首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochemical localization of alkaline phosphatase (AlPase) activity in the developing IVth ventricular choroidal epithelium was investigated in embryonic and neonatal rats. During the initial development of the choroidal primodium the flattened and/or cuboidal epithelial cells of the ventricular roof were changed to columnar cells with well-developed microvilli and apical tight junctions. When compared to AlPase activity on the lateral plasma membranes of the surrounding ependymal cells, these columnar cells of the choroidal primodium revealed activity on the lateral and luminal plasma membranes, but no activity was found on the basal surface of these cells. On the other hand, the epithelial cells in the neonatal choroid plexus showed a continuous morphological alteration from columnar cells with short microvilli to mature cuboidal cells with numerous long microvilli. AlPase activity in immature columnar cells was observed on all plasma membranes, except for the apical junctional area of the lateral surface. With maturing of the choroidal epithelial cells, the activity appeared to be eliminated from the lateral and luminal plasma membranes of the cuboidal cells, and mature choroidal epithelial cells showed activity on the basal surface only. These findings suggest that AlPase may play an important role in the membrane activity of epithelial cells differentiating between the primitive epithelial cells of the ventricular roof and the mature choroidal epithelial cells.  相似文献   

2.
[3H]Ouabain binding to intact MDCK (cultured monolayers of dog kidney) cells of 60 serial passages is dependent upon ouabain concentration, time and medium K+. By utilising high K+ incubations to estimate non-specific [3H]ouabain-binding, the concentration of ouabain giving half maximal specific binding was estimated to be 1.0 . 10(-7) M and the total maximum binding to be 2.33 . 10(5) sites/cell. Ouabain inhibition of (Na+, K+)-pump function was monitored by the cellular uptake of 86Rb over 5 min. The larger fraction of 86Rb uptake was ouabain sensitive and the ouabain concentration giving half-maximal inhibition was 2 . 10(-7) M. The cellular distribution of the (Na+ + K+)-ATPase was investigated using [3H]ouabain autoradiography of intact freeze-dried epithelial monolayers of MDCK cells grown upon millipore filter supports. Binding of [3H]ouabain is localised over the lateral cellular membranes. Autoradiographic silver grain density is close to background levels over both the apical and basal (attachment) membranes.  相似文献   

3.
The Na+/K+-ATPase was localized using purified specific antibodies, on the basolateral membranes of rat thyroid epithelial cells and of cultured porcine thyroid cells, by immunofluorescence and immunoelectron microscopy. No staining was observed on the apical membranes. When cultured cells formed monolayers, with their apical pole in contact with the culture medium, 22Na+ uptake was inhibited by amiloride. Inhibition was dependent upon extracellular Na+ concentration, half maximal inhibition was obtained with 0.7 microM amiloride in the presence of 5 mM Na+. Ouabain was ineffective on Na+ uptake into intact monolayers. A brief treatment of the monolayers with ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) opened the tight junctions and allowed the access of ouabain to the basal pole of the cells. In this condition ouabain increased Na+ uptake. When cells were reorganized into follicle-like structures, with their basal pole in contact with the culture medium, Na+ uptake was not modified by amiloride but was increased by ouabain. We conclude that in thyroid cells, the Na+/K+-ATPase is present on the basolateral domain of the plasma membrane whereas an amiloride sensitive sodium uptake occurs at the apical surface.  相似文献   

