首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pattern formation in plants is now thought to be primarily dependent on positional information during development. We discuss the prevalent theories on how position is deciphered by cells in an organism and highlight the recent advances implicating molecules of the cell wall or extracellular matrix (ECM) in this process. We compare the functions of the ECM in plants and animals and describe the various cell and substrate adhesion molecules of the animal ECM which play a role in morphogenesis and cell movement. We propose that analogous molecules may occur in plants and provide evidence for the presence of a substrate adhesion molecule like vitronectin in plants and algae. We provide a model for how substrate adhesion molecules may be involved in a special case of cell movement in plants, pollination.  相似文献   

2.
The development of atherosclerosis involves phenotypic changes among vascular smooth muscle cells (VSMCs) that correlate with stiffening and remodeling of the extracellular matrix (ECM). VSMCs are highly sensitive to the composition and mechanical state of the surrounding ECM, and ECM remodeling during atherosclerosis likely contributes to pathology. We hypothesized that ECM mechanics and biochemistry are interdependent in their regulation of VSMC behavior and investigated the effect of ligand presentation on certain stiffness-mediated processes. Our findings demonstrate that substrate stiffening is not a unidirectional stimulus—instead, the influence of mechanics on cell behavior is highly conditioned on ligand biochemistry. This “stiffness-by-ligand” effect was evident for VSMC adhesion, spreading, cytoskeletal polymerization, and focal adhesion assembly, where VSMCs cultured on fibronectin (Fn)-modified substrates showed an augmented response to increasing stiffness, whereas cells on laminin (Ln) substrates showed a dampened response. By contrast, cells on Fn substrates showed a decrease in myosin light chain (MLC) phosphorylation and elongation with increasing stiffness, whereas Ln supported an increase in MLC phosphorylation and no change in cell shape with increasing stiffness. Taken together, these findings show that identical cell populations exhibit opposing responses to substrate stiffening depending on ECM presentation. Our results also suggest that the shift in VSMC phenotype in a developing atherosclerotic lesion is jointly regulated by stromal mechanics and biochemistry. This study highlights the complex influence of the blood vessel wall microenvironment on VSMC phenotype and provides insight into how cells may integrate ECM biochemistry and mechanics during normal and pathological tissue function.  相似文献   

3.
Tissue‐embedded cells are often exposed to a complex mixture of extracellular matrix (ECM) molecules, to which they bind with different cell adhesion receptors and affinities. Differential cell adhesion to ECM components is believed to regulate many aspects of tissue function, such as the sorting of specific cell types into different tissue compartments or ECM niches. In turn, aberrant switches in cell adhesion preferences may contribute to cell misplacement, tissue invasion, and metastasis. Methods to determine differential adhesion profiles of single cells are therefore desirable, but established bulk assays usually only test cell population adhesion to a single type of ECM molecule. We have recently demonstrated that atomic force microscopy‐based single‐cell force spectroscopy (SCFS), performed on bifunctional, microstructured adhesion substrates, provides a useful tool for accurately quantitating differential matrix adhesion of single Chinese hamster ovary cells to laminin and collagen I. Here, we have extended this approach to include additional ECM substrates, such as bifunctional collagen I/collagen IV surfaces, as well as adhesion‐passivated control surfaces. We investigate differential single cell adhesion to these substrates and analyze in detail suitable experimental conditions for comparative SCFS, including optimal cell‐substrate contact times and the impact of force cycle repetitions on single cell adhesion force statistics. Insight gained through these experiments may help in adapting this technique to other ECM molecules and cell systems, making directly comparative SCFS a versatile tool for comparing receptor‐mediated cell adhesion to different matrix molecules in a wide range of biological contexts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT. Cosmarium reniforme (Zygnematophyceae, Streptophyta) is a green alga that is commonly found in biofilms of wetlands of the Adirondack region, NY (USA). Two distinctive characteristics that are critical to this alga's survival in a benthic biofilm are its elaborate cell morphology and extracellular matrix (ECM). In this study, ultrastructural, immunocytochemical, and experimental methodologies were employed in order to elucidate the cellular characteristics that are critical for survival in a biofilm. The ECM consists of a thick, outwardly lobed cell wall (CW), which contains a patterned network of structurally complex pores. Each pore consists of a narrow channel, terminating internally at a bulb that invaginates localized regions of the plasma membrane. The outer region of the pore contains arabinogalactan protein-like and extensin epitopes that are likely involved in adhesion mechanisms of the cell. External to the CW is the extracellular polymeric substance that is employed in ensheathment of the cell to the substrate and in gliding motility. The architectural design/biochemical make-up of the CW and a secretory system that encompasses the coordinated activities of the endomembrane and cytomotile/cytoskeletal systems provide the organism with effective mechanisms to support life within the biofilm complex.  相似文献   

