首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iron bioavailability in Lake Superior was assessed during fieldsurveys conducted in 2001–2002. Dissolved iron (Fed) rangedbetween 1 and 4 nM at offshore stations and >10 nM at mostnearshore sites. Iron availability was assessed using a luminescentSynechococcus bioreporter comprising a luciferase reporter controlledby an iron-responsive promoter isiAB. Bioreporter luminescencewas negatively correlated to Fed measured in the samples. Distancefrom shore was a better predictor of iron bioavailability thanwas season. Water collected from most offshore stations sampledduring spring and summer elicited higher bioreporter luminescencethan did nearshore sites. Iron availability did not vary withdepth during summer, despite the presence of elevated levelsof Fed in the hypolimnion at most stations. Ultrafiltration(0.02 µm) of Fed at two offshore sites demonstrated Fedto be present mainly in a colloidal phase, yet the bioreporterresponded solely to iron contained in the soluble phase. Duringspring, a parallel immunochemical assay of diatoms resultedin the detection of ferredoxin (Fd) but not flavodoxin (Flvd)at five stations indicating the presence of an iron sufficientassemblage of diatoms at these sites. Whereas neither bioreporternor immunochemical approaches conducted during spring supportedphysiological iron deficiency among Lake Superior phytoplankton,the results did point to differences in the availability ofiron to prokaryotes and eukaryotes.  相似文献   

2.
  • 1 The C:P ratios of seston, bacteria, phytoplankton and zooplankton were measured twice a week in situ in mesotrophic, large and deep Lake Constance from April to December 1995. Except for zooplankton, a strong seasonality was exhibited with low C:P ratios during P‐enriched early spring conditions and high values during P‐depleted summer conditions.
  • 2 Molar C:P ratios of seston varied between 180:1 and 460:1 demonstrating moderate phosphorus limitation in spring and during the clear‐water phase, and strong limitation for the rest of the season. The sestonic C:P ratio increased significantly during two decades of re‐oligotrophication of Lake Constance, reflecting an enhanced phosphorus limitation of the plankton community in summer. Molar C:P ratios of bacteria and phytoplankton varied seasonally between 50:1 and 130:1 and 180:1 and 500:1, respectively, and indicate carbon or light limitation in winter and phosphorus limitation in summer. Zooplankton had a molar C:P ratio of about 124:115 which was nearly constant throughout the seasons.
  • 3 These differences in the C:P ratios of planktonic organisms have direct implications for phosphorus recycling within the food web as C:P ratios of excreta should be highly variable.
  相似文献   

3.
A study of the limnological characteristics was conducted from January through November, 1970 of Lake Champlain, Vermont and New York, U.S.A. The seasonal and spatial distribution of soluble nitrate, total phosphate and reactive silicate concentrations from 20 stations are presented here. Results for soluble nitrate concentrations indicate that concentrations in the northeast area of the lake are significantly lower throughout the year than the open lake and bay stations in the western main portion of the lake. Three of the shallow bay stations generally had higher concentrations of nitrate than all other stations. Concentrations of reactive silicon dioxide do not show the same general trends as the nitrata data. Silicate concentrations in the western open portions are higher in the winter and lower in the summer than other areas. The northeast arm does not show the dramatic difference in silicates as for nitrate concentrations. The shallow bays had significantly higher silicate concentrations also, especially during peak spring runoff. No detectable soluble phosphate was measured in the surface waters of the lake. Total particulate phosphate concentrations remained relatively constant from station to station, and throughout the season. The results of the measurements of soluble nitrate and silicate generally support the hypothesis that Lake Champlain is composed of a number of distinct water masses. The general pattern of total phosphate concentrations however, does not support this hypothesis. A comparison of the three major nutrients in Lake Champlain with the St. Lawrence Great Lake indicates that the trophic status of Lake Champlain is generally higher than Lake Superior and very similar to the open waters of Lake Michigan and Lake Huron.  相似文献   

