首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
灌溉量和施氮量对冬小麦产量和土壤硝态氮含量的影响   总被引:3,自引:1,他引:2  
Jiang DY  Yu ZW  Xu ZZ 《应用生态学报》2011,22(2):364-368
研究了大田条件下灌溉量和施氮量对小麦产量和土壤硝态氮含量的影响.结果表明:增加灌溉量,0~200 cm土层硝态氮含量呈先降后升又降的趋势.0~80 cm土层硝态氮含量显著低于对照,而80~200 cm土层硝态氮含量显著高于对照.随灌溉量的增加,土壤硝态氮向深层运移加剧,在成熟期,0~80 cm土层硝态氮含量降低,120~200 cm土层硝态氮含量升高,并在120~140 cm土层硝态氮含量出现高峰.灌溉量不变,施氮量由210 kg·hm-2增加到300 kg·hm-2,开花期、灌浆期、成熟期0~200 cm各土层土壤硝态氮含量显著升高.随灌溉量的增加,小麦籽粒产量先增加后降低,以全生育期灌溉量为60 mm的处理籽粒产量最高.增加施氮量,籽粒产量、蛋白质含量和蛋白质产量显著提高.本试验中,施氮量为210 kg.hm-2、两次灌溉总量为60 mm的处理籽粒产量、蛋白质含量、蛋白质产量和收获指数均较高,且土壤硝态氮损失少,是较合理的水氮运筹模式.  相似文献   

2.
本研究通过分析开花期灌水对小麦产量、植株养分分配和土壤养分分布的影响及其与根系特性的关系,为小麦充分利用水肥资源提供理论支撑。以抗旱高产品种‘洛麦28'和高光效品种‘百农207'为材料,采用2 m深土柱栽培方法,设置开花期灌水(T1)和开花期不灌水(T2)两个水分处理,测定了不同组织器官、不同土层土壤氮、磷、钾含量及根系分布特性等指标。结果表明: 小麦收获期土壤中铵态氮、速效磷和速效钾主要分布在0~80 cm土层中,硝态氮主要分布在80 cm以下土层中,开花期灌水促进小麦吸收0~60 cm土层的铵态氮、速效磷、速效钾和80 cm以下土层的硝态氮,减少了硝态氮向深层土壤的淋溶;小麦根系主要集中在0~60 cm土层中,随土壤深度的增加而减少。成熟期干物质积累量、全氮和全磷主要分配在小麦籽粒中,而全钾主要分配在茎秆中;开花期灌水显著增加了小麦百粒重,提高了小麦产量;根系形态指标与土壤硝态氮在0~40 cm土层中呈显著负相关,与土壤铵态氮在80~100 cm土层中呈极显著正相关,与土壤速效磷在0~100 cm土层中呈显著正相关。开花期灌水促进了根系在小麦生育末期对土壤养分的充分吸收,延长了养分从营养器官向生殖器官的转运功能期,使营养器官中的养分充分地转运到籽粒中去,增加小麦粒重,进而提高产量。  相似文献   

3.
施氮量对夏季玉米产量及土壤水氮动态的影响   总被引:40,自引:0,他引:40  
在黄土高原南部旱地有大量氮素残留背景的田块上,研究了不同氮肥用量对夏玉米生长及对土壤水分、硝态氮、铵态氮累积及其剖面分布的影响。结果表明:适量施氮可以提高作物产量;过量施氮没有表现出增产效果,其氮肥利用率只有3.9%,残留率则高达87.2%。施氮240kghm^-2时,0~200cm土层土壤水分达到593mm,且可以下渗到200cm土层;不施氮和施氮120kghm^-2以小区土壤的蓄水量分别为561和553mm,可下渗到180cm。对矿质态氮而言,施氮量可以显著影响土壤中硝态氮的累积和分布,但对铵态氮的影响较小;施氮0,120,240kghm^-2时.收获期土壤硝态氮累积量分别为78,148,290kghm^-2,硝态氮的下移前沿分别到达60,60,140cm。可见,适量施氮会促进作物对土壤水氮的利用。提高作物生物量和产量;过量施氮导致硝态氮在土壤中大量累积,提高硝态氮随水分淋溶危险;但硝态氮向下层土壤的移动显著滞后于水分。  相似文献   