5.
One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA) within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM). Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS) in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus.  相似文献   

6.
Cells sense and respond to the biochemical and physical properties of the extracellular matrix (ECM) through adhesive structures that bridge the cell cytoskeleton and the surrounding environment. Integrin‐mediated adhesions interact with specific ECM proteins and sense the rigidity of the substrate to trigger signalling pathways that, in turn, regulate cellular processes such as adhesion, motility, proliferation and differentiation. This process, called mechanotransduction, influenced by the involvement of different integrin subtypes and their high ECM–ligand binding specificity, contributes to the cell‐type‐specific mechanical responses. In this review, we describe how the expression of particular integrin subtypes affects cellular adaptation to substrate rigidity. We then explain the role of integrins and associated proteins in mechanotransduction, focusing on their specificity in mechanosensing and force transmission.  相似文献   

7.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300-1000 micrograms/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300-1000 micrograms/ml), which mimics a binding domain of LM, and alpha-lactalbumin (1-10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and alpha-lactalbumin inhibited cell migration 50%. Antibodies against integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

8.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300–1000 μg/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300–1000 μg/ml), which mimics a binding domain of LM, and α-lactalbumin (1–10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and α-lactalbumin inhibited cell migration 50%. Antibodies agasinst integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

9.
Cell division and semicell expansion in the filamentous desmid Bambusina brebissonii Kütz. were investigated using transmission and scanning electron microscopy. Interphase cells are typical of desmids, containing a full complement of organelles and a cell wall penetrated by complex pores, but the cells lack a well-defined median constriction. Cell division involves an open spindle and the centripetal growth of a primary septum formed by the fusion of small, dark-staining vesicles probably derived from dictyosomes. Telophase nuclei are separated by a system of interzonal microtubules and numerous large, lighter-staining vesicles also derived from the dictyosomes. Following cell division, an elaborate replicate cross wall is formed which consists of both primary and secondary wall layers. During semicell expansion, a portion of the primary wall splits apart as the new semicells evaginate and expand to their full size. The primary wall stops splitting at a thick ring of secondary wall material leaving the cells united by the remaining common layer of primary wall. When semicell expansion is completed, the primary wall is not shed from the lateral walls of the new semicells, and pores through both primary and secondary wall layers begin to produce sheath material. However, pores in the end walls of cells do not function unless the filament is broken. The intact primary wall between cells and the absence of sheath production between cells comprise the mechanism serving to hold the cells of Bambusina brebissonii together in long filaments.  相似文献   

10.
The adhesion and aggregation of platelets during hemostasis and thrombosis represents one of the best-understood examples of cell–matrix adhesion. Platelets are exposed to a wide variety of extracellular matrix (ECM) proteins once blood vessels are damaged and basement membranes and interstitial ECM are exposed. Platelet adhesion to these ECM proteins involves ECM receptors familiar in other contexts, such as integrins. The major platelet-specific integrin, αIIbβ3, is the best-understood ECM receptor and exhibits the most tightly regulated switch between inactive and active states. Once activated, αIIbβ3 binds many different ECM proteins, including fibrinogen, its major ligand. In addition to αIIbβ3, there are other integrins expressed at lower levels on platelets and responsible for adhesion to additional ECM proteins. There are also some important nonintegrin ECM receptors, GPIb-V-IX and GPVI, which are specific to platelets. These receptors play major roles in platelet adhesion and in the activation of the integrins and of other platelet responses, such as cytoskeletal organization and exocytosis of additional ECM ligands and autoactivators of the platelets.The balance between hemostasis and thrombosis relies on a finely tuned adhesive response of blood platelets. Inadequate adhesion leads to bleeding, whereas excessive or inappropriate adhesion leads to thrombosis. Resting platelets are nonadhesive anuclear discs and do not interact with the vessel wall, but they have a plethora of receptors that sense activating signals (agonists) of various sorts. The activating signals include soluble factors such as thrombin, adenosine diphosphate (ADP), and epinephrine, all of which act on G-protein-coupled receptors (GPCRs) on the platelets. In addition, certain receptors for extracellular matrix (ECM) proteins (e.g., GPIb, GPVI, and some integrins) can also act as activating receptors. These diverse receptors trigger intracellular signaling pathways that activate (1) actin assembly leading to cell shape change and extension of filopodia; (2) exocytosis of secretory granules that release additional platelet agonists as well as adhesive ECM proteins; and (3) activation of additional cell-surface receptors such as the major platelet-specific integrin, αIIbβ3, that contribute further to the adhesion and aggregation of activated platelets. Thus, the interactions of platelet-ECM adhesion receptors with ECM proteins from the vessel wall, from the plasma, and from the platelets themselves, are central to both the initial adhesion and the subsequent activation and aggregation of platelets (Varga-Szabo et al. 2008). These adhesive interactions, together with coagulation (to which platelets also contribute), generate the fibrin clot, essentially a facultative ECM that forms the initial occlusion of the damaged vessel but also serves as a subsequent ECM substrate for wound healing. In this article, we will review what is known about the roles of ECM proteins and their receptors in platelet adhesion and aggregation, summarize the roles of the clot and provisional ECM in subsequent wound healing, point out various unanswered questions, and discuss briefly the contributions of the relevant cell–ECM interactions to disease and the potential for therapeutic interventions.  相似文献   

