首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ13C or δ15N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood = 150 days, N t95%blood = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ13C and Δ15N values in blood and muscle using all individuals were Δ13Cblood = 1·7‰, Δ13Cmuscle = 1·3‰, Δ15Nblood = 2·5‰ and Δ15Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ13C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long‐term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ13C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ13C = 1·5‰). For Δ15N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ15N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ15N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more targeted research.  相似文献   

2.
3.
    
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

4.
    
We studied foraging segregation between two different sized colonies of little penguins Eudyptula minor with overlapping foraging areas in pre‐laying and incubation. We used stomach contents and stable isotope measurements of nitrogen (δ15N) and carbon (δ13C) in blood to examine differences in trophic position, prey‐size and nutritional values between the two colonies. Diet of little penguins at St Kilda (small colony) relied heavily on anchovy while at Phillip Island (large colony), the diet was more diverse and anchovies were larger than those consumed by St Kilda penguins. Higher δ15N values at St Kilda, differences in δ13C values and the prey composition provided further evidence of diet segregation between colonies. Penguins from each colony took anchovies from different cohorts and probably different stocks, although these sites are only 70 km apart. Differences in diet were not reflected in protein levels in the blood of penguins, suggesting that variation in prey between colonies was not related to differences in nutritional value of the diet. Anchovy is currently the only available prey to penguins throughout the year and its absence could have a negative impact on penguin food supply, particularly at St Kilda where the diet is dominated by this species. While it is difficult to establish whether diet segregation is caused by inter‐ or intra‐colony competition or spatial differences in foraging areas, we have shown that colonies with broadly overlapping foraging ranges could have significant differences in trophic position, diet composition and prey size while maintaining a diet of similar nutritional value.  相似文献   

5.
During the last century, the global biogeochemical cycles of carbon (C) and nitrogen (N) have been drastically altered by human activities. A century of land‐clearing and biomass burning, followed by fossil fuel combustion have increased the concentration of atmospheric CO2 by approximately 20%, and since the mid‐1900s, the use of agricultural fertilizers has been the primary driver of an approximate 90% increase in bioavailable N. Geochemical records obtained through stable isotope analysis of terrestrial and marine biota effectively illustrate rising anthropogenic C inputs. However, there are fewer records of anthropogenic N, despite the enormous magnitude of change and the known negative effects of N on ecosystem health. We used stable isotope values from independent octocorals (gorgonians) sampled across the Western Atlantic over the last 143 years to document human perturbations of the marine C and N pools. Here, we demonstrate that in sea plumes δ13C values and in both sea plumes and sea fans δ15N values declined significantly from 1862 to 2005. Sea plume δ 13C values were negatively correlated with increasing atmospheric CO2 concentrations and corroborate known rates of change resulting from global fossil fuel combustion, known as the Suess effect. We suggest that widespread input of agricultural fertilizers to near‐shore coastal waters is the dominant driver for the decreasing δ 15N trend, though multiple anthropogenic sources are likely affecting this trend. Given the interest in using δ 15N as an indicator for N pollution in aquatic systems, we highlight the risk of underestimating contributions of pollutants as a result of source mixing as demonstrated by a simple isotope‐mixing model. We conclude that signals of major human‐induced perturbations of the C and N pools are detectable in specimens collected over wide geographic scales, and that archived materials are invaluable for establishing baselines against which we can assess environmental change.  相似文献   

6.
    
Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine‐grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. Am. J. Primatol. 74:969‐989, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Although most carabids are primarily carnivorous, some carabid species are omnivorous, with mainly granivorous feeding habits during the larval and/or adult stages (granivorous carabids). This feeding habit has been established based on laboratory and field experiments; however, our knowledge of the feeding ecology of these beetles in the field is limited owing to the lack of an appropriate methodology. In this study, we tested the utility of stable isotope analysis in investigations of the feeding ecology of granivorous carabids in the field, using two closely related syntopic species, Amara chalcites and Amara congrua. We addressed two issues concerning the feeding ecology of granivorous carabids: food niche differentiation between related syntopic species during the larval stage and the effect on adult body size of supplementing seeds with an animal diet during the larval stage. To investigate larval feeding habits, we analysed newly emerged adults, most somatic tissues of which are considered of larval origin. In the two populations examined, both δ15N and δ13C were significantly higher in A. chalcites than A. congrua, suggesting that the two species differentiate food niches, with A. chalcites larvae being more carnivorous than A. congrua larvae. The two isotope ratios of A. chalcites samples from one locality were positively correlated with body size, suggesting that more carnivorous larvae become larger adults. However, this relationship was not detected in other species/locality groups. Thus, our results were inconclusive on the issue of diet supplementation. Nevertheless, overall, these results are comparable with those of previous laboratory‐rearing experiments and demonstrate the potential utility of stable isotope analysis in field studies on the feeding ecology of granivorous carabids.  相似文献   

8.
9.
    
