length biases, we mixed mock communities (16S + 18S) before PCR and found a twofold underestimation of 18S sequences due to sequencing bias. Correcting for the twofold underestimation, we estimate that, in Southern California field samples (1.2–80 μm), there were averages of 35% 18S, 28% chloroplast 16S, and 37% prokaryote 16S rRNA genes. These data demonstrate the potential for universal primers to generate comprehensive microbiome profiles.  相似文献   

6.
Bioluminescence is reported in members of 18 dinoflagellate genera. Species of dinoflagellates are known to have different bioluminescent signatures, making it difficult to assess the presence of particular species in the water column using optical tools, particularly when bioluminescent populations are in nonbloom conditions. A “universal” oligonucleotide primer set, along with species and genus‐specific primers specific to the luciferase gene were developed for the detection of bioluminescent dinoflagellates. These primers amplified luciferase sequences from bioluminescent dinoflagellate cultures and from environmental samples containing bioluminescent dinoflagellate populations. Novel luciferase sequences were obtained for strains of Alexandrium cf. catenella (Whedon et Kof.) Balech and Alexandrium fundyense Balech, and also from a strain of Gonyaulax spinifera (Clap. et Whitting) Diesing, which produces bioluminescence undetectable to the naked eye. The phylogeny of partial luciferase sequences revealed five significant clades of the dinoflagellate luciferase gene, suggesting divergence among some species and providing clues on their molecular evolution. We propose that the primers developed in this study will allow further detection of low‐light‐emitting bioluminescent dinoflagellate species and will have applications as robust indicators of dinoflagellate bioluminescence in natural water samples.  相似文献   

7.
Terrestrial animals must have frequent contact with water to survive, implying that environmental DNA (eDNA) originating from those animals should be detectable from places containing water in terrestrial ecosystems. Aiming to detect the presence of terrestrial mammals using forest water samples, we applied a set of universal PCR primers (MiMammal, a modified version of fish universal primers) for metabarcoding mammalian eDNA. The versatility of MiMammal primers was tested in silico and by amplifying DNAs extracted from tissues. The results suggested that MiMammal primers are capable of amplifying and distinguishing a diverse group of mammalian species. In addition, analyses of water samples from zoo cages of mammals with known species composition suggested that MiMammal primers could successfully detect mammalian species from water samples in the field. Then, we performed an experiment to detect mammals from natural ecosystems by collecting five 500‐ml water samples from ponds in two cool‐temperate forests in Hokkaido, northern Japan. MiMammal amplicon libraries were constructed using eDNA extracted from water samples, and sequences generated by Illumina MiSeq were subjected to data processing and taxonomic assignment. We thereby detected multiple species of mammals common to the sampling areas, including deer (Cervus nippon), mouse (Mus musculus), vole (Myodes rufocanus), raccoon (Procyon lotor), rat (Rattus norvegicus) and shrew (Sorex unguiculatus). Many previous applications of the eDNA metabarcoding approach have been limited to aquatic/semiaquatic systems, but the results presented here show that the approach is also promising even for forest mammal biodiversity surveys.  相似文献   

8.
Pseudo‐nitzschia‐specific PCR primers (PnAll F/R) were designed to amplify a polymorphic region of the internal transcribed spacer 1 (ITS1) from at least 11 Pseudo‐nitzschia species. The primers were used to generate environmental clone libraries from Puget Sound, Washington, and Vancouver Island, British Columbia, to confirm that the primers were specific for Pseudo‐nitzschia and to determine the extent of ITS1 sequence diversity within individual species. All environmental ITS1 sequences generated with PnAll primers displayed the greatest similarity to known Pseudo‐nitzschia ITS1 sequences. The length of cloned ITS1 fragments differed among species but was conserved within a species. Intraspecific genotypes exhibited <3% sequence divergence for seven of the 10 species detected in clone libraries. Several ITS1 genotypes unique to the Pacific Northwest were identified in environmental samples, and other genotypes were more broadly distributed. The Pseudo‐nitzschia primers were also used to develop an automated ribosomal intergenic spacer analysis (ARISA) to rapidly identify Pseudo‐nitzschia species in environmental samples based on species‐specific variation in the length of the targeted ITS1 region. The ARISA peaks were then associated with the environmental clone sequences for Pseudo‐nitzschia species. Surveying the genetic composition of communities at both the inter‐ and intraspecific levels will enhance our understanding of Pseudo‐nitzschia bloom dynamics.  相似文献   