4.
杨荣  苏永中 《生态学报》2009,29(3):1459-1469
在黑河中游边缘绿洲沙地农田研究了不同的水氮配合对玉米产量、土壤硝态氮在剖面中的累积和氮平衡的影响.结果表明,施氮处理较不施氮处理产量增加48.22%~108.6%,施氮量超过225 kg hm-2,玉米产量不再显著增加.受土壤结构影响土壤硝态氮在土壤中呈"W"型分布,即土壤硝态氮含量在0~20 cm、140~160 cm和260~300 cm土层均出现峰值,并随施氮量增加,峰值增高.在常规高灌溉量处理硝态氮含量峰值最高值出现在260~300 cm土层,节水25%灌溉处理硝态氮含量峰值最高值出现在土壤表层0~20 cm土层.在常规高灌溉量处理0~300 cm土层中200~300土层硝态氮累积量所占比例最高,介于27.56%~51.86%之间;节水25%灌溉处理在0~300 cm土层中100~200土层硝态氮累积量所占比例最高,介于32.94%~38.07%之间;表明低灌溉处理下土壤硝态氮在土壤浅层累积较多,而高灌溉处理使更多的硝态氮淋溶至土壤深层.与2006年相比,2007年不施氮处理0~200 cm土层土壤硝态氮含量和积累量均明显减少;而施氮处理变化很小,在低灌溉处理甚至表现出硝态氮含量和积累量增加,表明施氮是土壤硝态氮累积的主要来源,而灌溉则使硝态氮向土壤深层淋溶.0~200 cm 土层土壤硝态氮累积量平均介于27.66~116.68 kg hm-2、氮素表观损失量平均介于77.35~260.96 kg hm-2,和施氮量均呈线性相关,即随施氮量增加,土壤硝态氮累积量和氮素表观损失量均增加,相关系数R2介于0.79~0.99之间,相关均显著.随施氮量增加,玉米总吸氮量和氮收获指数增加,氮的农学利用率降低,而灌溉的影响较小.施氮量超过225 kg hm-2时,地上部植株氮肥吸收利用率和籽粒氮肥吸收利用率开始有降低趋势.所以,在沙地农田,节水10%~25%的灌溉水平和225 kg hm-2的施氮水平可以在避免水肥过量投入的基础上减少土壤有机氮淋溶对地下水造成的污染威胁.  相似文献   

5.
甘肃陇东旱塬不同树龄苹果园矿质氮的分布和积累特征   总被引:1,自引:0,他引:1  
对甘肃陇东地区不同树龄苹果园土壤矿质氮的分布和积累特征进行了研究.结果表明:土壤铵态氮含量随着苹果树龄的增大呈上升趋势,2~3年生、5年生、10年生、15年生、20年生、22年生果园0~120 cm土层铵态氮含量分别为3.3、5.8、6.5、9.1、12.1和15.3 mg·kg-1;不同树龄果园0~60 cm土层铵态氮含量大于60~120 cm土层.不同树龄果园硝态氮含量在0~40 cm土层相对较低,随土层深度增加,其含量迅速增加;随着种植年限增加,不同苹果园硝态氮累积量也呈显著增加趋势,22年生果园0~120 cm土层硝态氮累积量达到2602.5 kg·hm-2.旱塬苹果园表现为土壤铵态氮呈浅层积累、而硝态氮呈深层积累的特征.  相似文献   

6.
为了解全球气候变化背景下氮沉降对土壤氮矿化的影响及硅添加对土壤氮矿化的促进作用, 该试验设置不同浓度的氮肥单独添加(0、20、40、60 g·m -2, 分别为对照CK、N20、N40、N60)以及与硅肥配施(硅酸4 g·m -2, Si4), 测定不同处理下0-20、20-40、40-60 cm土层土壤硝态氮含量、铵态氮含量、净硝化速率、净氨化速率以及净矿化速率。结果显示: (1)单独添加氮肥, 各土层土壤硝态氮和铵态氮含量均随处理浓度的增加而增加, 0-20 cm土层N20、N40、N60处理下土壤硝态氮和铵态氮分别较CK增加63.48%、126.04%、247.03%和80.66%、152.52%、244.56%; 随着土层深度增加, 土壤硝态氮、铵态氮含量均有下降, 20-40、40-60 cm土层较0-20 cm土层硝态氮含量分别平均减少53.90%、76.05%, 铵态氮含量分别平均减少48.62%、68.23%。(2)土壤净硝化速率、净氨化速率及净矿化速率随着氮肥浓度增加均呈上升趋势。相同氮肥添加浓度下, 土壤净硝化速率、净氨化速率和净矿化速率随着土层深度增加逐渐下降(除CK外)。(3)与单独添加氮肥比较, 氮硅肥配施, 土壤氮含量有显著提高, 在0-20 cm土层硝态氮和铵态氮较CK分别增加98.78%、192.62%、330.16%和99.96%、195.82%、306.32%, 20-40、40-60 cm土层也有类似趋势。同时, 氮硅配施促进了土壤氮矿化行为, 在0-20 cm土层, N60Si4处理下的土壤净硝化速率、净氨化速率较单独施氮时分别增加35.88%、27.41%。以上结果表明, 与单独氮肥添加相比, 氮硅配施不但能提高土壤氮含量, 而且能促进土壤氮的矿化作用, 对大气氮沉降有一定的缓解作用。  相似文献   

