首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
氮素水平对花生氮素代谢及相关酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 在大田高产条件下研究了氮素水平对花生(Arachis hypogaea)可溶性蛋白质、游离氨基酸含量及氮代谢相关酶活性的影响, 结果表明, 适当提高氮素水平既能增加花生各器官中可溶性蛋白质和游离氨基酸的含量, 又能提高硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶等氮素同化酶的活性, 使其达到同步增加; 氮素水平过高虽能提高硝酸还原酶和籽仁蛋白质含量, 但谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)的活性下降; N素施肥水平不改变花生植株各器官中可溶性蛋白质、游离氨基酸含量以及硝酸还原酶(NR)、谷氨酰胺合成酶、谷氨酸脱氢酶活性的变化趋势, 但适量施N (A2和A3处理)使花生各营养器官中GS、GDH活性提高; 氮素水平对花生各叶片和籽仁中GS、GDH活性的高低影响较大, 但对茎和根中GDH活性大小的影响较小。  相似文献   

2.
采用盆栽方法研究了氮素形态对不同专用型小麦开花后氮素同化关键酶活性及籽粒蛋白质含量的影响。结果表明:不同专用型小麦氮素同化关键酶硝酸还原酶、谷氨酰胺合成酶和谷氨酸合酶对氮素形态的反应不同。强筋小麦豫麦34施用酰胺态氮对旗叶硝酸还原酶和谷氨酰胺合成酶活性、籽粒谷氨酰胺合成酶和谷氨酸合酶活性具有明显的促进作用,最终籽粒蛋白质含量较高;中筋小麦豫麦4 9在施用铵态氮时,3种氮素同化关键酶活性均有较大增强,籽粒蛋白质含量最高;弱筋小麦豫麦5 0硝酸还原酶活性以铵态氮处理最高,而籽粒和旗叶谷氨酰胺合成酶和谷氨酸合酶活性在酰胺态氮处理下明显增强,酰胺态氮对籽粒中蛋白质含量的增加具有明显的促进作用。相关性分析表明,籽粒蛋白质含量与旗叶GS活性和籽粒GOGAT活性呈显著或极显著正相关,与旗叶NR活性和GS活性、籽粒GOGAT活性相关性不显著  相似文献   

3.
谷岩  胡文河  徐百军  王思远  吴春胜 《生态学报》2013,33(23):7399-7407
本文以先玉420为试验材料,研究在大垄双行膜下滴灌种植模式下,氮素水平对玉米穗位叶光合特征及氮代谢关键酶活性的影响。结果表明:1)玉米穗位叶氮素含量、光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和水分利用效率(WUE),均以N3(300 kg/hm2)水平最高,其平均Pn达35.1μmol m-2 s-1,Tr达7.57 m mol m-2 s-1,Gs 为0.58 mol m-2 s-1,WUE为 4.64μmol mmol-1。2) 最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)和光化学猝灭(qP),以N3水平最高,Fv/Fm均在0.75以上,ΦPSⅡ和qP均在0.45以上。3) PEP羧化酶对氮肥的响应较RUBP羧化酶敏感。氮肥少于100 kg/hm2才显著降低RUBP羧化酶活性;而PEP羧化酶则仅在N3处理时活性最高。4) 施用氮肥均增加穗位叶硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性,以N3处理增幅最大,平均比不施氮肥分别增加22.4%(NR)和64.8%(GS),蛋白水解酶活性则相反,平均比不施氮肥分别降低51.6%(内肽酶)和76.9%(氨肽酶)。5)相关分析表明:穗位叶氮含量与与内肽酶和氨肽酶呈现负相关,与其他各项指标均呈现正相关,差异显著性因花后不同时期而不同。6)在供试试验区,在氮肥施用总量为300 kg/hm2时,玉米穗位叶保持较高的光合特性和相关酶活性,为玉米籽粒产量的形成奠定了基础。  相似文献   