11.
The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.  相似文献   

12.
Chemomechanical characteristics of the extracellular materials with which cells interact can have a profound impact on cell adhesion and migration. To understand and modulate such complex multiscale processes, a detailed understanding of the feedback between a cell and the adjacent microenvironment is crucial. Here, we use computational modeling and simulation to examine the cell-matrix interaction at both the molecular and continuum lengthscales. Using steered molecular dynamics, we consider how extracellular matrix (ECM) stiffness and extracellular pH influence the interaction between cell surface adhesion receptors and extracellular matrix ligands, and we predict potential consequences for focal adhesion formation and dissolution. Using continuum level finite element simulations and analytical methods to model cell-induced ECM deformation as a function of ECM stiffness and thickness, we consider the implications toward design of synthetic substrata for cell biology experiments that intend to decouple chemical and mechanical cues.Key words: cell adhesion, focal adhesion, steered molecular dynamics, finite element, chemomechanics, multiscale modeling, elasticity theory  相似文献   

13.
Binding of integrins to the extracellular matrix (ECM) activates various signal transduction pathways and regulates gene expression in many cell types. Integrin-dependent cytoplasmic protein/protein interactions are necessary for activation of those signal transduction cascades. In our studies we investigated a possible association of pp125FAK, an adhesion involved tyrosine kinase, with the integrin β1 subunit. Further we wanted to know to which extent protein tyrosine phosphorylation affects cell adhesion to the ECM and the possible β1 integrin/pp125FAKcomplex. We were able to show that in HaCaT cells (a human keratinocyte derived cell line) the integrin β1 subunit is associated with tyrosine kinase pp125FAK. This association was observed in ECM-adherent cells and nonadherent cells and is independent of tyrosine phosphorylation. However, cell adhesion of HaCaT cells to specific substrates requires tyrosine phosphorylation since genistein treatment that blocks phosphorylation of many cellular proteins as pp125FAKled to a reduced substrate adhesion.  相似文献   

14.
Chemomechanical characteristics of the extracellular materials with which cells interact can have a profound impact on cell adhesion and migration. To understand and modulate such complex multiscale processes, a detailed understanding of the feedback between a cell and the adjacent microenvironment is crucial. Here, we use computational modeling and simulation to examine the cell-matrix interaction at both the molecular and continuum lengthscales. Using steered molecular dynamics, we consider how extracellular matrix (ECM) stiffness and extracellular pH influence the interaction between cell surface adhesion receptors and extracellular matrix ligands, and we predict potential consequences for focal adhesion formation and dissolution. Using continuum-level finite element simulations and analytical methods to model cell-induced ECM deformation as a function of ECM stiffness and thickness, we consider the implications toward design of synthetic substrata for cell biology experiments that intend to decouple chemical and mechanical cues.  相似文献   

15.
The mechanical properties of Rhodococcus RC291 were measured using force spectroscopy equipped with a bacterial cell probe. Rhodococcal cells in the late growth stage of development were found to have greater adhesion to a silicon oxide surface than those in the early growth stage. This is because there are more extracellular polymeric substances (EPS) that contain nonspecific binding sites available on the cells of late growth stage. It is found that EPS in the late exponential phase are less densely bound but consist of chains able to extend further into their local environment, while the denser EPS at the late stationary phase act more to sheath the cell. Contraction and extension of the EPS could change the density of the binding sites, and therefore affect the magnitude of the adhesion force between the EPS and the silicon oxide surface. By treating rhodococcal EPS as a surface-grafted polyelectrolyte layer and using scaling theory, the interaction between EPS and a solid substrate was modelled for the cell approaching the surface which revealed that EPS possess a large capacity to store charge. Changing the pH of the surrounding medium acts to change the conformation of EPS chains.  相似文献   