4.
《The Journal of cell biology》1988,107(6):2409-2423
The present study describes a culture environment in which luminal epithelial cells isolated from immature rat uteri and cultured on a matrix-coated permeable surface, with separate apical and basal secretory compartments, proliferate to confluence. Subsequently the cells undergo a process of differentiation accompanied by progressive development of functional polarity. Ultrastructural and immunocytochemical evidence verifies the ability of these primary cultures to regain polar organization, separate membrane domains, and form functional tight junctions as demonstrated by the development of transepithelial resistance. The appearance of uvomorulin is restricted to the lateral cell surface. Coordinated indices of functional polarity that develop progressively in post-confluent cultures include the preferential uptake of [35S]methionine from the basal surface and a rise in uterine epithelial cell secretory activity characterized by a progressive preference for apical secretion. The time dependent development of polarity was characterized by differences in the protein profiles of the apical and basolateral secretory compartments. The maintenance of hormone responsiveness by the cultured cells was validated by the secretion of two proteins identified as secretory markers of estrogen response in the intact uterus. The technique of culturing the cells on a matrix-coated permeable surface with separate secretory compartments produces a uterine epithelial cell that morphologically and functionally resembles its in situ equivalent. The culture method and analytical approach used in this present study may be applied to primary cultures of a variety of natural epithelia, which have hitherto proven resistant to more conventional culture methodologies.  相似文献   

5.
Summary Protein uptake from cerebral ventricles into the epithelium of the choroid plexus, and transport across the epithelium were studied ultrastructurally in rats. Horseradish peroxidase (HRP, MW 40,000) was used as protein tracer. Steady-state ventriculo-cisternal perfusion with subatmospheric pressure (-10cm of water) in the ventricular system was applied. HRP dissolved in artificial CSF was perfused from the lateral ventricles to cisterna magna for various times, and ventriculo-cisternal perfusion, vascular perfusion or immersion fixation with a formaldehyde-glutaraldehyde solution was performed.Coated micropinocytic vesicles containing HRP were seen both connected with the apical, lateral and basal epithelial surface and within the cells. Heavily HRP-labeled vesicles were often fused with the lining membrane of slightly labeled or unlabeled intercellular spaces. Since the apical tight junctions of the epithelium never appeared open or never contained HRP in the spaces between the fusion points, and since the intercellular spaces between adjacent epithelial cells below the junctions only infrequently contained tracer after 5 min, by increasing amounts after 15–60 min of HRP perfusion, a vesicular transport of HRP from the apical epithelial surface to the intercellular spaces, bypassing the tight junctions, is suggested.In addition to the transepithelial transport, micropinocytic vesicles also transported HRP to the lysosomal apparatus of the epithelial cells. With increasing length of exposure to HRP, a sequence of HRP-labeled structures could be evaluated, from slightly labeled apical vacuoles and multivesicular bodies to very heavily labeled dense bodies.  相似文献   

6.
Neuroepithelial cells can generate nonepithelial cells, the neurons. Here we have investigated, for chick and mouse embryos, the epithelial character of neuroepithelial cells in the context of neurogenesis by examining the presence of molecular components of tight junctions during the transition from the neural plate to the neural tube. Immunoreactivity for occludin, a transmembrane protein specific to tight junctions, was detected at the apical end of the lateral membrane of neuroepithelial cells throughout the chick neural plate. During neural tube closure, occludin disappeared from all neuroepithelial cells. Correspondingly, the addition of horseradish peroxidase to the apical side of the neuroepithelium by injection into the amniotic cavity of mouse embryos revealed the presence of functional tight junctions in the neural plate (Embryonic Day 8), but not the neural tube (Embryonic Day 9). In contrast to occludin, expression of ZO-1, a peripheral membrane protein of tight junctions, increased from the neural plate to the neural tube stage, also being confined to the apical end of the lateral neuroepithelial cell membrane. This localization coincided with that of N-cadherin, whose expression increased concomitantly with the disappearance of occludin. We propose that the loss of tight junctions from neuroepithelial cells reflects an overall decrease in their epithelial nature, which precedes the generation of neurons.  相似文献   