4.
不同种类氮素对苋菜硝酸盐积累及分配的影响   总被引:1,自引:0,他引:1  
应用15N核素示踪技术,研究了不同氮肥种类对苋菜硝酸盐积累与分配的关系及氮素的去向。结果表明:(1)苋菜可食部分中茎较叶更易富集硝酸盐,茎中硝酸盐含量为叶中的1.5倍左右,施用硝态氮肥苋菜叶与茎中的硝酸盐含量都偏高。(2)苋菜硝酸盐主要来源于土壤,达到80%以上,而来自肥料部分不足20%。(3)苋菜施用尿素其肥料利用率达到46.27%,土壤残留氮素达到17.01%,均高于硫铵与硝酸钠,尿素损失率为40.32%,远低于硫铵与硝酸钠,表明施用尿素有利于土壤氮素储量的保持和提高。  相似文献   

5.
明确紫云英配施化肥条件下水稻对氮素吸收利用和紫云英氮在水稻-土壤体系的吸收利用、分配及残留规律,能够为豫南稻区合理施肥提供依据.本研究利用原状土柱模拟和15N示踪技术,研究等氮条件下不施肥(CK)、化肥+22500 kg·hm-2紫云英(FM1)、化肥+30000 kg·hm-2紫云英(FM2)、化肥+37500 kg...  相似文献   

6.
为了解铁线莲的光合性能和氮素代谢的响应机制,对不同氮素形态配比下1 a生厚叶铁线莲(Clematis crassifolia)与天台铁线莲(C.paten ssp.tientaiensis)的生长、光响应曲线、A-Ci曲线和氮代谢相关酶活性进行了比较.结果表明,氮素形态配比显著影响铁线莲的生物量和叶绿素(Chl)含量,...  相似文献   

7.
不同耐盐性水稻幼苗根氨同化酶对盐胁迫的反应   总被引:1,自引:0,他引:1  
在盐胁迫下,检测了耐盐性不同的水稻(Oryza sativa L.)品种根部氨同化酶及其相关参数的变化.结果表明,根的可溶性蛋白、谷氨酰胺合成酶(GS)及依赖于NADH的谷氨酸合酶(NADH-GOGAT)活性在高盐浓度下不同程度地降低,其影响大小依次为早花二号(盐敏感品种)、金珠一号(正常栽培品种)、津稻779(耐盐品种),与其耐盐性相一致.在盐胁迫条件下,在耐盐性较高的水稻品种中,GS和GOGAT活性比盐敏感品种高,NH4 浓度维持在较低的水平.Native-PAGE和活性染色结果表明,GSrb更容易受到外界环境的影响.在高浓度盐的胁迫下,早花二号、金珠一号的依赖于NADH的谷氨酸脱氢酶(AADH-GDH)活性都有较显著的升高,津稻779却无明显的变化,这和NH4 含量的变化相一致.盐不同程度地导致可溶性糖(TSS)在金珠一号和津稻779根部积累,而在早花2号的根部,可溶性糖的水平则随盐浓度的不同而表现出不同的变化.在所检测的品种中,脯氨酸的含量均有不同程度的升高,但在高盐浓度下,盐敏感品种的含量较低.这些结果提示,不同的水稻品种对盐胁迫的敏感程度与该品种GS以及GOGAT活性的高低有关.  相似文献   

8.
不同耐盐性水稻幼苗根氨同化酶对盐胁迫的反应   总被引:3,自引:0,他引:3  
在盐胁迫下,检测了耐盐性不同的水稻(Oryza sativa L.)品种根部氨同化酶及其相关参数的变化。结果表明,根的可溶性蛋白、谷氨酰胺合成酶(GS)及依赖于NADH的谷氨酸合酶(NADH-GOGAT)活性在高盐浓度下不同程度地降低,其影响大小依次为早花二号(盐敏感品种)、金珠一号(正常栽培品种)、津稻779(耐盐品种),与其耐盐性相一致。在盐胁迫条件下,在耐盐性较高的水稻品种中, GS和GOGAT活性比盐敏感品种高,NH4 浓度维持在较低的水平。Native-PAGE和活性染色结果表明,GSrb更容易受到外界环境的影响。在高浓度盐的胁迫下,早花二号、金珠一号的依赖于NADH的谷氨酸脱氢酶(NADH-GDH)活性都有较显著的升高,津稻779却无明显的变化,这和NH4 含量的变化相一致。盐不同程度地导致可溶性糖(TSS)在金珠一号和津稻779根部积累,而在早花2号的根部,可溶性糖的水平则随盐浓度的不同而表现出不同的变化。在所检测的品种中,脯氨酸的含量均有不同程度的升高,但在高盐浓度下,盐敏感品种的含量较低。这些结果提示,不同的水稻品种对盐胁迫的敏感程度与该品种GS以及GOGAT活性的高低有关。  相似文献   