Progress in the study of stable isotope discrimination in carbon assimilation by aquatic macrophytes has been slower than for other groups of primary producers, such as phytoplankton and terrestrial plants. A probable reason has been the methodologies employed for such a study: field collections or long‐term incubations, both relying on the observation of changes in carbon isotope composition of plant tissue. Here, we present a short‐term incubation method based on the change in carbon stable isotope composition in water. Its fundamental advantage over the other approaches is that the change in stable isotope composition in water in a closed system is much faster than in the plant tissue. We applied the method to investigate the relationship between carbon assimilation intensity and isotope discrimination. The results included a relatively small discrimination in respiration, a significant influence of carbon assimilation rate on discrimination, and the suggestion of HCO3? or CO2 uptake in photosynthesis. The information gathered using this method would be difficult to obtain in other ways, and so we believe that it should contribute to a better understanding of the physiology and ecology of aquatic macrophytes.  相似文献   

10.
    
1. Species diversities of some insect lineages have been attributed to differentiation of feeding habits among species. Our objective was to determine variation in diet composition among harpaline ground beetle species occurring in a riverside grassland. 2. We examined the diet compositions of 14 species from six genera in the spring and 10 species from two genera in the autumn. We performed measurements of nitrogen and carbon stable isotope ratios in consumers and in their potential food items, and estimated relative contributions of different food items with two mixing models, IsoSource and MixSIR. 3. IsoSource and MixSIR software gave similar results, but IsoSource tended to calculate higher contributions of principal food items and smaller percentile ranges than MixSIR. Among harparine beetle species, there were diverse food utilisation patterns among four food categories (detritivorous invertebrates, herbivorous invertebrates, C3 plants, and C4 plants). Detritivores comprised the main diets of abundant harpaline species in the spring, whereas abundant harpaline species in the autumn were primarily herbivores feeding on C4 plants, or omnivores feeding on herbivorous invertebrates and C3 plants. Seasonal changes in food use were related to seasonal changes in the abundance of each food resource. 4. Mixing model analysis of stable isotope ratios is a convenient and effective method for roughly estimating diets of many species with diverse food habits (such as ground beetles). This method can contribute to determining the trophic relationships of related insects in one ecosystem.  相似文献   

11.
    
The temperature influence on carbon stable isotope discrimination (Δ) in photosynthesis by algae has not been studied taking into account the confounding effect due to photosynthetic rates. This is problematic because usually higher temperatures imply higher photosynthetic rates, and higher photosynthetic rates usually lead to a decrease in Δ. Here, we investigate the effect of temperature on Δ during photosynthesis by Undaria pinnatifida (Harv.) Suringar (Phaeophyta) in a closed system, varying temperatures between 5°C and 20°C and measuring photosynthetic rates simultaneously. There was a general trend of higher Δ for higher temperatures under the same photosynthetic rate, especially for higher photosynthetic rates. These results were consistent with the influence of phenomena related to carbon supply to the plant, like CO2 diffusion in water and through cell membranes. This influence, however, was less strong than that of photosynthetic rates on Δ (lower Δ for higher photosynthetic rates) and can be difficult to observe in nature.  相似文献   

12.
    
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

13.
    
In our research, we collected and analyzed numerous macroalgal specimens (738) for isotopic analysis sampled over a year at monthly intervals across 20 sites within the Urías lagoon complex, a typical subtropical coastal ecosystem located in the Gulf of California. We quantified and characterized (chemically and isotopically) the N loads received by Urías throughout a year. We studied the spatial‐temporal variation of the chemical forms and isotopic signals of the available N in the water column, and we monitored in situ different environmental variables and other hydrodynamic parameters. Multiple N sources (e.g., atmospheric, sewage, seafood processing, agriculture and aquaculture effluents) and biogeochemical reactions related to the N cycle (e.g., ammonia volatilization, nitrification and denitrification) co‐occurring across the ecosystem, result in a mixture of chemical species and isotopic compositions of available N in the water column. Increased variability was observed in the δ15N values of macroalgae (0.41‰–22.67‰). Based on our results, the variation in δ15N was best explained by spatio‐temporal changes in available N and not necessarily related to the N sources. The variability was also explained by the differences in macroalgal biology among functional groups, species and/or individuals. Although the δ15N‐macroalgae technique was a useful tool to identify N sources, its application in coastal ecosystems receiving multiple N sources, with changing environmental conditions influencing biogeochemical processes, and high diversity of ephemeral macroalgal species, could be less sensitive and have less predictive power.  相似文献   

14.
    