7.
为了解全球气候变化背景下氮沉降对土壤氮矿化的影响及硅添加对土壤氮矿化的促进作用,该试验设置不同浓度的氮肥单独添加(0、20、40、60 g·m~(–2),分别为对照CK、N20、N40、N60)以及与硅肥配施(硅酸4 g·m~(–2), Si4),测定不同处理下0–20、20–40、40–60cm土层土壤硝态氮含量、铵态氮含量、净硝化速率、净氨化速率以及净矿化速率。结果显示:(1)单独添加氮肥,各土层土壤硝态氮和铵态氮含量均随处理浓度的增加而增加, 0–20 cm土层N20、N40、N60处理下土壤硝态氮和铵态氮分别较CK增加63.48%、126.04%、247.03%和80.66%、152.52%、244.56%;随着土层深度增加,土壤硝态氮、铵态氮含量均有下降,20–40、40–60cm土层较0–20cm土层硝态氮含量分别平均减少53.90%、76.05%,铵态氮含量分别平均减少48.62%、68.23%。(2)土壤净硝化速率、净氨化速率及净矿化速率随着氮肥浓度增加均呈上升趋势。相同氮肥添加浓度下,土壤净硝化速率、净氨化速率和净矿化速率随着土层深度增加逐渐下降(除CK外)。(3)与单独添加氮肥比较,氮硅肥配施,土壤氮含量有显著提高,在0–20 cm土层硝态氮和铵态氮较CK分别增加98.78%、192.62%、330.16%和99.96%、195.82%、306.32%,20–40、40–60 cm土层也有类似趋势。同时,氮硅配施促进了土壤氮矿化行为,在0–20 cm土层, N60Si4处理下的土壤净硝化速率、净氨化速率较单独施氮时分别增加35.88%、27.41%。以上结果表明,与单独氮肥添加相比,氮硅配施不但能提高土壤氮含量,而且能促进土壤氮的矿化作用,对大气氮沉降有一定的缓解作用。  相似文献   

8.
半干旱区农田土壤无机氮积累与迁移机理   总被引:41,自引:4,他引:37  
吴金水  郭胜利  党廷辉 《生态学报》2003,23(10):2040-2049
研究黄土旱塬区长期定位试验中 1 0个典型处理土壤剖面 (0~ 30 0 cm)水分和无机氮的季节变化 ,探讨在半干旱区农田无机氮的积累与迁移机理。结果表明休闲处理除表层外土壤剖面的水分、硝态氮和铵态氮的含量分别稳定在 1 7%~ 2 0 %、4~ 7mg N/kg和 6~ 1 0 mg N/kg土的范围。种植作物显著地改变土壤剖面水分和硝态氮的分布状况 ,并使其含量发生大幅度的季节变化。作物利用限制了农田土壤硝态氮向深层的迁移。小麦连作无化肥氮处理及苜蓿连作不施肥或氮、磷加有机肥处理土壤硝态氮主要集中在 0~ 40 cm土层。小麦连作单施氮肥 (1 2 0 kg N/(hm2· a) )处理经 1 7年后土壤剖面硝态氮积累总量达到施氮总量的55% ,40~ 60 cm和 1 4 0~ 2 2 0 cm土层出现两个高峰 ,并表现出随季节性变化向土壤深层迁移的趋势。氮肥与磷肥或有机肥施用大幅度减少了土壤剖面硝态氮积累 ,并使其限制在 1 60 cm以上的土层内 ,2 0 0 cm以下土层的硝态氮含量极低 (<1 mg N/kg土 ) ,因而不具向深层迁移的条件。土壤剖面的铵态氮含量不受作物、施肥和季节性气候变化的影响  相似文献   

