首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Chlorophyte Parietochloris incisa comb. nov (Trebuxiophyceae) was found to be the richest plant source of the pharmaceutically valuable long‐chain polyunsaturated fatty acid (PUFA), arachidonic acid (20:4ω6, AA). Over 90% of total AA are deposited in triacylglycerols (TAG). Under nitrogen starvation, the fatty acid content constituted over 35% of dry weight and the proportion of AA exceeded 60% of total fatty acids. Consequently, we obtained an AA content of over 20%. This is, to the best of our knowledge, the highest reported content of any PUFA in algae. Increasing the biomass concentration resulted in an enhancement of both the proportion of AA and the fatty acid content. We hypothesize that one of the roles of TAG in P. incisa is to serve as a reservoir of AA that can be used for the construction of membranal lipids.  相似文献   

2.
The responses to PAR intensity and nitrogen deficiency have been investigated in the Δ5‐desaturase‐deficient mutant (P127) of the microalga Parietochloris incisa (Reisigl) Shin Watan. (Chlorophyta, Trebouxiophyceae). The mutant accumulates dihomo‐γ‐linolenic acid (DGLA, C20:3 ω6) instead of arachidonic acid (C20:4 ω6) characteristic of the wildtype. The growth, fatty acid and pigment composition, and light absorption by P127 cell suspensions were studied for the first time during cultivation on complete and N‐free BG‐11 medium at 35, 130, and 270 μE · m?2 · s?1. On complete medium under high irradiance, an increase in biomass was observed, and total fatty acid (TFA) and DGLA contents were higher than in N‐starving cultures. A distinct irradiance‐dependent rise in carotenoid‐to‐chl ratio was recorded in P127 due to an increase in carotenoids (on complete medium) or by a decline in chl (on N‐free medium). Cultivation under high and medium irradiances caused a decline in light‐harvesting xanthophylls and an increase in β‐carotene, localized predominantly in cytoplasmic oil bodies (OB). The P127 mutant, similar to wildtype, responded to the stresses by coordinated induction of fatty acid and carotenoid syntheses, but displayed the same magnitude of the response as was observed in wildtype under 30% lower irradiance. The changes in optical properties of the P127 cultures tightly correlated with their pigment composition, and hence with fatty acid content, making it possible to develop a nondestructive technique for the assay of TFA and DGLA. The peculiarities of the stress responses in the wildtype and the mutant are discussed.  相似文献   

3.
Chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann cultured under nutrient‐enriched conditions have multiple rings of FtsZ, a prokaryote‐derived chloroplast division protein. We previously reported that synthesis of excess chloroplast DNA and formation of multiple FtsZ rings occur simultaneously. To clarify the role of multiple FtsZ rings in chloroplast division, we investigated chloroplast DNA synthesis and ring formation in cells cultured under various culture conditions. Cells transferred from a nutrient‐enriched medium to an inorganic medium in the light showed a drop in cell division rate, a reduction in chloroplast DNA content, and changes in the shape of chloroplast nucleoids as cells divided. We then examined DNA synthesis by immunodetecting BrdU incorporated into DNA strands using the anti‐BrdU antibody. BrdU‐labeled nuclei were clearly observed in cells 48 h after transfer into the inorganic medium, while only weak punctate signals were visible in the chloroplasts. In parallel, the number of FtsZ rings decreased from 6 to only 1. When the cells were transferred from an inorganic medium to a nutrient‐enriched medium, the number of cells increased only slightly in the first 12 h after transfer; after this time, however, they started to divide more quickly and increased exponentially. Chloroplast nucleoids changed from punctate to rod‐like structures, and active chloroplast DNA synthesis and FtsZ ring formation were observed. On the basis of our results, we conclude that multiple FtsZ ring assembly and chloroplast DNA duplication under nutrient‐rich conditions facilitate chloroplast division after transfer to oligotrophic conditions without further duplication of chloroplast DNA and formation of new FtsZ rings.  相似文献   