16.
Human mesenchymal stem cells (hMSCs) are colony‐forming unit fibroblasts (CFU‐F) derived from adult bone marrow and have significant potential for many cell‐based tissue‐engineering applications. Their therapeutic potential, however, is restricted by their diminishing plasticity as they are expanded in culture. In this study, we used N‐isopropylacrylamide (NIPAM)‐based thermoresponsive polyelectrolyte multilayer (N‐PEMU) films as culture substrates to support hMSC expansion and evaluated their effects on cell properties. The N‐PEMU films were made via layer‐by‐layer adsorption of thermoresponsive monomers copolymerized with charged monomers, positively charged allylamine hydrochloride (PAH), or negatively charged styrene sulfonic acid (PSS) and compared to fetal bovine serum (FBS) coated surfaces. Surface charges were shown to alter the extracellular matrix (ECM) structure and subsequently regulate hMSC responses including adhesion, proliferation, integrin expression, detachment, and colony forming ability. The positively charged thermal responsive surfaces improved cell adhesion and growth in a range comparable to control surfaces while maintaining significantly higher CFU‐F forming ability. Immunostaining and Western blot results indicate that the improved cell adhesion and growth on the positively charged surfaces resulted from the elevated adhesion of ECM proteins such as fibronectin on the positively charge surfaces. These results demonstrate that the layer‐by‐layer approach is an efficient way to form PNIPAM‐based thermal responsive surfaces for hMSC growth and removal without enzymatic treatment. The results also show that surface charge regulates ECM adhesion, which in turn influences not only cell adhesion but also CFU‐forming ability and their multi‐lineage differentiation potential. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
18.
Interactions between cells and microenvironments are essential to cellular functions such as survival, exocytosis and differentiation. Cell adhesion to the extracellular matrix (ECM) evokes a variety of biophysical changes in cellular organization, including modification of the cytoskeleton and plasma membrane. In fact, the cytoskeleton and plasma membrane are structures that mediate adherent contacts with the ECM; therefore, they are closely correlated. Considering that the mechanical properties of the cell could be affected by cell adhesion-induced changes in the cytoskeleton, the purpose of this study was to investigate the influence of the ECM on the elastic properties of fixed macrophage cells using atomic force microscopy. The results showed that there was an increase (~50 %) in the Young’s modulus of macrophages adhered to an ECM-coated substrate as compared with an uncoated glass substrate. In addition, cytochalasin D-treated cells had a 1.8-fold reduction of the Young’s modulus of the cells, indicating the contribution of the actin cytoskeleton to the elastic properties of the cell. Our findings show that cell adhesion influences the mechanical properties of the plasma membrane, providing new information toward understanding the influence of the ECM on elastic alterations of macrophage cell membranes.  相似文献   

19.
Students of metazoan biology have traditionally viewed the extracellular matrix (ECM) as a substrate with which cells interact to participate in developmental pattern formation and define a specific location. In contrast, the plant cell wall has been viewed as a cage that limits and thus directs plant cell morphology, and perhaps for this reason many have shied away from calling the plant cell wall the ECM. The recent discovery of a variety of receptor molecules and their ligands on the surface of plant cells and the intimate role cell walls play in development should direct our thinking toward a more dynamic view of the plant cell wall. A recent example, is the discovery of wall associated kinases (WAKs), which may well signal between the ECM and the cell and are required for cell expansion.  相似文献   

20.
Extracellular matrix (ECM) polymers secreted by the diatoms Achnanthes longipes Ag. and Cymbella cistula (Ehr.) Kirchn. completely encase the cell and are responsible for adhesion and other interactions with the external environment. To preserve details of the highly hydrophilic ECM in the native state and to preserve, with a high degree of fidelity, the intracellular structures involved in synthesis of extracellular polymers, we applied a suite of cryotechniques. The methods included high‐resolution visualization of surfaces using cryo‐field emission SEM (cryo‐FESEM) and preservation for TEM observation of thin sections by high‐pressure freezing (HPF) and freeze substitution (FS). The extracellular structures of diatoms plunge‐frozen in liquid ethane, etched at low temperature, and observed on a cryostage in the FESEM showed overall dimensions and shapes closely comparable to those observed with light microscopy. Cryo‐FESEM demonstrated the pervasive nature of the extracellular polymers and their importance in cell–substratum and cell–cell associations and revealed details of cell attachment processes not visible using other SEM techniques or light microscopy. The layer of ECM coating the frustule and entirely encapsulating cells of A. longipes and C. cistula was shown to have a significant role in initial cell adhesion and subsequent interaction with the environment. Trails of raphe‐associated ECM, generated during cell motility, were shown at high resolution and consist of anastomoses of coiled and linear strands. Cryo‐FESEM revealed a sheet‐like mucilage covering stalks. HPF/FS of A. longipes resulted in excellent preservation of intra‐ and extracellular structures comparable to previous reports for animals and higher plants and revealed several organelles not described previously. Three distinct vesicle types were identified, including a class closely associated with Golgi bodies and postulated to participate in formation of the extracellular adhesive structures. HPF/FS showed a number of continuous diatotepic layers positioned between the plasma membrane and the silicon frustule and revealed that extracellular adhesive extrusion through frustule pores during stalk production was closely related to the diatotepum. The stalks of A. longipes consist of highly organized, multilayered, fine fibrillar materials with an electron‐opaque layer organized as a sheath at the stalk periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号