9.
采用田间试验方法,研究了不同氮肥施用时期和基追比例对土壤硝态氮和铵态氮含量变化及小麦产量和品质的影响.结果表明:土壤硝态氮和铵态氮含量随着土层深度的增加而降低,不同氮肥施用时期和基追比例对0~20 cm土层土壤硝态氮和铵态氮含量均有显著影响;与氮肥全部基施处理相比,氮肥施用时期后移和基追比例的增加,明显提高了氮肥吸收利用率,减少了小麦全生育期土壤氮素的表观盈余量,同时显著改善了小麦籽粒品质;但对籽粒产量影响不显著,孕穗期追施比例过大导致产量显著降低.在本试验条件下,综合考虑产量、品质和生态效益,以基肥∶拔节肥∶孕穗肥为5∶3∶2为最佳氮肥运筹方式.  相似文献   

10.
长江流域稻麦轮作条件下冬小麦适宜施氮量   总被引:1,自引:0,他引:1  
为推动长江流域稻茬冬小麦氮肥的合理施用,研究了施氮量(0、120、210、300 kg·hm-2,分别表示为N0、N1、N2、N3)对土壤硝态氮含量、土壤-植株系统氮素平衡和产量的影响。结果表明: 土壤剖面的硝态氮含量随施氮量的增加而增加,至拔节期,不同施氮处理的硝态氮均显著运移至60 cm土层。拔节后追施氮肥显著提高了N1、N2处理0~40 cm土层和N3处理0~60 cm土层的硝态氮含量;而成熟期的硝态氮主要积累于0~40 cm土层。氮素平衡分析表明,氮素吸收、残留、损失因小麦不同生育阶段而异,越冬至拔节期是氮素表观损失的主要时期;小麦全生育期植株的氮素积累量、无机氮残留量和土壤氮素表观损失量均随施氮量的增加而显著增加。通过环境经济学的Coase原理和边际收益综合分析,稻茬小麦兼顾生产、生态和经济效益的适宜氮肥用量为250 kg·hm-2,基肥与拔节肥的比例为5∶5,相应获得的籽粒产量为6840 kg·hm-2。  相似文献   

11.
于2010-2012年度冬小麦生长季,选用高产冬小麦品种济麦22,采用测墒补灌方式,设置40 m(T40)、60 m(T60)和80 m(T80)3种带长的微喷带灌溉处理,研究不同带长微喷带灌溉对土壤水分分布及冬小麦耗水特性和产量的影响.结果表明: 拔节期和开花期采用微喷带补灌,随微喷带带长缩短,灌溉水在土壤中的水平分布均匀系数显著增加.拔节期补灌,T40和T60处理在距畦首0~40 m范围内各小麦行间的0~200 cm土层土壤含水量均无显著差异;T80处理在距畦首38~40 m、58~60 m和78~80 m处各小麦行间的0~200 cm各土层土壤含水量变化规律一致,均表现为随距微喷带的距离增加而减小.T40处理的小麦在拔节至开花期间和开花至成熟期间分别对40~60 cm和20~80 cm土层土壤贮水的消耗量显著高于T60和T80处理,而对深层土壤贮水消耗量和总土壤贮水消耗量、开花期补灌水量、总灌水量和总耗水量显著低于T60和T80处理.随微喷带带长缩短,小麦籽粒产量、产量水分利用效率显著升高,而流量降低,在灌水量一定的情况下,单位时间内的有效灌溉面积减小.综合考虑小麦籽粒产量、水分利用效率和流量,40和60 m是本试验条件下的适宜微喷带带长.  相似文献   

12.
在京郊露地生产条件下,研究了控释肥料与速效化肥混配施用对春白菜产量、品质、氨挥发、土壤硝态氮累积和淋失的影响.结果表明:与习惯施肥处理(施N 300 kg·hm-2)相比,控释肥料与普通化肥按纯氮比2∶1混配施用(共施N 150 kg·hm-2)没有造成白菜减产,并显著降低了菜叶中硝酸盐和有机酸含量;与半量施肥处理(施N 150 kg·hm-2)相比,控释肥与化肥混施处理产量和叶片硝酸盐含量无显著差异.控释肥与化肥混施处理提高了白菜氮肥利用率,减少了N3-N淋失量和氨挥发总量.白菜收获后,控释肥与化肥混施处理在20~40、60~80、80~100 cm土层的NO3--N含量显著低于习惯施肥处理.  相似文献   