9.
The internal transcribed spacer (ITS) of nuclear ribosomal DNA is one of the most commonly used DNA markers in plant phylogenetic and DNA barcoding analyses, and it has been recommended as a core plant DNA barcode. Despite this popularity, the universality and specificity of PCR primers for the ITS region are not satisfactory, resulting in amplification and sequencing difficulties. By thoroughly surveying and analysing the 18S, 5.8S and 26S sequences of Plantae and Fungi from GenBank, we designed new universal and plant‐specific PCR primers for amplifying the whole ITS region and a part of it (ITS1 or ITS2) of plants. In silico analyses of the new and the existing ITS primers based on these highly representative data sets indicated that (i) the newly designed universal primers are suitable for over 95% of plants in most groups; and (ii) the plant‐specific primers are suitable for over 85% of plants in most groups without amplification of fungi. A total of 335 samples from 219 angiosperm families, 11 gymnosperm families, 24 fern and lycophyte families, 16 moss families and 17 fungus families were used to test the performances of these primers. In vitro PCR produced similar results to those from the in silico analyses. Our new primer pairs gave PCR improvements up to 30% compared with common‐used ones. The new universal ITS primers will find wide application in both plant and fungal biology, and the new plant‐specific ITS primers will, by eliminating PCR amplification of nonplant templates, significantly improve the quality of ITS sequence information collections in plant molecular systematics and DNA barcoding.  相似文献   

10.
The application of high‐throughput sequencing to retrieve multi‐taxon DNA from different substrates such as water, soil, and stomach contents has enabled species identification without prior knowledge of taxon compositions. Here we used three minibarcodes designed to target mitochondrial COI in plankton, 16S in fish, and 16S in crustaceans, to compare ethanol‐ and tissue‐derived DNA extraction methodologies for metabarcoding. The stomach contents of pygmy devilrays (Mobula kuhlii cf. eregoodootenkee) were used to test whether ethanol‐derived DNA would provide a suitable substrate for metabarcoding. The DNA barcoding assays indicated that tissue‐derived operational taxonomic units (OTUs) were greater compared to those from extractions performed directly on the ethanol preservative. Tissue‐derived DNA extraction is therefore recommended for broader taxonomic coverage. Metabarcoding applications should consider including the following: (i) multiple barcodes, both taxon specific (e.g., 12S or 16S) and more universal (e.g., COI or 18S) to overcome bias and taxon misidentification and (ii) PCR inhibitor removal steps that will likely enhance amplification yields. However, where tissue is limited or no longer available, but the ethanol‐preservative medium is still available, metabarcoding directly from ethanol does recover the majority of common OTUs, suggesting the ethanol‐retrieval method could be applicable for dietary studies. Metabarcoding directly from preservative ethanol may also be useful where tissue samples are limited or highly valued; bulk samples are collected, such as for rapid species inventories; or mixed‐voucher sampling is conducted (e.g., for plankton, insects, and crustaceans).  相似文献   

11.
Review and re-analysis of domain-specific 16S primers   总被引:33,自引:0,他引:33  
The Polymerase Chain Reaction (PCR) has facilitated the detection of unculturable microorganisms in virtually any environmental source and has thus been used extensively in the assessment of environmental microbial diversity. This technique relies on the assumption that the gene sequences present in the environment are complementary to the "universal" primers used in their amplification. The recent discovery of new taxa with 16S rDNA sequences not complementary to standard universal primers suggests that current 16S rDNA libraries are not representative of true prokaryotic biodiversity. Here we re-assess the specificity of commonly used 16S rRNA gene primers and present these data in tabular form designed as a tool to aid simple analysis, selection and implementation. In addition, we present two new primer pairs specifically designed for effective "universal" Archaeal 16S rDNA sequence amplification. These primers are found to amplify sequences from Crenarchaeote and Euryarchaeote type strains and environmental DNA.  相似文献   