4.
Cells of the non-N2-fixing cyanobacterium Phormidium laminosum (Agardh) Gomont (strain OH-1-pCl1) showed doubling times of 24 h in media containing nitrate and 120 h in media without a nitrogen source. Nitrogen starvation resulted in a drastic decrease in the cellular content of chlorophyll, phycobiliproteins (phycocyanin and allophycocyanin), and other soluble proteins, although the total protein of cells was unchanged. N-starved cells showed an exocellular layer of mucilage that rapidly increased with starvation time. The appearance of N deficiency symptoms was strongly dependent on culture conditions, and it was faster under the optimal conditions used for cell growth. The relative content of C and N of nitrate-grown cells remained more or less constant during all growth phases (C/N ratio of ca. 5) but diminished at different rates in N-starved cells. Cells subjected to N starvation for 48 h had a C/N ratio of more than 10. N starvation also resulted in the selective degradation of soluble poly-peptides of masses lower than 20 kDa (which include those constituting phycobiliproteins), whereas the relative content of soluble polypeptides of greater size increased.  相似文献   

5.
The effect of nitrogen source (nitrate, ammonia and/or amino acids) on cell composition and amino acid uptake rates was examined. Substantial levels of free amino acids accumulated intracellularly with all nitrogen sources used. Ammonia accumulated only when provided in the medium. The presence of ammonia in the medium decreased the intracellular accumulation of free amino acids, especially arginine. Amino acid uptake rates were suppressed by the presence of excess nitrogen, especially ammonia. However, the suppression of uptake did not show any particular relation to the nitrogenous cell composition.  相似文献   

6.
Photosynthetic pigments of the green flagellate Pseudoscourfieldia marina (Throndsen) Manton (Micromonadophyceae) are similar to those of the coccoid Pycnococcus provasolii Guillard; prasinoxanthin is the predominant carotenoid. Other organisms that possess prasinoxanthin also possess additional pigments not found in either P. marina or P. provasolii. Uriolide, a xanthophyll previously described from the coccoid done URI 266G, was also found in Mantoniella squamata (Manton et Parke) Desikachary, Micromonas pusilla Manton et Parke and Mamiella gilva (Parks et Rayns) Moestrup, all flagellate members of the Mamiellales, and the coccoid clone IV E5G. Other unidentified carotenoids were also present in M. squamata, M. pusilla, and M. gilva. These results suggest that P. marina and the coccoid organisms URI 266G and IV E5G may be related to the Mamiellales, and that P. provasolii may be more closely related to P. marina than to M. squamata, M. pusilla, and M. gilva.  相似文献   

7.
Two FtsZ paralogues (NbFtsZ1 and NbFtsZ2) were isolated from the unicellular green alga Nannochloris bacillaris Naumann. These sequences encoded proteins of 435 and 439 amino acids with tubulin signature motifs (GGGTG[T/S]G), which are important for GTP binding activity. NbFtsZ1 and NbFtsZ2 had four and three introns, respectively, and two different putative core promoters; a TATA box (TATAAAA) and an initiator element (CCCAGG) were located 40 bp and 80 bp upstream of the coding regions of NbFtsZ1 and NbFtsZ2, respectively. Southern blot hybridization and contour‐clamped homogeneous electric field electrophoresis showed that N. bacillaris contained at least one copy of each gene and that NbFtsZ1 was located on chromosome 5 and NbFtsZ2 on chromosome 3 or 4. Phylogenetically, NbFtsZ1 and NbFtsZ2 belong to the vascular plant protein families FtsZ1 and FtsZ2, respectively. The FtsZ1 proteins do not contain carboxy‐terminal consensus sequences, whereas all FtsZ2 proteins possess the consensus sequence (I/V)PxFL(R/K)(K/R)(K/R). Our study has shown that NbFtsZ2 possesses a similar consensus sequence (VPDFLRRK), whereas NbFtsZ1 does not, further supporting their classification as FtsZ2 and FtsZ1. Escherichia coli ftsZ mutants transformed with cloned NbFtsZ1, and NbFtsZ2 cDNAs were restored for the capacity to divide by binary fission, suggesting that the proteins retained the ability to function in the bacterium. An anti‐NbFtsZ2 antibody specifically recognized a single protein band of approximately 51 kDa on an immunoblot of N. bacillaris cellular proteins. Immunostaining of the algal cells with this antibody produced an intense fluorescent signal as a ring near the middle of the cell, which corresponded to the chloroplast division site.  相似文献   