7.
Transcytosis in thyroid follicle cells   总被引:14,自引:6,他引:8       下载免费PDF全文
Inside-out follicles prepared from pig thyroid glands were used for studies on endocytosis. endocytosis. In this in vitro system, only the apical plasma membranes of follicle cells were exposed to tracers added to the culture medium. Cationized ferritin (CF) bound to the apical plasma membrane and was transferred first to endosomes and to lysosomes (within 5 min). Later, after approximately 30 min, CF was also found in stacked Golgi cisternae. In addition, a small fraction of endocytic vesicles carrying CF particles became inserted into the lateral (at approximately 11 min) and the basal (at approximately 16 min) plasma membranes. Morphometric evaluation of CF adhering to the basolateral cell surfaces showed that the vesicular transport across thyroid follicle cells (transcytosis) was temperature-sensitive; it ceased at 15 degrees C but increased about ninefold in follicles stimulated with thyrotropin (TSH). Thyroglobulin-gold conjugates and [3H]thyroglobulin (synthesized in separate follicle preparations in the presence of [3H]leucine) were absorbed to the apical plasma membrane and detected mainly in lysosomes. A small fraction was also transported to the basolateral cell surfaces where the thyroglobulin preparations detached and accumulated in the newly formed central cavity. As in the case of CF, transcytosis of thyroglobulin depended on the stimulation of follicles with TSH. The observations showed that a transepithelial vesicular transport operates in thyroid follicle cells. This transport is regulated by TSH and includes the transfer of thyroglobulin from the apical to the basolateral plasma membranes. Transcytosis of thyroglobulin could explain the occurrence of intact thyroglobulin in the circulation of man and several mammalian species.  相似文献   

8.
Summary A simple continuous epithelium surrounds the body of the pelagic larvacean. It consists of two zones of cells: oikoplast cells and flattened cells. The oikoplast cells are columnar and produce a thick extracellular house that ensheathes the body of the organism. These cells are joined laterally by wide tight junctions (zonulae occludentes). The tail of the animal is surrounded by exceedingly thin cells which are joined by narrow tight junctions under which lie intermediate junctions (zonulae adhaerentes) and gap junctions. A web of fibrous material inserts into the intermediate junctions. The transitional cells between the two epithelial zones have one lateral border with a wide tight junction, and the other lateral border with a narrow tight junction and a wide intermediate junction. In freeze-fracture replicas, the wide tight junction has a number of anastomosing ridges, in comparison with the narrow tight junction, which usually consists of only a single row of intramembranous particles. In replicas, the thin epithelial cells show unusual parallel arrays of particles in clusters on their apical plasma membranes. This simple epithelium, therefore, exhibits striking differences between the two cellular zones, in the structural characteristics of both the lateral borders and the apical membrane.  相似文献   

9.
In polarized epithelial cells, maturation sites of enveloped viruses that form by budding at cell surfaces are restricted to particular membrane domains. Recombinant vaccinia viruses were used to investigate the sites of surface expression in the Madin-Darby canine kidney (MDCK) cell line of the hemagglutinin (HA) of influenza virus, the G glycoprotein of vesicular stomatitis virus (VSV), and gp70/p15E of Friend murine leukemia virus (MuLV). These glycoproteins could be demonstrated by immunofluorescence on the surfaces of MDCK cells as early as 4 h post-infection. In intact MDCK monolayers, vaccinia recombinants expressing HA produced a pattern of surface fluorescence typical of an apically expressed glycoprotein. In contrast, cells infected with vaccinia recombinants expressing VSV-G or MuLV gp70/p15E exhibited surface fluorescence only when monolayers were treated with EGTA to disrupt tight junctions, as expected of glycoproteins expressed on basolateral surfaces. Immunoferritin labeling in conjunction with electron microscopy confirmed that MDCK cells infected with the HA recombinant exhibited specific labeling of the apical surfaces whereas the VSV-G and MuLV recombinants exhibited the respective antigens predominantly on the basolateral membranes. Quantitation of surface expression by [125I]protein A binding assays on intact and EGTA-treated monolayers confirmed the apical localization of the vaccinia-expressed HA and demonstrated that 95% of the VSV-G and 97% of the MuLV gp70/p15E glycoproteins were localized on the basolateral surfaces. These results demonstrate that glycoproteins of viruses that normally mature at basolateral surfaces of polarized epithelial cells contain all of the structural information required for their directional transport to basolateral plasma membranes.  相似文献   