12.
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny‐based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface ( http://phytoref.fr ), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high‐throughput sequencing.  相似文献   

13.
Molecular environmental sampling of the phototrophic complexity in a given environment may be important in a number of research disciplines. Because of the broad evolutionary diversity of photosynthetic organisms, however, primers that can recover sequences from all phototrophs also target other organisms, often preferentially. Therefore, PCR primers that selectively amplify genes of phototrophs over those of other prokaryotic and eukaryotic organisms could prove extremely useful. Here we report two such primers that target 16S rDNA from Cyanobacteria and eukaryotic plastids, but do not amplify genes from abundant Bacteria in a mixed sample.  相似文献   

14.
The identification and phylogeny of muricids have been in a state of confusion for a long time due to the morphological convergence and plasticity. DNA-based identification and phylogeny methods often offer an analytically powerful addition or even an alternative. In this study, we employ a DNA barcoding method to identify 17 known and easily confused muricid species (120 individuals) from the whole China coast based on mitochondrial cytochrome c oxidase subunit I (COI) and 16S rRNA sequences, and nuclear ITS-1 and 28S rRNA sequences. The phylogeny of muricid subfamilies is also analysed based on all mitochondrial and nuclear sequences. The universal COI and 16S rRNA primers did not work broadly across the study group, necessitating the redesign of muricid specific COI and 16S rRNA primers in this paper. Our study demonstrates that COI gene is a suitable marker for barcoding muricids, which can distinguish all muricid species studied. Phylogenetic analysis of 16S rRNA, ITS-1 and 28S rRNA data also provide good support for the species resolution observed in COI data. The relationships of muricid subfamilies are resolved based on the separate and combined gene data that showed the monophyly of each the subfamilies Ergalataxinae, Rapaninae, Ocenebrinae and Muricinae, especially that Ergalataxinae did not fall within Rapaninae.  相似文献   

15.
AIM: In this study, we evaluated, the use of universal primers, specific for the 16S-23S rRNA intergenic region, to detect and identify nine species that are of high interest for the microbiological control of water. METHODS AND RESULTS: The analysis of the fragments was carried out using a High Resolution acrylamide/bisacrylamide gels in a fluorescent automated DNA sequencer. The results showed specific profiles for each of the nine species but this technique failed to detect simultaneously micro-organisms in samples containing a mixed population. CONCLUSION: Nevertheless, the electrophoretic profiles obtained provided a very useful tool for the rapid and specific identification of water isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: A possible new methodology for a rapid identification of pathogens in water.  相似文献   

16.
The Streptomyces violaceusniger 16S rRNA gene clade contains organisms that are of ecological interest and a rich source of novel bioactive metabolites. Improvements in the classification of members of the S. violaceusniger clade made it possible to design, evaluate and use an oligonucleotide primer set to gain an insight into the presence, distribution and taxonomic diversity of members of this taxon in environmental samples. In silico testing showed that the primers had a perfect match with representatives of the S. violaceusniger clade. The primers, designated S-S-Svio-66-a-S-20 and S-S-Svio-1274-a-A-20, amplified an approximately 1190-bp stretch of 16S rRNA gene from authenticated members of the S. violaceusniger clade, but not from representatives of other actinomycete taxa. Following amplification of DNA extracted from sediment and soil samples, the sequences of cloned PCR products confirmed the specific amplification of target sequences in 87% of the clones; the use of 16S rRNA gene fragment similarity correlations indicated that the clones represented new species. The primers can be used to facilitate the isolation of novel members of the S. violaceusniger 16S rRNA gene clade by allowing prescreening of environmental samples and the subsequent detection and retrieval of targetted strains through the use of selective isolation procedures.  相似文献   