9.
选用玉米品种登海661和郑单958为材料,研究了高产条件下施氮时期对夏玉米产量、氮素利用率、氮代谢相关酶及抗氧化酶活性的影响.结果表明:拔节期一次性施氮不利于夏玉米产量提高和氮素积累,分次施氮且增施花粒肥显著提高了植株和籽粒的吸氮量,并提高了籽粒产量.拔节期、10叶期、花后10d按2∶4∶4施氮,登海661产量最高可达14123.0kg· hm-2;基肥、拔节期、10叶期、花后10 d按1∶2∶5∶2施氮,郑单958产量最高可达14517.1 kg· hm-2,这2种施氮方式较拔节期一次性施氮分别增产14.5%和17.5%.花前分次施氮可以显著提高开花期硝酸还原酶活性;登海661和郑单958在花后0~42 d中,施氮处理的谷氨酰胺合成酶、谷氨酸合成酶、谷氨酸脱氢酶活性分别平均提高了32.6%、47.1%、50.4%和14.5%、61.8%、25.6%,减缓了其下降趋势;超氧化物歧化酶、过氧化氢酶活性提高了22.0%、36.6%和13.4%、62.0%,丙二醛含量显著降低.在高产条件下,分次施氮且适当增加花粒肥施入比例可以提高氮代谢相关酶活性,延缓植株衰老,促进氮素吸收利用,进而提高籽粒产量.  相似文献   

10.
选用玉米品种登海661和郑单958为材料,研究了高产条件下施氮时期对夏玉米产量、氮素利用率、氮代谢相关酶及抗氧化酶活性的影响.结果表明: 拔节期一次性施氮不利于夏玉米产量提高和氮素积累,分次施氮且增施花粒肥显著提高了植株和籽粒的吸氮量,并提高了籽粒产量.拔节期、10叶期、花后10 d按2∶4∶4施氮,登海661产量最高可达14123.0 kg·hm-2;基肥、拔节期、10叶期、花后10 d按1∶2∶5∶2施氮,郑单958产量最高可达14517.1 kg·hm-2,这2种施氮方式较拔节期一次性施氮分别增产14.5%和17.5%.花前分次施氮可以显著提高开花期硝酸还原酶活性;登海661和郑单958在花后0~42 d中,施氮处理的谷氨酰胺合成酶、谷氨酸合成酶、谷氨酸脱氢酶活性分别平均提高了32.6%、47.1%、50.4%和145%、61.8%、25.6%,减缓了其下降趋势;超氧化物歧化酶、过氧化氢酶活性提高了22.0%、36.6%和13.4%、62.0%,丙二醛含量显著降低.在高产条件下,分次施氮且适当增加花粒肥施入比例可以提高氮代谢相关酶活性,延缓植株衰老,促进氮素吸收利用,进而提高籽粒产量.  相似文献   