8.
The siphonous green alga Codium edule P. C. Silva (Bryopsidales, Chlorophyta) has the highest covering ratio among the macroalgae on the coral reef of Nanwan Bay in southern Taiwan, but its population in the subtidal region drastically decreases from July to September each year. The objective of this study was to determine whether the high temperature of summer could be the basis for this population decrease. Chlorophyll fluorescence measurements revealed that when the algae were incubated at 35°C (a temperature that can be reached in southern Taiwan during the summer), their photosynthetic activities were almost completely inhibited after about 8 h. The circadian rhythm of photosynthesis was disrupted at a temperature as low as 32°C. TEM studies showed that 4 h incubation at 35°C induced a decrease in turgidity accompanied by vacuole shrinkage and plasmolysis. The marked disintegrative changes, including damage to organelles, such as chloroplasts and nuclei, occurred after about 8 h, at which time central vacuoles collapsed and the cell interior was then filled with numerous small vesicles. Our results suggested that the rise in seawater temperature during the summer could be one of the major causes of the massive death of C. edule in the field.  相似文献   

9.
The quadriflagellate snow alga Chlainomonas Christen, distributed in New Zealand and North America, has several unusual structural attributes. A process assumed to be cytokinesis involves extrusion of protoplasm from the parent through a narrow canal, C. kolii (J. T. Hardy et Curl) Hoham produces a net‐like outer envelope rather than a cell wall, and the flagellar basal apparatus of Chlainomonas consists of two semi‐independent pairs of basal bodies. Structural connections between basal body pairs appear minimal, but a connecting system different from that observed in other genera exists within each pair. Phylogenetic analysis using rbcL sequences places Chlainomonas in the Chloromonas clade, other known members of which are all biflagellate. Chlainomonas is split into two robust lineages, with New Zealand collections sharing an origin with northern North American collections. Although the quadriflagellate condition is regarded as ancestral in the Chlorophyceae, we speculate—based on ultrastructural and molecular data presented here—that Chlainomonas represents a derived form that has arisen from fusion of two ancestral biflagellate cells. Other explanations (for example, that Chlainomonas represents a diploid form of a biflagellate species) are remotely possible but are presently at odds with extensive observations of field material. Improvements in techniques for experimental manipulation of these sensitive cryophiles will be required to fully characterize their structure and progress our understanding of their biology.  相似文献   

10.
An axenic clonal culture of Chattonella antiqua (Hada) Ono was grown on a 12: 12 h LD cycle in a laboratory culture tank containing 1 m3 of f/2 medium. Diel changes in mean cell volume, cellular carbon (carbon content per cell), C/N ratio, cellular Chl a, Chl a/c ratio and carotenoid composition were observed. Mean cell volume and cellular C, N and pigments increased during the light period as a result of photosynthesis and decreased with increase of cell concentration by phased cell division during the dark period. These changes indicated that carbon assimilation and pigment synthesis occurred together during the light period. However, the patterns of increase were not the same since different diel patterns were also found in the ratios of C/N and chl a/c. Photosynthetic pigments were analyzed by reversed-phase high-performance liquid chromatography with ion-pairing solution. This analysis showed that the dominant carotenoids in C. antiqua were fucoxanthin, violaxanthin and β-carotene. Diel patterns of Chls a and c were similar to that of fucoxanthin but different from those of violaxanthin and β-carotene. The cellular contents of Chl a, fucoxanthin and carbon increased in a parallel manner during the light period. On the other hand, the increase of violaxanthin was restricted to only a few hours at the beginning of the light period during cell division cycles.  相似文献   