4.
Algal nutrient enrichment bioassays were conducted between May 1975 and August 1978 using water samples collected from Chautauqua Lake, New York. Photosynthetic fixation rates of natural phytoplankton assemblages were enhanced by additions of phosphorus and nitrogen, although enrichment with other nutrients had no significant stimulatory effect on algal photosynthesis. Whereas phosphorus stimulated in spring and early summer, both nitrogen and phosphorus enhanced photosynthesis in midsummer and fall. Relative to the effect of phosphorus enrichment, enhancement of photosynthesis by nitrogen during the summer and fall was highest in the northern part of the lake. During the period of ice cover, photosynthesis did not appear to be limited by nutrients in that nutrient additions (P, N, Si, C, Fe, trace metals) did not enhance fixation rates. Observed temporal fluctuations in the response of the algae to P and N correlated with changes in the lake water N:P ratio as well as with temporal changes in dissolved orthophosphate and nitrate-nitrite nitrogen. The N:P ratio decreased drastically in the summer and remained at ca. 10 or less through mid-fall, suggesting that N concentrations were inadequate for the non-N-fixing phytoplankton. Studies over 3 yr indicate that states of P and N limitation undergo time-space fluctuations that occur in a cyclic pattern in the surface waters of Chautauqua Lake.  相似文献   

5.
1. The sources of nitrogen for phytoplankton were determined for a bloom‐prone lake as a means of assessing the hypothesis that cyanobacteria dominate in eutrophic lakes because of their ability to fix nitrogen when the nitrogen : phosphorous (N : P) supply ratio is low and nitrogen a limiting resource. 2. Nitrogen fixation rates, estimated through acetylene reduction with 15N calibration, were compared with 15N‐tracer estimates of ammonium and nitrate uptake monthly during the ice‐free season of 1999. In addition, the natural N stable isotope composition of phytoplankton, nitrate and ammonium were measured biweekly and the contribution of N2 to the phytoplankton signature estimated with a mixing model. 3. Although cyanobacteria made up 81–98% of phytoplankton biomass during summer and autumn, both assays suggested minimal N acquisition through fixation (<9% for the in‐situ incubations; <2% for stable isotope analysis). Phytoplankton acquired N primarily as ammonium (82–98%), and secondarily as nitrate (15–18% in spring and autumn, but <5% in summer). Heterocyst densities of <3 per 100 fixer cells confirmed low reliance on fixation. 4. The lake showed symptoms of both light and nitrogen limitation. Cyanobacteria may have dominated by monopolizing benthic sources of ammonium, or by forming surface scums that shaded other algae.  相似文献   

6.
The complex chemical speciation of Fe in aquatic systems and the uncertainties associated with biological assimilation of Fe species make it difficult to assess the bioavailability of Fe to phytoplankton in relation to total dissolved Fe concentrations in natural waters. We developed a cyanobacterial Fe‐responsive bioreporter constructed in Synechococcus sp. strain PCC 7942 by fusing the Fe‐responsive isiAB promoter to Vibrio harveyi luxAB reporter genes. A comprehensive physiological characterization of the bioreporter has been made in defined Fraquil medium at free ferric ion concentrations ranging from pFe 21.6 to pFe 19.5. Whereas growth and physiological parameters are largely constrained over this range of Fe bioavailability, the bioreporter elicits a luminescent signal that varies in response to Fe deficiency. A dose‐response characterization of bioreporter luminescence made over this range of Fe3 + bioavailability demonstrates a sigmoidal response with a dynamic linear range extending between pFe 21.1 and pFe 20.6. The applicability of using this Fe bioreporter to assess Fe availability in the natural environment has been tested using water samples from Lake Huron (Laurentian Great Lakes). Parallel assessment of dissolved Fe and bioreporter response from these samples reinforces the idea that measures of dissolved Fe should not be considered alone when assessing Fe availability to phytoplankton communities.  相似文献   

7.
We present in situ biophysical measurements and bioassay experiments that demonstrate iron limitation of primary productivity during the spring bloom in the central North Atlantic. Mass balance calculations indicate that nitrate drawdown is iron (Fe)-limited and that aeolian Fe supply to this region cannot support maximal phytoplankton growth during the bloom. Using a simple simulation model, we show that relief of Fe limitation during the spring bloom can increase nitrate drawdown and, hence, new primary production, by 70%. We conclude that the episodic nature of iron supplied by dust deposition is an important factor controlling the dynamics of the spring bloom. From this, we hypothesize that variability in the timing and magnitude of the spring bloom in response to aeolian Fe supply will affect carbon drawdown and food web dynamics in the central North Atlantic.  相似文献   