11.
马衔山不同海拔土壤碳、氮、磷含量及生态化学计量特征   总被引:3,自引:0,他引:3  
研究半干旱地区土壤碳、氮、磷化学计量特征,了解其空间变化规律,有助于揭示半干旱地区C、N、P循环对全球气候变化的响应。本研究以半干旱区的马衔山为对象,选择5个海拔的7个样地,采集0~15、15~30 cm层的土壤,测定其有机碳(SOC)、全氮(TN)、全磷(TP)、pH、含水率等理化性质,分析其SOC、TN、TP化学计量与土壤理化因子之间的关系。结果表明:(1) 0~15 cm土壤SOC、TN、TP含量高于15~30 cm土壤。表层土壤SOC、TN含量随海拔升高呈增加趋势,TP含量随海拔升高变化较小。(2) C∶N随海拔增加呈先增加后降低趋势,C∶P、N∶P随海拔升高均呈增加趋势。(3)在0~15 cm土壤中,pH与SOC、TN含量及C∶P呈显著负相关,在15~30 cm土层中,pH与SOC、TN、TP含量及化学计量特征关系不显著;土壤含水率与0~15、15~30 cm层土壤中SOC、TN含量均呈极显著正相关。本研究显示,在半干旱区的马衔山地区,土壤含水率随海拔增加而增加,而SOC、TN含量及C∶P、N∶P也呈增加趋势,土壤养分含量及化学计量均受土壤含水率影响。  相似文献   

12.
The effect of five Azotobacter chroococcum strains and nitrogen content in nutrient media on callus growth of two Beta vulgaris L. cultivars were investigated, as well as the activity of nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in inoculated callus tissue. On medium with full nitrogen content (1 N) the inoculation with A. chroococcum strain A2 resulted in the highest calli mass, while strains A8 and A14 maximally increased NR activity. On media with 1/8 N the highest effect on calli growth, GS and GDH activity had the strain A8. The strain A2/1 significantly increased callus proliferation on medium without N. Asymbiotic association between sugar beet calli and Azotobacter depended on genotype/strain interaction and was realised in presence of different nitrogen levels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100 mM NaCl for 3 d. The biomass and NO3 uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3 uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway was inhibited under salt stress might play an important role in the release of salt stress in rootstock-grafted seedlings.  相似文献   

14.
J. Boucaud  J. Bigot 《Plant and Soil》1989,114(1):121-125
The activities of key enzymes involved in N assimilation were investigated after defoliation of 6-week-old ryegrass plants grown in water culture conditions. In a first experiment, nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities were measured in roots, stubble and leaves on the day of cutting and at 7-day intervals over the following 5-week period of regrowth. Ammonia assimilation enzymes showed little change whereas the nitrate reductase activity sharply decreased 2 weeks after clipping. In a second experiment, the nitrate reductase activity was measured at 2- or 3-day intervals 1 week before and 3 weeks after clipping.In vivo andin vitro assays both showed an increasing activity in leaves up to 8 days after cutting while root activity decreased. The opposite changes then occurred and both organs recovered their initial nitrate reductase activity levels after 12–14 days of regrowth. These fluctuations in nitrate reductase activity were considered to be related to the capacity for C assimilation and the nitrate availability.  相似文献   

15.
16.
The activities of the enzymes nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (GOGAT; EC 1.4.7.1), glutamate-oxaloacetate aminotransferase (EC 2.6.1.1), and glutamate dehydrogenase (EC 1.4.1.2) were compared in light-grown green or etiolated leaves of rye seedlings ( Secale cereale L. cv. Halo) raised at 22°C, and in the bleached 70S ribosome-deficient leaves of rye seedlings grown at a non-permissive high temperature of 32°C. Under normal permissive growth conditions the activities of most of the enzymes were higher in light-grown, than in dark-grown, leaves. All enzyme activities assayed were also observed in the heat-treated 70S ribosome-deficient leaves. Glutamine synthetase, glutamate synthase, and glutamate-oxaloacetate aminotransferase occurred in purified ribosome-deficient plastids separated on sucrose gradients. For glutamate-oxaloacetate aminotransferase four multiple forms were separated by polyacrylamide gel electrophoresis from leaf extracts. The chloroplastic form of this enzyme was also present in 70S ribosome-deficient leaves. It is concluded that the chloroplast-localized enzymes nitrite reductase, glutamine synthetase, glutamate synthase and glutamate-oxaloacetate aminotransferase, or their chloroplast-specific isoenzyme forms, are synthesized on cytoplasmic 80S ribosomes.  相似文献   