11.
The photophysiological properties of strain RCC 237 belonging to the marine picoplanktonic genus Picochlorum, first described by Henley et al., were investigated under different photon flux densities (PFD), ranging from 40 to 400 μmol photons· m?2·s?1, mainly focusing on the development of the xanthophyll cycle and its relationship with the nonphotochemical quenching of fluorescence (NPQ). The functioning of the xanthophyll cycle and its photoprotective role was investigated by applying a progressive increase of PFD and using dithiotreitol and norflurazon to block specific enzymatic reactions in order to study in depth the relationship between xanthophyll cycle and NPQ. These two processes were significantly related only during the gradually increasing light periods and not during stable light periods, where NPQ and zeaxanthin were decoupled. This result reveals that NPQ is a photoprotective process developed by algae only when cells are experiencing increasing PFD or in response to stressful light variations, for instance after a sudden light shift. Results showed that the photobiological properties of Picochlorum strain RCC 237 seem to be well related to the surface water characteristics, as it is able to maintain its photosynthetic characteristics under different PFDs and to quickly activate the xanthophyll cycle under high light.  相似文献   

12.
Diel changes in mean cell volume, cellular carbon (carbon content per cell), cellular Chl a, C/N ratio, Chl a/carbon ratio and pigment composition were determined for an axenic clonal culture of Pyramimonas parkeae Norris et Pearson through three 12:12 h LD cycles in a laboratory culture tank of 1 m3. Mean cell volume and cellular C, N and most pigments increased during the light period as a result of photosynthesis and decreased with an increase in cell density by phased cell division during the dark period. Chi a and Chi b increased in a parallel manner during the light period. Increases in the diel synthesis pattern of carotenoids varied. Violaxanthin and lutein content increased for a few hours at the beginning of the light period and preceeded that of neoxanthin. The diel synthesis pattern of neoxanthin was similar to that of Chi a. Increases of loroxanthin and its ester form were slower than that of Chi a at the beginning of the light period. A net increase of α-carotene was observed during the dark period. Mass spectroscopy of carotenoid structure showed a new xanthophyll, loroxanthin dodecenoate, in this species.  相似文献   

13.
Species of the heterotrophic green microalgal genus Prototheca and related taxa were phylogenetically analyzed based on the nuclear small subunit (SSU) and the 5′ end of the large subunit (LSU) rRNA gene (rDNA) sequences. We propose restricting the genus Prototheca to the four species: P. moriformis Krüger, P. stagnora (Cooke) Pore, P. ulmea Pore, and P. zopfii Krüger. The main diagnostic feature of these taxa is the absence of growth on trehalose.Of these, it was suggested that P. moriformis should be merged into P. zopfii; P. moriformis and three varieties of P. zopfii constituted a paraphyletic assemblage with estimated short evolutionary distances. The trehalose‐assimilating strains (Prototheca wickerhamii Tubaki et Soneda strains and Auxenochlorella protothecoides (Krüger) Kalina et Pun?ochá?ová SAG 211‐7a), together with an invertebrate pathogen Helicosporidium sp., diverged before the radiation of the four species of Prototheca in the SSU rDNA and composite (SSU rDNA plus LSU rDNA) analyses. Comparison between the results from physiological data in this work (fermentative pattern) and those described earlier (growth requirements) lead us to propose a hypothesis that the phenotypic variation, which did not represent diagnostic characters for species delimitation, may reflect the history of genetic diversification within the genus Prototheca as inferred from rDNA sequence characters.  相似文献   

14.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

15.
Symbiotic green algae from two species of intertidal Pacific sea anemones, Anthopleura elegantissima and Anthopleura xanthogrammica, were collected from the northeastern Pacific coast of North America across the known range of the symbiont. Freshly isolated Anthopleura symbionts were used for both morphological and molecular analyses because Anthopleura symbiont cultures were not available. Light and transmission electron microscopy supported previous morphological studies, showing the symbionts consist of spherical unicells from 5 to 10 μm in diameter, with numerous vesicles, and a single bilobed chloroplast. Pyrenoids were not seen in LM, but a thylakoid‐free area was observed in TEM, consistent with previous findings. Many algal cells extracted from fresh anemone tissue were observed in the process of division, producing two autospores within a maternal cell wall. The morphology of the green symbionts matches that of Elliptochloris Tscherm.‐Woess. Molecular phylogenetic analyses of the nuclear SSU rDNA and the plastid encoded gene for the large subunit of RUBISCO (rbcL) support the monophyly of these green algal symbionts, regardless of host species and geographic origin. Phylogenetically, sequences of the Anthopleura symbionts are nested within the genus Elliptochloris and are distinct from sequences of all other Elliptochloris spp. examined. Given the ecological and phylogenetic distinctions among the green algal symbionts in Anthopleura spp. and the named species of Elliptochloris, we designate the green algal symbionts as a new species, Elliptochloris marina (Trebouxiophyceae, Chlorophyta).  相似文献   

