首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new photosynthetic, sand‐dwelling marine dinoflagellate, Ailadinium reticulatum gen. et sp. nov., is described from the Jordanian coast in the Gulf of Aqaba, northern Red Sea, based on detailed morphological and molecular data. A. reticulatum is a large (53–61 μm long and 38–48 μm wide), dorsoventrally compressed species, with the epitheca smaller than the hypotheca. The theca of this new species is thick and peculiarly ornamented with round to polygonal depressions forming a foveate‐reticulate thecal surface structure. The Kofoidian thecal tabulation is APC (Po, cp), 4′, 2a, 6′′, 6c, 4s, 6′′′, 1p, 1′′′′ or alternatively it can be interpreted as APC, 4′, 2a, 6′′, 6c, 4s, 6′′′, 2′′′′. The plate pattern of A. reticulatum is noticeably different from described dinoflagellate genera. Phylogenetic analyses based on the SSU and LSU rDNA genes did not show any supported affinities with currently known thecate dinoflagellates.  相似文献   

2.
Chattonella verruculosa Y. Hara et Chihara was re‐examined by molecular methods and microscopic examination. The 18S rDNA phylogenetic analysis clearly indicated that C. verruculosa is a member of the Dictyochophyceae, with a specific affinity to Florenciella parvula. The morphological features in C. verruculosa– namely the proximal helix with two gyres and many scattered DNA‐containing areas in the chloroplasts – display the evolutionary link to the Dictyochophyceae, instead of the Raphidophyceae. Similarly, unique pyrenoid morphologies are shared between C. verruculosa and the dictyochophycean algae. Combining the molecular data and morphological characteristics, C. verruculosa is transferred to Pseudochattonella gen. nov. of the class Dictyochophyceae as Pseudochattonella verruculosa (Y. Hara et Chihara) Hosoi‐Tanabe, Honda, Fukaya, Inagaki et Sako comb. nov.  相似文献   

3.
4.
Distinctive spindle‐shaped thecae first described by Samuel Eddy in 1930 and assigned to the genus Peridinium Ehrenberg are commonly reported from freshwater environments in eastern North America. We demonstrate that thecae incubated from cysts of Peridinium wisconsinense Eddy have six cingular plates and a protuberant apical pore complex characteristic of the family Thoracosphaeraceae Schiller 1930 emend. Tangen in Tangen et al . 1982. Small subunit ribosomal DNA (SSU rDNA) and internal transcribed spacer (ITS) sequences confirm the close genetic similarity with Chimonodinium lomnickii (Wo?oszyńska) Craveiro, Calado, Daugbjerg, Gert Hansen & Moestrup and with species recently reassigned to the genus Apocalathium Craveiro, Daugbjerg, Moestrup & Calado that was inferred from previously published LSU rDNA analysis of cysts of P. wisconsinense . Despite sharing identical tabulation with the thoracosphaeracean genera Chimonodinium Craveiro, Calado, Daugbjerg, Gert Hansen & Moestrup and Apocalathium , substantial morphological differences in the morphology of both the thecate and cyst stages of P. wisconsinense led us to reassign this species to the genus Fusiperidinium gen. nov. The phylogenetic position of Fusiperidinium wisconsinense comb. nov., inferred from concatenated data of SSU and LSU sequences, suggests that it evolved from the brackish Scrippsiella lineage, independently of the transition that produced the family Peridiniaceae. Cysts described as Geiselodinium tyonekensis Engelhardt from nonmarine strata from Alaska are apparently identical to the resistant cysts produced by F. wisconsinense . The palynologically‐constrained late Middle Miocene age for the Tyonek Formation provides a minimum age of 11.6 Ma for the evolution of this lineage, coinciding with a rapid glacioeustatic decline in sea level. Our findings also call into question the inclusion of the family Thoracosphaeraceae within the order Peridiniales Haeckel.  相似文献   

5.
A new species of benthic marine dinoflagellate, Pyramidodinium spinulosum Horiguchi, Moriya, Pinto & Terada is described from the deep (36 m) seafloor off Mageshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The life cycle of the dinoflagellate consists of a dominant, attached, dome‐shaped, vegetative form and short‐lasting, motile cell. Asexual reproduction takes place by the formation of two motile cells within each non‐motile cell. The released motile cells swim only for a short period and transform directly into the dome‐shaped vegetative form. The duration of the cell cycle varies and can be extremely long, ranging 5–38 days under culture conditions. The non‐motile cell is enclosed by a cell wall and its surface is covered with many (80 – 130) spines of various length. The dinoflagellate is photosynthetic and contains many (more than 50) discoidal chloroplasts. Phylogenetic analysis reveals that the dinoflagellate is closely related to the type species of the genus Pyramidodinium, P. atrofuscum which also possesses a dominant, attached, non‐motile form. However, P. spinulosum can be clearly distinguished from P. atrofuscum by the cell shape (dome‐shaped vs. pyramid‐shaped) and surface ornamentation (spines vs. wart‐like processes) of the non‐motile form. Based on these morphological differences together with molecular evidence, it was concluded that this organism from a deep water sand sample should be described as a second species of the genus Pyramidodinium, P. spinulosum.  相似文献   