17.
Barneix, A. J., Cooper, H. D., Stulen, I. and Lambers, H. 1988. Metabolism and translocation of nitrogen in two Lolium perenne populations with contrasting rates of mature leaf respiration and yield. - Physiol. Plant. 72: 631–636.
Several aspects of nitrogen metabolism and transport were investigated to determine whether these processes could account for the observed differences in the dark respiration rate of mature leaves between two populations of Lolium perenne L. cv. S23: GL72 - a slow respiring, high growth rate line, and cv. GL66 - a fast respiring, low growth rate line.
No differences were found in total nitrogen or soluble protein concentrations between the populations, but GL72 showed a higher concentration of soluble amino acids, accounted for mainly by increases in the amounts of asparagine and glutamine. There were no differences in the glutamine synthetase (EC 6.3.1.2) or nitrate reductase (EC 1.6.6.1) activities between populations, but the fast respiring GL66 line showed higher glutamate dehydrogenase (EC 1.4.1.3) and peroxidase (EC 1.11.1.7) activities than GL72. The protein turnover rate, determined from 3H disappearance from leaves labelled with [3H]-acetic anhydride, appeared to be larger in GL66, but the difference was not significant and could not account for the differences in respiration rate.
The apparent extent of 15N cycling between roots and shoots was low in Lolium compared to other grass species, and there were no differences between the two populations.
It is concluded that the differences in dark respiration rate are not due to differences in demand for ATP by nitrogen assimilatory processes, but may be related to faster leaf senescence in the GL66 population.  相似文献   

18.
Seasonal changes in glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) were measured in both senescing leaf and bark tissues of ‘Golden Delicious’ apple trees (Malus domestica Borkh.). From the measured enzyme activities we attempted to estimate the in vivo catalytic potentials of the enzymes with special reference to nitrogen mobilization and conservation of senescing apple trees. The cumulative glutamine synthetase activity of leaf tissue was about three times higher than that of bark. The estimated catalytic potential of leaf glutamine synthetase was 800-fold higher than the actual protein nitrogen loss of senescing leaves. The cumulative glutamate synthase activity of bark was about six times higher than that of leaf. The estimated catalytic potential of bark glutamate synthase was 160-times higher than the actual protein nitrogen gain in that tissue. The cumulative glutamate dehydrogenase activities in leaf and bark tissue were approximately the same. However, the catalytic potential of leaf glutamate dehydrogenase was twice that of leaf glutamate synthase. It is thus concluded that the physiological role of glutamine synthetase in senescing leaf tissue is to furnish the amide(s) prior to mobilization of nitrogen to storage tissue. The higher activity of glutamate synthase in bark tissue could provide a mechanism to transform the imported amide nitrogen to amino nitrogen of glutamate for storage protein synthesis. The possible regulatory factors upon the activity of these enzymes in the tissues of senescing apple trees are discussed.  相似文献   

19.
G. W. McCarty 《Plant and Soil》1995,170(1):141-147
Recent advances in our understanding of the enzymology and regulatory systems involved in microbial metabolism of N hold promise to elucidate some of the underlying factors controlling metabolism of N in soil ecosystems. A review of recent work is used to construct a paradigm for N metabolism regulation in soil based on the central role of glutamine synthetase (GS) in such regulation within the soil microbial community. The studies involved use of GS inhibitors to elucidate the role of GS activity in regulation of soil N metabolism. Such studies have shown that the glutamine formed by microbial assimilation of NH4 + via GS activity influences the regulatory mechanisms controlling both the production and activity of enzymes involved in N metabolism. For example, these studies showed that the inhibition of GS activity within the soil microbial community relieved the repression of urease production caused by microbial assimilation of inorganic N and blocked the short-term regulation of assimilatory nitrate reductase (ANR) by NH4 + assimilation. Other studies have indicated that common environmental factors in soil may influence GS activity in microorganisms and thereby may influence metabolism of N within the soil microbial community. The paradigm for N metabolism regulation in soil that has emerged from such studies should lead to a better understanding of the mechanisms controlling fate of N in soil ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号