Stable‐isotope analysis supplemented with stomach contents data from published sources was used to quantify the trophic niches, trophic niche overlaps and potential trophic redundancy for the most commonly caught fish species from an East African nearshore seagrass community. This assessment is an important first step in quantifying food‐web structure in a region subject to intense fishing activities. Nearshore food webs were driven by at least two isotopically distinct trophic pathways, algal and seagrass, with a greater proportion of the sampled species feeding within the seagrass food web (57%) compared with the algal food web (33%). There was considerable isotopic niche overlap among species (92% of species overlapped with at least one other species). Narrow isotopic niche widths of most (83%) species sampled, low isotopic similarity (only 23% of species exhibited no differences in δ13C and δ15N) and low predicted trophic redundancy among fishes most commonly caught by fishermen (15%), however, suggest that adjustments to resource management concerning harvesting and gear selectivity may be needed for the persistence of artisanal fishing in northern Tanzania. More detailed trophic studies paired with information on spatio‐temporal variation in fish abundance, especially for heavily targeted species, will assist in the development and implementation of management strategies to maintain coastal food‐web integrity.  相似文献   

15.
    
  • In gynodioecious plants, females are expected to produce more or better seeds than hermaphrodites in order to be maintained within the same population. Even though rarely measured, higher seed production can be achieved through differences in physiology.
  • In this work, we measured sexual dimorphism in several physiological traits in the gynodioecious plant Geranium sylvaticum. Photosynthetic rate, stomatal conductance, transpiration rate, WUE and isotopic signatures were measured in plants growing in two habitats differing in light availability.
  • Females have been reported to produce more seeds than hermaphrodites. However, we did not observe any significant difference in seed output between the sexes in these experimental populations. Similarly, the sexes did not differ in any physiological trait measured. Seed production was strongly limited by light availability. Likewise, differences between plants growing in full light versus low light were detected in most physiological parameters measured.
  • Our results show that the sexes in G. sylvaticum do not show any evidence of sexual dimorphism in physiology, which concurred with a lack of sexual differences in seed output.
  相似文献   

16.
    
The differential discrimination of nitrogen isotopes (15N/14N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass. To investigate this phenomenon, we examined the 15N/14N of amino acids (δ15NAA) in spring leaves and flowers from eight deciduous and two annual plants. These plants were classified on the basis of their time of bloom, plants that bloomed when their leaves were absent (Type I) versus plants that bloomed while leaves were already present (Type II). Based on the δ15NAA values from leaves, both plant types occupied comparable and ecologically realistic mean TPs (=1.0 ± 0.1, mean ± 1σ). However, the estimated TPs of flowers varied significantly (Type I: 2.2 ± 0.2; Type II: 1.0 ± 0.1). We hypothesize that these results can be interpreted by the following sequence of events: (1) Type I floral biomass is synthesized in absence of active photosynthesis; (2) the catabolic deamination of amino acids in particular, leaves behind 15N in the residual pool of amino acids; and (3) the incorporation of these 15N‐enriched amino acids within the biomass of Type I flowers results in the numerical elevation of the TPs. In contrast, the actively photosynthesizing Type II leaves energetically sustain the synthesis of Type II flower biomass, precluding any reliance on catabolic deamination of amino acids. Amino acids within Type II flowers are therefore isotopically comparable to the Type II leaves. These findings demonstrate the idiosyncratic nature of the δ15NAA values within autotrophic organs and have implications for interpreting trophic hierarchies using primary producers and their consumers.  相似文献   

17.
    
Migratory divides represent narrow zones of overlap between parapatric populations with distinct migration directions and, consequently, expected divergent non‐breeding distributions. The composition of the mixed population at a migratory divide and the corresponding non‐breeding ranges remain, however, unknown for many Palaearctic‐African migrants. Here, we used light‐level geolocation to track migration direction and non‐breeding grounds of Eurasian reed warblers Acrocephalus scirpaceus from three breeding populations across the species’ migratory divide. Moreover, by using feathers grown at non‐breeding grounds, we quantified stable isotope composition for individuals with known southwestern (SW) and southeastern (SE) migration directions. On a larger sample per population, we then assessed the proportions of SW‐ and SE‐migrating phenotypes in each of the three populations. All tracked reed warblers from Germany and two thirds of the birds tagged from the Czech population headed initially SW. Nevertheless, about one third of the birds from the Czech site migrated towards SE. No tracking data have been obtained for the Bulgarian population. The initial migration direction determined by geolocators was a strong predictor of the non‐breeding region, with SW migrants staying in west Africa and SE migrants in central Africa. Feather δ34S and δ15N values confirmed the predominance of SW migrants in the German population, the co‐occurrence of SW and SE migrants in the Czech population, and indicated a high (72%) proportion of SE migrants in the Bulgarian population. Thus, the combined approach of geolocator tracking and stable isotopic assignments provided clear evidence for the existence of a migratory divide in the southeast of central Europe and predicted non‐breeding range in central and central‐eastern Africa for the eastern population.  相似文献   

18.
    