10.
Tight junctions in epithelial cells have been postulated to act as barriers inhibiting lateral diffusion of lipids and proteins between the apical and basolateral plasma membrane domains. To study the fence function of the tight junction in more detail, we have fused liposomes containing the fluorescent phospholipid N-Rh-PE into the apical plasma membrane of MDCK cells. Liposome fusion was induced by low pH and mediated by the influenza virus hemagglutinin, which was expressed on the apical cell surface after viral infection. Redistribution of N-Rh-PE to the basolateral surface, monitored at 0 degree C by fluorescence microscopy, appeared to be dependent on the transbilayer orientation of the fluorescent lipids in the plasma membrane. Asymmetric liposomes containing over 85% of the N-Rh-PE in the external bilayer leaflet, as shown by a phospholipase A2 assay, were generated by octyl beta-D-glucoside dialysis. When these asymmetric liposomes were fused with the apical plasma membrane, fluorescent lipid did not move to the basolateral side. Symmetric liposomes which contained the marker in both leaflets were obtained by freeze-thawing asymmetric liposomes or by reverse-phase evaporation. Upon fusion of these with the apical membrane, redistribution to the basolateral membrane occurred immediately. Redistribution could be observed with asymmetric liposomes only when the tight junctions were opened by incubation in a Ca2+-free medium. During the normal experimental manipulations the tight junctions remained intact since a high trans-epithelial electrical resistance was maintained over the cell monolayer. We conclude that the tight junction acts as a diffusion barrier for the fluorescent phospholipid N-Rh-PE in the exoplasmic leaflet of the plasma membrane but not in the cytoplasmic leaflet.  相似文献   

11.
The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. We have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembraneous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. In such cultures the boundary between apical and basal domains was observed at the point of cell contact with the substratum. Immunocytochemical analysis of these cell-substratum contacts revealed the absence of a characteristic basement membrane containing laminin, collagen (IV), and heparan sulfate proteoglycan. However, serum-derived vitronectin was associated with the basal cell surface and the cells were shown to express the vitronectin receptor on their basolateral membranes. Additionally, treatment of cultures with antibodies against the vitronectin receptor caused cell detachment. We suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS-O while colchicine and acrylamide did not. We hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.  相似文献   

12.
We have identified and immunochemically characterized a 36,000-dalton membrane glycoprotein from Madin-Darby canine kidney cells. This protein is surface-labeled by lactoperoxidase-mediated iodination and metabolically labeled by [35S]methionine. It binds to Concanavalin A and incorporates 2-D-3H-mannose residues, thus indicating it is a glycoprotein. Rabbit polyclonal antibodies against this protein evenly decorate the external surface of trypsinized, unpolarized cells. The external apical surface of confluent monolayers, grown under culture conditions in which the tight junctions are closed and the cells have acquired polarity, is also evenly stained. The basolateral aspects of the external surface are stained only when the tight junctions are opened by removal of Ca++ or when the antibody has access to the monolayer from the basal side, which indicates an even distribution of this antigen on the surface of polarized cells. The antibody has no inhibitory effect on the opening and resealing of tight junctions in dense cultures, but does inhibit the attachment and spreading of cells on a substrate, which then blocks the establishment of a confluent functional monolayer.  相似文献   