6.
Culture collections of microorganisms can still hold undiscovered biodiversity; with molecular techniques, considerable progress has been made in characterizing microalgae which were isolated in the past and misidentified due to a lack of morphological features. However, many strains are still awaiting taxonomic reassessment. Here we analysed the phylogenetic position, morphology and ultrastructure of the strain CCALA 307 previously identified as Coccomyxa cf. gloeobotrydiformis Reysigl isolated in 1987 from field soil in South Bohemia, Czech Republic. Molecular phylogenetic analyses based on SSU rDNA and the plastid rbcL gene revealed that the strain CCALA 307 formed a distinct sister lineage to Neocystis and Prasiola clades within the Trebouxiophyceae. We describe this strain as a new genus and species, Lunachloris lukesovae. Multiple conserved nucleotide positions identified in the secondary structures of the highly variable ITS2 rDNA barcoding marker provide further evidence of the phylogenetic position of Lunachloris. Minute vegetative cells of this newly recognized species are spherical or ellipsoid, with a single parietal chloroplast without a pyrenoid. Asexually, it reproduces by the formation of 2–6 autospores. Since the majority of recent attention has been paid to algae from the tropics or extreme habitats, the biodiversity of terrestrial microalgae in temperate regions is still notably unexplored and even a ‘common’ habitat like agricultural soil can contain new, as yet unknown species. Moreover, this study emphasizes the importance of culture collections of microorganisms even in the era of culture-independent biodiversity research, because they may harbour novel and undescribed organisms as well as preserving strains for future studies.  相似文献   

7.
Cochliopodium pentatrifurcatum n. sp. (ATCC© 30935TM) is described based on light microscopic morphology, fine structure, and molecular genetic evidence. Cochliopodium pentatrifurcatum n. sp. (length ~ 25 μm) is characterized by surface microscales (0.3 μm tall) containing a circular porous base (~ 0.6 μm diam.) with a thin peripheral rim. Five radially arranged feet, emanating from the base, support a short central column terminating apically as a funnel‐shaped collar (~ 0.5 μm diam.) composed of five radial, trifurcate rays extending from the center toward a thin peripheral rim. The central spine is 0.5–0.6 μm long. The comparative morphologies and combined molecular genetic evidence, SSU‐rDNA and COI, indicate that the new species falls in a clade sufficiently different from other species to suggest that it is a valid new species.  相似文献   

8.
New strains of a wall‐less unicellular volvocalean flagellate were isolated from a freshwater environment in Japan. Observations of the alga, described here as Hapalochloris nozakii Nakada, gen. et sp. nov., were made using light, fluorescence, and electron microscopy. Each vegetative cell had two flagella, four contractile vacuoles, and a spirally furrowed cup‐shaped chloroplast with an axial pyrenoid, and mitochondria located in the furrows. Based on the morphology, H. nozakii was distinguished from other known wall‐less volvocalean flagellates. Under electron microscopy, fibrous material, instead of a cell wall and dense cortical microtubules, was observed outside and inside the cell membrane, respectively. Based on the phylogenetic analyses of 18S rRNA gene sequences, H. nozakii was found to be closely related to Asterococcus, Oogamochlamys, Rhysamphichloris, and “Dunaliellalateralis and was separated from other known wall‐less flagellate volvocaleans, indicating independent secondary loss of the cell wall in H. nozakii. In the combined 18S rRNA and chloroplast gene tree, H. nozakii was sister to Lobochlamys.  相似文献   

9.
10.
11.
A new species of marine sand‐dwelling dinoflagellate, Plagiodinium ballux N. Yamada, Dawut, R. Terada & T. Horiguchi is described from a deep (36 m) seafloor off Takeshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The species is thecate and superficially resembles species of Prorocentrum, but possesses an extremely small epitheca. The cell varies from ovoid to a rounded square, and is small (15.0–22.5 μm in length) and laterally compressed. The thecal plates are smooth and the thecal plate arrangement (Po, 1′, 0a, 5″, 5C, 2S, 5?, 0p, 1″″) is similar to that of Plagiodinium belizeanum, the type species of the genus. Molecular phylogenetic analyses based on SSU rDNA and partial LSU rDNA reveal that the dinoflagellate is closely related to P. belizeanum, but it can be clearly distinguished by its size and cell shape. This suite of morphological and molecular differences leads to the conclusion that this deep benthic dinoflagellate represents a new species of the genus Plagiodinium.  相似文献   