13.
于2012—2014年两个冬小麦生长季,在大田条件下设置:全生育期不灌水(W0)处理,当地定量节水灌溉(拔节期和开花期均灌水60 mm,W1)处理,依据0~20 cm (W2)、0~40 cm (W3)、0~60 cm (W4)和0~140 cm (W5)土层土壤含水量测墒补灌处理,于拔节期和开花期补灌至土壤相对含水量为田间持水量的65%和70%,研究依据不同土层土壤含水量测墒补灌对冬小麦耗水特性、光合速率和籽粒产量的影响.结果表明:各处理拔节期灌水量为W1、W4>W3>W2、W5,开花期灌水量和总灌水量均为W5>W1、W4>W3>W2,W3总耗水量显著高于W2处理,与W1、W4和W5处理无显著差异.W3土壤贮水消耗量高于W1、W4和W5处理,其中,W3在拔节至开花阶段和开花至成熟阶段对40~140 cm和60~140 cm土层土壤贮水消耗量均显著高于其余灌水处理.灌浆中期W3处理小麦旗叶光合速率、蒸腾速率和水分利用效率最高,W1和W4处理次之,W0处理最低.W3处理两个生长季的籽粒产量分别为9077和9260 kg·hm-2,水分利用效率分别为20.7和20.9 kg·hm-2·mm-1,均显著高于其余处理,灌溉水生产效率最高.综合考虑灌水量、籽粒产量和水分利用效率,小麦拔节期和开花期适宜进行测墒补灌的土层深度为0~40 cm.  相似文献   

14.
以高产冬小麦品种济麦22为材料,研究不同灌溉畦长对小麦旗叶水势、光合特性和干物质积累与分配的影响.2010—2011年小麦生长季设置畦长为10(L10)、20(L20)、40(L40)、60(L60)、80(L80)和100 m(L100)的6个处理,2011—2012年和2012—2013年设置畦长为40(L40)、60(L60)、80(L80)和100 m(L100)的4个处理.结果表明: 2010—2011年生长季开花期0~200 cm土层平均土壤相对含水量为L80、L60>L100>L40>L20>L10,2011—2012年和2012—2013年为L80、L60>L100>L40.开花后11 d和21 d,旗叶水势、净光合速率和蒸腾速率均为L80、L100>L60>L40>L20、L10;花后31 d为L80>L60、L100>L40、L20、L10.L80各区间开花期和成熟期干物质积累量及籽粒产量变异系数小于L100,平均干物质积累量及开花后干物质积累量和对籽粒产量的贡献率显著高于L100、L40、L20和L10,平均籽粒产量和水分利用效率显著高于其他处理,是本试验条件下节水高产的最优畦长处理.  相似文献   

15.
控释掺混尿素对稻、麦土壤氮与酶活性的影响   总被引:1,自引:0,他引:1  
通过大田试验,共设7个处理,即不施氮、常规施肥以及掺混控释氮肥10%、20%、40%、80%、100%处理,探讨了不同施肥处理对土壤中4种形态氮(全氮、铵态氮、硝态氮、微生物生物量氮)和3种氮功能性酶(脲酶、蛋白酶、硝酸还原酶)活性的影响,以探究控释掺混尿素对稻、麦土壤肥力和环境的影响.结果表明: 土壤全氮在稻、麦全生育期内趋于稳定,且掺混比例20%以上各控释氮肥处理在稻、麦季均无显著差异;掺混40%以上控释氮肥能有效促进稻、麦生育中后期土壤无机氮水平;随稻、麦生育期推进,掺混40%以上控释氮肥处理可显著提高土壤微生物生物量氮,但常规施肥处理的微生物生物量氮整体呈明显下降趋势;掺混40%以上控释氮肥能明显提升稻、麦生育中后期土壤酶活性,土壤蛋白酶与硝酸还原酶活性在作物生育后期均随掺混比例增加而提高,以100%控释氮肥处理土壤酶活性最高.掺混20%以上控释氮肥处理能明显降低水稻季分蘖期脲酶活性,推迟铵态氮峰值期,有利于减少氮损失;掺混40%以上控释氮肥处理均可保障稻、麦生育中后期的氮素供应,刺激土壤脲酶与蛋白酶参与氮素转换,促进了土壤氮素有效性;100%控释氮肥处理对稻、麦生育后期土壤硝酸还原酶活性增加最明显,与掺混40%~80%控释氮肥处理相比,可显著减少小麦季20~40 cm土壤硝态氮残留量,在减少氮素损失方面的效果明显.  相似文献   