8.
The effects of iron limitation on photoacclimation to dynamic irradiance were studied in Phaeocystis antarctica G. Karst. and Fragilariopsis cylindrus (Grunow) W. Krieg. in terms of growth rate, photosynthetic parameters, pigment composition, and fluorescence characteristics. Under dynamic light conditions mimicking vertical mixing below the euphotic zone, P. antarctica displayed higher growth rates than F. cylindrus both under iron (Fe)–replete and Fe‐limiting conditions. Both species showed xanthophyll de‐epoxidation that was accompanied by low levels of nonphotochemical quenching (NPQ) during the irradiance maximum of the light cycle. The potential for NPQ at light levels corresponding to full sunlight was substantial in both species and increased under Fe limitation in F. cylindrus. Although the decline in Fv/Fm under Fe limitation was similar in both species, the accompanying decrease in the maximum rate of photosynthesis and growth rate was much stronger in F. cylindrus. Analysis of the electron transport rates through PSII and on to carbon (C) fixation revealed a large potential for photoprotective cyclic electron transport (CET) in F. cylindrus, particularly under Fe limitation. Probably, CET aided the photoprotection in F. cylindrus, but it also reduced photosynthetic efficiency at higher light intensities. P. antarctica, on the other hand, was able to efficiently use electrons flowing through PSII for C fixation at all light levels, particularly under Fe limitation. Thus, Fe limitation enhanced the photophysiological differences between P. antarctica and diatoms, supporting field observations where P. antarctica is found to dominate deeply mixed water columns, whereas diatoms dominate shallower mixed layers.  相似文献   

9.
  1. Daphnia are key organisms in pelagic food webs, acting as a food resource for fish and predatory zooplankton and regulating phytoplankton through grazing. Its population dynamic follows regular seasonal patterns, with spring peaks followed by summer population declines (midsummer declines, MSDs). Midsummer declines show high inter-annual variation, which has been attributed to different causes. However, the mechanisms controlling the MSD remain poorly understood, especially in deep stratified lakes.
  2. We tried to disentangle the factors causing Daphnia MSDs in Lake Lugano and Lake Iseo (in Switzerland and Italy), two deep peri-alpine lakes with similar trophic status and vertical mixing dynamics, characterised by phosphorus accumulation in the hypolimnion and variable mixing during late-winter turnovers.
  3. Specifically, we assessed the effects of three different hypothetical pathways according to which: (1) winter air temperature controls MSDs by influencing mixing depth during turnovers and epilimnetic phosphorus replenishment; (2) vernal air temperature influences MSD by accelerating the timing of spring population peak; and (3) summer temperature influences MSDs by increasing fish predation. We assessed the relative strength of these pathways using structural equation modelling on long-term datasets for the two lakes (29 years for Lake Lugano and 19 years for Lake Iseo).
  4. Between the hypothesised pathways, the one driven by winter air temperature (through P replenishment) influenced Daphnia abundance in spring in both lakes, but the effects propagated to summer Daphnia abundance only in Lake Lugano. Additionally, summer Daphnia abundance was influenced by the summer air temperature through a positive (although weak) effect. By comparison, vernal air temperature had no detectable effects on summer Daphnia abundance.
  5. The results revealed marked differences between the meromictic study lakes and the shallow hypertrophic water bodies that were the focus of previous research on Daphnia MSD, and also between the two study lakes. The influence of epilimnetic P replenishment on the summer Daphnia abundance in Lake Lugano, which was recovering from past eutrophication, may have reflected the greater susceptibility of deep, stratified lakes to P depletion after spring compared to shallow hypertrophic lakes or reservoirs. This effect might not have been detected in Lake Iseo because P was more consistently depleted during the study period (i.e. variance in the predictor was too low to detect an effect).
  6. This study highlighted the complexity of the effects of climate variability on Daphnia MSD in deep lakes, showing that the responses can differ even between two neighbouring lakes with similar vertical mixing dynamics and trophic status. At the same time, the results suggest that future increases in winter air temperature, caused by global warming, may cause critically low densities of Daphnia during spring and summer and compromise the ability of zooplankton to control phytoplankton biomass.
  相似文献   