12.
We examined a free‐living Symbiodinium species by light and electron microscopy and nuclear‐encoded partial LSU rDNA sequence data. The strain was isolated from a net plankton sample collected in near‐shore waters at Tenerife, the Canary Islands. Comparing the thecal plate tabulation of the free‐living Symbiodinium to that of S. microadriaticum Freud., it became clear that a few but significant differences could be noted. The isolate possessed two rather than three antapical plates, six rather than seven to eight postcingular plates, and finally four rather than five apical plates. The electron microscopic study also revealed the presence of an eyespot with brick‐shaped contents in the sulcal region and a narrow anterior plate with small knob‐like structures. Bayesian analysis revealed the free‐living Symbiodinium to be a member of the earliest diverging clade A. However, it did not group within subclade AI (=temperate A) or any other subclades within clade A. Rather, it occupied an isolated position, and this was also supported by sequence divergence estimates. On the basis of comparative analysis of the thecal plate tabulation and the inferred phylogeny, we propose that the Symbiodinium isolate from Tenerife is a new species (viz. S. natans). To elucidate further the species diversity of Symbiodinium, particularly those inhabiting coral reefs, we suggest combining morphological features of the thecal plate pattern with gene sequence data. Indeed, future examination of motile stages originating from symbiont isolates will demonstrate if this proves a feasible way to identify and characterize additional species of Symbiodinium and thus match ribotypes or clusters of ribotypes to species.  相似文献   

13.
A new member of Delesseriaceae (Ceramiales, Rhodophyta) is described from Southern Taiwan and the Philippines. On the basis of comparative vegetative and reproductive morphology, and phylogenetic analysis inferred from nuclear-encoded large-subunit ribosomal DNA sequences (LSU rDNA), we conclude that it belongs in the genus Drachiella, tribe Schizoserideae, subfamily Phycodryoideae. The new taxon shares with other Drachiella species the absence of macro- and microscopic veins; diffuse growth by marginal and intercalary meristematic cells; a polystromatic, lobed thallus; abundance of rhizoidal marginal proliferations used for attachment; convoluted plastids in surface cells; abundant secondary pit connections among adjacent vegetative cells; large intercellular spaces between surface cells; procarps confined to the upper side of the thallus, circular in outline, consisting of a supporting cell bearing a strongly curved carpogonial branch and two sterile groups that remain undivided; vertical division of gonimoblast initial from auxiliary cell, and unilateral, monopodial branching of gonimoblasts; and mature cystocarps with a massive candelabrum-like fusion cell of fused gonimoblasts bearing carposporangia in branched chains. It is distinguished from the other members of the genus by thalli that consist of extensive tangled mats of prostrate and overlapping decumbent blades, procarps confined to the upper side of the thallus, and the lack of basal stalks or stipes. Whereas the Schizoserideae is predominantly a Southern Ocean tribe, one of the tribe's four genera, Drachiella, was known only from the eastern Atlantic and Mediterranean. We herein report the first record of the genus for the Indo-Pacific Ocean, and describe Drachiella liaoii, sp. nov., as a fourth species in the genus.  相似文献   

14.
15.
The traditional green algal genus Chlorella , which comprised coccoid algae surrounded by a smooth cell wall and reproducing solely by autosporulation, has proved to be polyphyletic and extremely diverse in phylogenetic terms. We studied a new subaerial Chlorella -like strain CAUP H7901 and morphological, ultrastructural, and molecular phylogenetic investigations indicated that it represents a new lineage of the trebouxiophycean Watanabea clade, dissimilar from other members of this group. The alga has globular coccoid cells with a single parietal pyrenoid-bearing chloroplast. The pyrenoid is transected by multiple radial thylakoid bands. The alga reproduces exclusively by means of asexual autospores of unequal size. In 18S rDNA sequence phylogenies, it was nested within the Watanabea clade close to lineages containing Chlorella saccharophila , Chlorella luteoviridis , Heveochlorella hainangensis , and two uncharacterized strains, but alternative positions within the Watanabea clade could not be rejected by an approximately unbiased (AU) test. Here we describe this organism as a new genus and species Kalinella bambusicola gen. et sp. nov. Furthermore, we describe Heterochlorella gen. nov. to accommodate a species previously referred to as Chlorella luteoviridis .  相似文献   

16.
17.
18.
19.
A new benthic phototrophic dinoflagellate is described from sediments of a tropical marine cove at Martinique Island and its micromorphology is studied by means of light and electron microscopy. The cell contains small golden-brown chloroplasts and the oval nucleus is posterior. It is laterally compressed, almost circular in shape when viewed laterally. It consists of a small epitheca tilted toward the right lateral side and a larger hypotheca. In the left view, the cingulum is more anterior and the epitheca is reduced. The cingulum is displaced and left-handed. This organism is peculiar in having no apical pore and its thecal plate arrangement is 2′ 1a 7′′ 5c 3s 5′′′ 1′′′′. The plates are smooth with small groups of pores scattered on their surface. An area with 60–80 densely arranged pores is found near the centre of the 2′′′ plate, on the left lateral side. Morphologically, these features are different from all other laterally compressed benthic genera. In addition, molecular genetic sequences of SSU and partial LSU form a distinct and well-supported clade among dinoflagellates and support the erection of a new genus. However, molecular phylogenies inferred from ribosomal genes failed to confirm any clear relationship with other benthic taxa and affinity with other laterally compressed dinoflagellates has not been demonstrated. Hence, the taxonomic affinity of Madanidinium loirii with a defined order and family is unclear at the moment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号