16.
The influence of growth irradiance on the non-steady-state relationship between photosynthesis and tissue carbon (C) and nitrogen (N) pools in Chaetomorpha linum (Muller) Kutzing in response to abrupt changes in external nitrogen (N) availability was determined in laboratory experiments. For a given thallus N content, algae acclimated to low irradiance consistently had a higher rate of light-saturated photosynthesis (Pmax normalized to dry weight) than algae acclimated to saturating irradiance; for both treatments, Pmax was correlated to thallus N. Both Pmax and the photosynthetic efficiency (αdw) were correlated in C. linum grown at either saturating or limiting irradiance over the range of experimental conditions, indicating that variations in electron transport were coupled to variations in C-fixation capacity despite the large range of tissue N content from 1.1% to 4.8%. Optimizing both α and Pmax and thereby acclimating to an intermediate light level may be a general characteristic of thin-structured opportunistic algae that confers a competitive advantage in estuarine environments in which both light and nutrient conditions are highly variable. Nitrogen-saturated algae had the same photosynthesis–irradiance relationship regardless of light level. When deprived of an external N supply, photosynthetic rates did not change in C. linum acclimated to low irradiance despite a two-fold decrease in tissue N content, suggesting that the active pools of chlorophyll and Rubisco remained constant. Both α and Pmax decreased immediately and continuously in algae acclimated to high irradiance on removal of the N supply even though tissue N content was relatively high during most of the N-starvation period, indicating a diversion of energy and reductant away from C fixation to support high growth rates. Carbon and nitrogen assimilation were equally balanced in algae in both light treatments throughout the N-saturation and -depletion phases, except when protein synthesis was limited by the depletion of internal N reserves in severely N-starved high-light algae and excess C accumulated as starch stores. This suggests that the ability for short-term adjustment of internal allocation to acquire N andC in almost constant proportions may be especially beneficial to macroalgae living in environments characterized by high variability in light levels and nutrient supply.  相似文献   

17.
Effects of phosphite (Phi) on phosphate (Pi) starvation responses were determined in Ulva lactuca L. by incubation in Pi‐limited (1 μM NaH2PO4) or Pi‐sufficient (100 μM NaH2PO4) seawater containing 0–3 mM Phi. Exposure to 1 μM NaH2PO4 decreased the growth rate and the content of free Pi and esterified‐P but increased the activities of extracellular alkaline phosphatase (EC 3.1.2.1) and intracellular acid phosphatase (ACP; EC 3.1.2.2); two ACP isozymes observed by activity staining on isoelectric focussing (IEF) gel were induced. The Km value of Pi uptake rate was decreased by incubation with 1 μM NaH2PO4 and the decrease in Km value was inhibited by 2 mM Phi, reflecting the operation of a high‐affinity Pi uptake system at low Pi concentrations. In the presence of Phi, the growth rate of Pi‐sufficient and Pi‐starved thalli decreased as Phi concentrations were increased from 0 to 2 mM. As Phi concentrations were increased from 0 to 2 mM, the free Pi contents in both Pi‐sufficient and Pi‐starved thalli decreased, but the esterified‐P contents in Pi‐starved thalli increased, whereas those in Pi‐sufficient thalli increased at 1 mM Phi and decreased at 2 mM Phi. Cell wall localized AP activity in both Pi‐sufficient and Pi‐starved thalli decreased as Phi concentrations were increased from 0 to 2 mM. Intracellular ACP activity in Pi‐starved thalli decreased as Phi concentrations were increased from 0 to 2 mM but was not affected in Pi‐sufficient thalli. The induction of ACP isozyme activity and high‐affinity Pi uptake system in Pi‐starved thalli was inhibited by Phi. The present investigation shows that Phi interrupts the sensing mechanisms of U. lactuca to Pi‐limiting conditions.  相似文献   