10.
Lake Inba is one of the most eutrophic lakes in Japan. In this study, field sampling and nutrient enrichment bioassays were conducted to determine the seasonal patterns of nutrient limitation for phytoplankton growth in this lake. Phytoplankton biomass increased significantly with the additions of phosphorus (P) on almost all sampling dates, indicating P limitation of phytoplankton growth from spring to autumn. However, nitrogen (N) limitation was also observed during summer (i.e., 19 August). On 10 August, a typhoon struck Lake Inba. After this event, dissolved inorganic nitrogen (DIN) and phosphorus concentrations increased, probably because of increased river discharge. At the same time, phytoplankton growth in the control treatment became relatively high, with the addition of neither P nor N stimulating the growth. However, 10 days after the typhoon, the phytoplankton growth rate in the control treatment decreased, with only the addition of N having a significant positive effect on phytoplankton growth. N limitation during summer is caused by the low concentrations of DIN, as well as changes in the N:P ratio due to allochthonous nutrient loads. These results indicate that a reduction of both P and N input is necessary to control phytoplankton blooms in Lake Inba.  相似文献   

11.
Light has been identified as one of the main factors affecting seaweed ecophysiology. We investigated the dependence of nutrient metabolism on sun and shade light conditions and whether episodes of upwelling of nutrient‐rich subsuperficial water could reduce the summer nutrient limitation driving physiological changes in Palmaria palmata (L.) Kuntze. We measured the major nutrient pools, photosynthetic pigments, and light curves, under sun and shade conditions during a summer period when one upwelling was recorded. The redundancy analysis (RDA) produced two clear groups: sun‐ and shade‐acclimated algae. Light was the major predictive factor. Sun‐acclimated algae exhibited higher carbon (C) and lower nitrogen (N) and phosphorus (P) content in association with the storage of floridoside (main C reserve) to benefit from higher irradiance (under nutrient limitation). Among N pools, N reserves (phycoerythrin, nitrate) were a lower proportion of the total N in sun‐acclimated algae, suggesting their degradation to fulfill the N demands of the cell. The orthophosphate content was also lower in sun‐acclimated algae, indicating its utilization as a nutrient reserve. In contrast, N within cell walls and membranes and chl a contributed to a similar proportion of the total N in sun‐ and shade‐acclimated algae, suggesting a response to sustain cell integrity. Transient high nutrient concentration due to the upwelling was unrelated to the nutrient content of the thallus. The storage of C as floridoside from high light exposure was shown to be the driving force for the metabolic adjustment of P. palmata at the end of summer before the onset of dormancy.  相似文献   

12.
Microbes drive the biogeochemical cycles of marine ecosystems through their vast metabolic diversity. While we have a fairly good understanding of the spatial distribution of these metabolic processes in various ecosystems, less is known about their seasonal dynamics. We investigated the annual patterns of 21 biogeochemical relevant functions in an oligotrophic coastal ocean site by analysing the presence of key genes, analysing high-rank gene taxonomy and the dynamics of nucleotide variants. Most genes presented seasonality: photoheterotrophic processes were enriched during spring, phosphorous-related genes were dominant during summer, coinciding with potential phosphate limitation, and assimilatory nitrate reductases appeared mostly during summer and autumn, correlating negatively with nitrate availability. Additionally, we identified the main taxa driving each function at each season and described the role of underrecognized taxa such as Litoricolaceae in carbon fixation (rbcL), urea degradation (ureC), and CO oxidation (coxL). Finally, the seasonality of single variants of some families presented a decoupling between the taxonomic abundance patterns and the functional gene patterns, implying functional specialization of the different genera. Our study unveils the seasonality of key biogeochemical functions and the main taxonomic groups that harbour these relevant functions in a coastal ocean ecosystem.  相似文献   