16.
过量施用氮肥造成的环境问题日益严重,氮肥合理使用已成为人们研究的热点.本文研究了西南玉米两种主要套作模式下氮肥运筹对玉米氮素利用和土壤硝态氮残留的影响.结果表明:连续分带轮作种植玉/豆模式后,玉米收获期植株中的氮素积累较玉/薯模式平均提高了6.1%,氮收获指数增加了5.4%,最终使氮肥利用效率提高4.3%,氮素同化量提高了15.1%,氮肥偏生产力提高了22.6%;玉米收获后硝态氮淋溶损失减少,60~120 cm土层中硝态氮残留玉/豆模式较玉/薯模式降低了10.3%,而0~60 cm土层中平均提高了12.9%,有利于培肥地力,两年产量平均较玉/薯模式高1249 kg·hm-2,增产22%;增加施氮量提高了植株氮素积累,降低了氮肥利用率,显著提高了表层土壤中硝态氮的累积,60~100 cm土层中硝态氮的累积量在0~270 kg·hm-2处理间差异不显著,继续增加施氮量会显著增加土壤硝态氮的淋溶;氮肥后移显著提高了土壤0~60 cm土层硝态氮的积累.两种模式下施氮量和底追比对玉米氮素吸收和硝态氮残留的影响结果不一致,玉/豆模式以施氮180~270 kg·hm-2、按底肥∶拔节肥∶穗肥=3∶2∶5的施肥方式有利于提高玉米植株后期氮素积累、氮收获指数和氮肥利用效率,减少了氮肥损失,两年最高产量平均可达7757 kg·hm-2;而玉/薯模式在180 kg·hm-2、按底肥∶穗肥=5∶5的施肥方式下,氮素积累利用及产量均优于其他处理,两年平均产量为6572 kg·hm-2,可实现两种模式下玉米高产、高效、安全的氮肥管理体系.
  相似文献   

17.
施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响   总被引:13,自引:1,他引:12  
研究了不同施氮水平对高产麦田土壤硝态氮时空变化和氨挥发的影响.结果表明,高产麦田土壤硝态氮在播种至冬前阶段不断向深层移动,并在140cm以下土层积累.施纯氮96~168 kg·hm-2处理,增加了60 cm以上土层土壤硝态氮含量,降低了土壤氮素表观损失量占施氮量的比例,提高了小麦籽粒蛋白质含量和籽粒产量,且土壤氨挥发损失较低,基施氮氨挥发损失占基施氮量的4.23%~5.51%;施氮量超过240 kg N·hm-2,促进了土壤硝态氮向深层的移动和积累,基施氮氨挥发损失、土壤氮素表观损失量及其占施氮量的比例均显著升高,对小麦籽粒蛋白质含量无显著影响,但籽粒产量降低.高产麦田适宜的氮素用量为132~204 kg N·hm-2.  相似文献   

18.
本研究以‘郑麦366'(强筋)和‘百农207'(中筋)两个小麦品种为试验材料,分别在全生育期不灌水(W1)和拔节+抽穗灌两水(W2)条件下,研究了氯化铵(NT1)、硝酸钙(NT2)、尿素(NT3)和硝酸铵钙(NT4)4种氮源类型对小麦土壤供氮能力、产量和氮素利用效率的影响,以期为小麦高产高效生产提供理论和技术支撑。结果表明: 1)随着土层深度的增加,开花期土壤中铵态氮和硝态氮含量呈下降趋势。在W2条件下,0~60 cm土层铵态氮、硝态氮含量,根际土壤脲酶、蔗糖酶和过氧化氢酶活性均低于相应W1条件下,其中强筋小麦郑麦366平均分别下降10.0%、13.3%、7.5%、2.8%和3.9%。2)两个小麦品种0~60 cm土层铵态氮含量均表现为在NT1和NT3处理下显著高于其他处理;而硝态氮含量则在NT2和NT3处理下显著高于其他处理。与NT1和NT2处理相比,NT3和NT4提高了灌浆中、后期土壤脲酶和蔗糖酶活性。3)两个小麦品种在NT3和NT4处理下籽粒产量和氮素利用效率较高;其中在W2条件下,郑麦366在NT3和NT4处理下的产量较NT1处理分别增加14.9%和20.7%,NUE分别增加25.6%和13.9%。4)相关分析结果表明, 0~20 cm土壤硝态氮含量、20~40 cm土壤铵态氮含量分别与小麦产量、氮素利用效率呈显著正相关。两种水分条件下,施用尿素和硝酸铵钙均提高了灌浆中、后期根际土壤酶活性,有利于籽粒产量和氮素利用效率的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号