18.
The combined effects of light intensity and nitrogen (NO3?) on growth rate, pigment content, and biochemical composition of Gracilaria foliifera v. angustissima (Harvey) Taylor was investigated using outdoor continuous cultures. Growth of Gracilaria increased linearly with increasing light to 0.43 doublings d?1 at high light levels (383 ly d?1 of in situ light), suggesting that light may often limit growth of this plant in nature. Chlorophyll a and phycoerythrin contents were inversely proportional to light level and growth rate. However, pigment content did not affect the growth capacity of Gracilaria. There was no increase in growth or pigment content with increasing additions of nitrogen. The low nitrogen treatment was unenriched seawater that had higher NO3? levels than most coastal waters (influent = 8.61 μM; residual = 0.94 μM). When growing near its maximum rate under high light intensities, Gracilaria had a significantly (P < 0.001) lower phycoerythrin: chlorophyll a ratio (phyco: Chl a) than did Gracilaria growing more slowly under lower light (Phyco:Chl a of 2.8 ± 0.2 vs. 3.8 ± 0.3). Faster growing plants also had C:N ratios above 10, indicating N- limitation. In addition to harvesting light the phycobiliproteins of Gracilaria may store nitrogen. Growth rates of Gracilaria correlated negatively with ash (r =–0.85) and positively with the carbon: phycoerythrin ratio (r = 0.85), suggesting that these two indices can be used to estimate growth in the field.  相似文献   

19.
The pigment composition of six species of Tetraselmis (Prasinophyceae) was analyzed using improved HPLC methods. All pigment extracts showed three peaks corresponding to unknown carotenoids. The isolated pigments were analyzed using UV–Vis spectroscopy, electrospray ionization–mass spectrometry (ESI–MS), and when carotenoid esters were suspected, gas chromatography–mass spectrometry (GC–MS) of the methyl ester and dimethyloxazoline derivative of the corresponding fatty acid. The new pigments were determined to be loroxanthin, loroxanthin 19‐(2‐decenoate), and loroxanthin 19‐(2‐dodecenoate); this is the first time these pigments have been described in the genus Tetraselmis. Moreover, this is the first report of esterification of 2‐decenoic acid to loroxanthin. The relative contents of these pigments depended on the light regime, with the lowest proportions measured at the highest photon flux density assayed. The implications of the identification of these pigments in the genus Tetraselmis for the pigment types previously described in the class Prasinophyceae are discussed.  相似文献   

20.
The chlorophyte macroalgae Ulva fenestrata (Postels and Ruprecht) and Enteromorpha intestinalis (Linnaeus) Link. were grown under various nutrient regimes in indoor semi-continuous and batch cultures. Tissue nitrogen contents ranged from 1.3–5.4% N (dry wt), whereas tissue P ranged from 0.21–0.56% P (dry wt). Growth in low nitrogen medium resulted in N:P ratios of 5–8, whereas growth in high nitrogen medium resulted in N:P ratios of 21–44. For U. fenestrata, tissue N:P < 16 was indicative of N-limitation. Tissue N:P 16–24 was optimal for growth and tissue N:P > 24 was indicative of P-limitation. Growth of U. fenestrata was hyperbolically related to tissue N but linearly related to tissue P. Phosphorus-limited U. fenestrata maintained high levels of tissue N, but N-limited algae became depleted of P. For E. intestinalis, tissue N remained at maximum levels during P-limitation whereas tissue P decreased to about 85% of maximal levels during N-limitation. Growth rates for U. fenestrata decreased faster during P-limitation than during N-limitation. Simultaneously, tissue P was depleted faster than tissue N. Our results suggest that comparing tissue N and P of macroalage grown in batch cultures is useful for monitoring the nutritional status of macroalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号