13.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   

14.
The biochemical basis for variations in the critical nitrogen‐to‐phosphorus (N:P) ratio, which defines the transition between N‐ and P‐limitation of growth rate, is currently not well understood. To assess this issue, we cultured the cryptophyte Rhinomonas reticulata NOVARINO in chemostats with inflow nitrate‐to‐phosphate ratios ranging from 5 to 60 mol N·(mol P)?1 at two light intensities. The nitrate‐to‐phosphate ratio marking the transition between N‐ and P‐limitation was independent of light intensity and was between 30 and 45 mol N/mol P. In N‐limited cells, the particulate N:P ratio was stable at around 23 mol N/mol P over a range of inflow nitrate‐to‐phosphate from 5 to 30, whereas in P‐limited cells this ratio was around 90 mol N/mol P at inflow nitrate‐to‐phosphate ratios of 45 and 60. Cell phosphorus decreased with increasing nitrate‐to‐phosphate ratio up to the critical nitrate‐to‐phosphate ratio for each light intensity, above which they remained stable. The C:P of R. reticulata cells increased with increasing inflow nitrate‐to‐phosphate from around the Redfield value (106 mol C/mol P) to around 700. There was a significant effect of light on C:P in the N‐ limited cells, with higher C:P under high light conditions that was not observed in the P‐limited chemostats. Cellular RNA was not influenced by light but was greatly influenced by the type of nutrient limitation. In contrast, chl a, C, N, and protein were not influenced by the nitrate‐to‐phosphate in the inflow medium. Total protein per RNA was independent of light intensity but exhibited a maximum at inflow nitrate‐to‐phosphate of 30. Our results suggest a strong “two‐level” homeostatic mechanism of cellular N and P content in R. reticulata with two distinct states that are determined by the type of nutrient limitation and not by light.  相似文献   

15.
Light, nutrient concentrations and phytoplankton photosynthesis were studied in a Lake Tahoe sediment plume during maximum spring runoff. They were compared with conditions in clear lake waters not influenced by inlets. In the plume, nutrient concentrations increased in proportion to sediment density whereas light transmission of water was reduced with little effect on the spectral composition except for red light. Light inhibition of photosynthesis at the lake surface was less pronounced in the plume than in clear water and light limitation occurred more rapidly in deeper layers. Evidence from both lake experiments and laboratory bioassays suggests that iron had the greatest stimulatory effect on both photosynthetic activity and biomass growth at maximum sediment densities near the stream inlet. Because of less surface inhibition, photosynthetic light energy utilization efficiency was usually higher in the sediment plume which occurred in relatively shallow areas near the shore. In order to estimate overall effects of enhanced turbidity associated with nutrient loading on Lake Tahoe's primary productivity, profiles taken in shallow areas near the lakeshore were extrapolated to the maximum depth of photosynthesis. Light limitation would cause decreasing productivity, but nutrient stimulation would make this effect less pronounced. The overall effect would depend on the extent of sediment loading relative to nutrient loading.  相似文献   

16.
The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.  相似文献   

17.
Analysis of aquatic ecosystem data collected from large water bodies must consider spatial variations. A suite of pelagic survey stations exists for the Laurentian Great Lakes, but little is known about their redundancy. We present a strategy to delineate the lakes into zones based on water quality and phytoplankton biovolume. Water samples were collected from 72 sites in two seasons (spring and summer) from 2007 to 2010 in all five lakes. Integrated samples were analyzed for phytoplankton biovolume and nine water quality parameters. We conducted cluster analysis, principal components analysis and non-metric multidimensional scaling methods for water quality and phytoplankton taxon-specific biovolume for the Great Lakes basin and for each lake separately. There were significant lake-to-lake differences, and based on lake-specific analyses, Lake Superior, Lake Michigan and Lake Erie were each divided into three zones; Lake Huron and Lake Ontario were each grouped into two zones. The zones identified by water quality and phytoplankton provide an understanding of spatial distributions for evaluating monitoring data.  相似文献   