Mutualistic nutritional symbioses are widespread in marine ecosystems. They involve the association of a host organism (algae, protists, or marine invertebrates) with symbiotic microorganisms, such as bacteria, cyanobacteria, or dinoflagellates. Nutritional interactions between the partners are difficult to identify in symbioses because they only occur in intact associations. Stable isotope analysis (SIA) has proven to be a useful tool to highlight original nutrient sources and to trace nutrients acquired by and exchanged between the different partners of the association. However, although SIA has been extensively applied to study different marine symbiotic associations, there is no review taking into account of the different types of symbiotic associations, how they have been studied via SIA, methodological issues common among symbiotic associations, and solutions that can be transferred from one type of association with another. The present review aims to fill such gaps in the scientific literature by summarizing the current knowledge of how isotopes have been applied to key marine symbioses to unravel nutrient exchanges between partners, and by describing the difficulties in interpreting the isotopic signal. This review also focuses on the use of compound‐specific stable isotope analysis and on statistical advances to analyze stable isotope data. It also highlights the knowledge gaps that would benefit from future research.  相似文献   

19.
    
We estimated the contribution of reservoir‐derived plankton released from an upstream dam to particulate organic matter (POM) relative to terrestrial allochthonous (fallen leaves) and instream autochthonous (downstream epilithic algae) sources in the Uji River, Japan, to investigate the influence of the reservoir plankton on downstream POM composition. Four types of POM such as suspended fine, suspended coarse, benthic fine and benthic coarse POM were collected and then analyzed using two types of mixing models combining δ13C–δ15N: a standard linear model (SLM) and a concentration‐weighted model (CWM), which are compared with the microscopic examination. Results demonstrate that the three trophic sources were isotopically distinct, and all POM samples are plotted inside the mixing triangle defined by the three end members in the δ13C–δ15N biplot. SLM underestimated the terrestrial source contribution and overestimated that of the reservoir plankton, suggesting that despite popular application of the SLM method, CWM was more appropriate for the source partitioning of riverine POM particularly in the case where large differences in source concentrations of C and N are present. Reservoir plankton contribution was highest in suspended fine POM (S‐FPOM), accounting for 47%. Nitrogen in S‐FPOM was found to be supplied mostly by the reservoir plankton (68%). These results collectively suggest that reservoir plankton from dams can greatly influence downstream S‐FPOM composition and play a role in supplying nitrogen to tailwater ecosystems. Our findings on the riverine POM source partitioning in a tailwater channel should be useful in assessing downstream heterotrophic food webs and nutrient transport in response to the plankton‐derived POM originating from upstream reservoirs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
    
Abstract. 1. We propose a non‐lethal sampling method involving stable isotope analysis for estimating the trophic position of the endangered giant water bug Kirkaldyia (=Lethocerus) deyrolli (Heteroptera: Belostomatidae) in the wild. 2. Kirkaldyia deyrolli individuals were collected and their δ15N and δ13C values were measured. The δ15N and δ13C values of periphyton and particulate organic matter, the basal food sources in lentic ecosystems of rice fields, were also measured to estimate the trophic position of K. deyrolli. When individual isotopic signatures of the whole body were compared with those of their middle leg tarsus, we found strong correlations between them for both δ15N and δ13C. To estimate their trophic position without killing individuals, we constructed a regression model incorporating their middle leg tarsus’s isotopic signatures and their body size as explanatory variables. This non‐lethal method revealed that K. deyrolli showed great individual variation in its δ15N which is a proxy of trophic position, ranging from 5.60‰ to 8.11‰. 3. To evaluate the negative effects of our non‐lethal method on the fitness of K. deyrolli, we examined how the removal of the middle leg tarsus affected reproductive performance under laboratory conditions. A comparison between the manipulated and unmanipulated individuals revealed that the removal treatment did not have any negative effects on female clutch size or egg hatchability for males. 4. In conclusion, stable isotope analysis of the middle leg tarsus of K. deyrolli is useful for estimating its trophic position without lethal or any negative fitness effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号