17.
【目的】本研究旨在使用基于线粒体基因通用引物的双重PCR技术同时扩增单一样本中两条标记基因,从而达到简化节肢动物物种鉴定流程的目的。【方法】在一次PCR实验中同时加入可扩增线粒体COI基因和16S rDNA两个不同分子标记的引物,对3纲8目14科的14种节肢动物物种标本的基因组DNA进行扩增;扩增产物经电泳和胶回收后测序,并BLAST在线搜索相似序列,验证基于通用引物的双重PCR在不同的动物类群中用于物种鉴定的有效性。【结果】应用基于COI和16S rDNA的引物从分属于3纲8目14科的14种节肢动物基因组DNA中均可成功扩增目的基因;扩增产物测序结果进一步证实了扩增的准确性。【结论】通过本方法进行物种的分子鉴定,不仅可以保证物种鉴定的高准确率,还可以明显减少时间与DNA样本量的消耗,这对需要快速准确鉴定物种或珍稀的材料样本十分重要。  相似文献   

18.
Amaranth (Amaranthus retroflexus L.) is a common weed that grows vigorously in orchards, roadside verges, fields, woods and scrubland in China. In 2009, phytoplasma disease surveys were made in orchards in Beijing, China, and stem/leaf tissues were collected from asymptomatic amaranths. Direct PCR using universal phytoplasma primers P1/P7 detected 16S rRNA gene sequences in every DNA sample extracted from the symptomless amaranths. Sequence alignment and phylogenetic analyses of the 16S rRNA gene determined that the amaranth phytoplasma strain was related to ‘Candidatus Phytoplasma ziziphi’. Furthermore, virtual RFLP pattern analysis showed that the amaranth phytoplasma belonged to the 16SrV‐B subgroup. This is the first report of symptomless plants containing a ‘Candidatus Phytoplasma ziziphi’‐related strain.  相似文献   

19.
A PCR (polymerase chain reaction)-based assay for the detection of Alexandrium species in cultured samples using rDNA-targeted probes was developed. The internal transcribed spacers 1 and 2 (ITS1 and ITS2) and the 5.8S ribosomal RNA gene (rDNA) from cultured isolates of A. tamarense (Lebour) Taylor, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech and A. lusitanicum Balech were amplified using PCR and sequenced. Sequence comparisons showed that the 5.8S and ITS1-ITS2 regions contain sequences specific for the Alexandrium genus, especially at the 3' end of the 5.8S coding region. PCR primers and a radioactive 32P-labeled DNA probe were devised for this region. The cross-reactivity of the PCR primers and probe was tested against cultured isolates of Alexandrium and other dinoflagellates and diatoms. All the Alexandrium isolates screened reacted toward the genus-specific probe; in contrast, the other groups of microalgae (dinoflagellates and diatoms) did not react with the probe. Furthermore, the PCR amplification technique combined with the use of the rDNA-target probe allowed us to develop a method for the detection of Alexandrium cells in cultured samples. This PCR method might offer a new approach for the identification and enumeration of the HAB (harmful algal bloom) species present in natural phytoplankton populations.  相似文献   

20.
In recent years, the cloning of ribosomal RNA genes from natural plankton communities has provided insight into the biodiversity of marine bacterioplankton. Small eukaryotic phytoplankton, like bacterioplankton, can be difficult to cultivate or identify routinely by morphological characteristics. We used bacteria-specific 16S rRNA primers to amplify genes from picoplankton samples collected on 0.2–μm filters by filtration from a depth of 10 m in the pelagic region over the continental shelf off Cape Hatteras, North Carolina. Nucleic acid sequencing and probe hybridization revealed that chromophyte plastid genes comprised 25% of the genes in a library of 170 clones. The plastid genes belonged to two groups within the Chromophyta: the Prymnesiophyceae and the Bacillariophyceae. Comparisons revealed substantial diversity among the bacillariophyte gene sequences, but the species from which the genes originated could not be identified because few sequences from cultured bacillariophytes are available. The prymnesiophyte genes could not be identified either, although they were most similar (similarity = 0.94) to plastid genes from the coccolithophorid Emiliania huxleyi (Lohmann) Hay and Mohler strain PML92D. These results provide evidence of abundant chromophyte plastid 16S rRNA genes in the water over the continental shelf off Cape Hatteras. The results also suggest that plastid 16S rRNA genes may provide suitable genetic markers for studying phytoplankton biodiversity and biogeography .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号