18.
1. The responses of nutrient concentrations, plankton, macrophytes and macrozoobenthos to a reduction in external nutrient loading and to contemporary climatic change were studied in the shallow, moderately flushed Lake Müggelsee (Berlin, Germany). Weekly to biweekly data from 1979 to 2003 were compared with less frequently collected historical data. 2. A reduction of more than 50% in both total phosphorus (TP) and total nitrogen (TN) loading from the hypertrophic (1979–90) to the eutrophic period (1997–2003) was followed by an immediate decline in TN concentrations in the lake. TP concentrations only declined during winter and spring. During summer, phosphorus (P) release from the sediments was favoured by a drastic reduction in nitrate import. Therefore, Müggelsee acted as a net P source for 6 years after the external load reduction despite a mean water retention time of only 0.1–0.16 years. 3. Because of the likely limitation by P in spring and nitrogen (N) in summer, phytoplankton biovolume declined immediately after nutrient loading was reduced. The formerly dominant cyanobacteria (Oscillatoriales) Limnothrix redekei and Planktothrix agardhii disappeared, but the mean biovolume of the N2‐fixing species Aphanizomenon flosaquae remained constant. 4. The abundance of Daphnia spp. in summer decreased by half, while that of cyclopoid copepod species increased. Abundances of benthic macroinvertebrates (mainly chironomids) decreased by about 80%. A resource control of both phytoplankton and zooplankton is indicated by significant positive correlations between nutrient concentrations and phytoplankton biovolume and between phytoplankton and zooplankton biomass. 5. Water transparency in spring increased after nutrient reduction and resulted in re‐colonisation of the lake by Potamogeton pectinatus. However, this process was severely hampered by periphyton shading and grazing by waterfowl and fish. 6. Water temperatures in Müggelsee have increased in winter, early spring and summer since 1979. The earlier development of the phytoplankton spring bloom was associated with shorter periods with ice cover, while direct temperature effects were responsible for the earlier development of the daphnid maximum in spring.  相似文献   

19.
SUMMARY. 1. A model relating log chlorophyll a concentration to log epilimnetic total phosphorus (TP) concentration was re-examined based on: (a) comparative and temporal studies of four stratifying Wisconsin and other highly eutrophic temperate lakes; (b) comparative summer lake surveys from Iowa and Alberta.
2. Although P-limited, deeper lakes with long hydraulic residence times and low external and internal nutrient loading in summer had summer chlorophyll a yields below model predictions based on spring and summer epilimnetic TP concentrations.
3. For lakes with summer epilimnetic TP between 30 and 80 mg m−3, chlorophyll a concentrations exceeded model predictions based on summer TP. This relationship held even for Lake Delavan, Wisconsin, where the ratio of available N to P was unfavourably low during spring turnover, and where the trans-thermocline N:P flux ratio was sub-optimal for algal needs in early summer.
4. With increasing summer TP concentrations and/or increasing epilimnetic circulation depth (>5m), chlorophyll a concentrations fell below model predictions—independent of the potential for N-limitation. This plateauing in chlorophyll a response occurred at lower epilimnetic TP content (−2) in lakes with elevated non-algal light extinction coefficients. Using Tailing's algorithm for the'column compensation point' (algal photosynthesis = algal respiration over diel cycle), light limitation best explains this fall-off in chlorophyll a yield.
5. The failure of the Dillon & Rigler (1974) spring TP v . summer chlorophyll a model for these Wisconsin lakes is unrelated to N-limitation. Instead, it reflects internal adjustment in take TP in response to stratification and seasonal external P loading.  相似文献   

20.
The phosphorus (P) deficiency status of phytoplankton communities was measured using the physiological indicator, alkaline phosphatase activity (APA) and nutrient-addition growth bioassays in field sampled from four northeastern Minnesota lakes and the far western arm of Lake Superior. Phosphorus additions generally reduced APA, while other treatments increased activity. Samples receiving nitrogen (N) and P increased APA after a long lag period. P-addition bioassays of Lake Superior were consistent with phytoplankton P limitation and variations in APA indicated potential seasonal and spatial changes in P deficiency status. The results suggest that APA reliably reflected the phytoplankton P status, but may not provide sufficient information when N or NP limitation is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号