13.
Jarial MS 《Tissue & cell》1992,24(1):139-155
The rectal pads of Schistocerca gregaria are composed of three different cell types: epithelial, secondary and junctional cells. The rectal pads are interconnected by simple rectal cells and both are lined internally by a articular intima. The epithelial cells exhibit extensive infoldings of the apical plasma membranes that are closely associated with mitochondria. Their lateral plasma membranes are highly folded around large mitochondria and enclose intercellular channels and spaces. They are united by belt and spot desmosomes, septate junctions, gap junctions and scalariform junctions, but terminate in a basal syncytium without contacting the basal plasma membranes. The apical and basal cytoplasm contain coated vesicles, dense tubular elements, multivesicular bodies and lysosomes, suggesting receptor-mediated endocytosis of small peptide molecules into the epithelial cells. The apical membrane infoldings of the secondary cells are also associated with large mitochondria. Their basal plasma membranes are covered by connective cell processes and connected with them by spot desmosomes which may be involved in solute recycling. The presence of neurosecretory-like axons near the secondary cells suggests that they exert local control on the function of these cells. The ultrastructural details are examined in relation to their role in solute and water transport.  相似文献   

14.
The role of tight junctions (TJs) in the establishment and maintenance of lipid polarity in epithelial cells has long been a subject of controversy. We have addressed this issue using lysenin, a toxin derived from earthworms, and an influenza virus labeled with a fluorescent lipid, octadecylrhodamine B (R18). When epithelial cells are stained with lysenin, lysenin selectively binds to their apical membranes. Using an artificial liposome, we demonstrated that lysenin recognizes the membrane domains where sphingomyelins are clustered. Interestingly, lysenin selectively stained the apical membranes of epithelial cells depleted of zonula occludens proteins (ZO-deficient cells), which completely lack TJs. Furthermore, the fluorescent lipid inserted into the apical membrane by fusion with the influenza virus did not diffuse to the lateral membrane in ZO-deficient epithelial cells. This study revealed that sphingomyelin-cluster formation occurs only in the apical membrane and that lipid polarity is maintained even in the absence of TJs.  相似文献   

15.
The relationship between epithelial fluid transport, standing osmotic gradients, and standing hydrostatic pressure gradients has been investigated using a perturbation expansion of the governing equations. The assumptions used in the expansion are: (a) the volume of lateral intercellular space per unit volume of epithelium is small; (b) the membrane osmotic permeability is much larger than the solute permeability. We find that the rate of fluid reabsorption is set by the rate of active solute transport across lateral membranes. The fluid that crosses the lateral membranes and enters the intercellular cleft is driven longitudinally by small gradients in hydrostatic pressure. The small hydrostatic pressure in the intercellular space is capable of causing significant transmembrane fluid movement, however, the transmembrane effect is countered by the presence of a small standing osmotic gradient. Longitudinal hydrostatic and osmotic gradients balance such that their combined effect on transmembrane fluid flow is zero, whereas longitudinal flow is driven by the hydrostatic gradient. Because of this balance, standing gradients within intercellular clefts are effectively uncoupled from the rate of fluid reabsorption, which is driven by small, localized osmotic gradients within the cells. Water enters the cells across apical membranes and leaves across the lateral intercellular membranes. Fluid that enters the intercellular clefts can, in principle, exit either the basal end or be secreted from the apical end through tight junctions. Fluid flow through tight junctions is shown to depend on a dimensionless parameter, which scales the resistance to solute flow of the entire cleft relative to that of the junction. Estimates of the value of this parameter suggest that an electrically leaky epithelium may be effectively a tight epithelium in regard to fluid flow.  相似文献   

16.
A method is described to separate the epithelial cells of the posterior part of the mealworm midgut from their thick basal lamina using elastase. After removal of the basal lamina the naked epithelial cells remain connected with each other, still forming a midgut tube. The ultrastructural changes observed are enlargement of the lateral spaces between the cells and simultaneous destruction of junctional structures other than desmosomes and tight junctions. This enlargement is most probably due to shrinkage of the epithelial cells as a consequence of osmotic stress, which the cells normally seem to be protected against by the basal lamina. The content of sodium and potassium in the epithelium is not influenced by the elastase treatment, indicating that the midgut tube stays alive with intact plasma membranes.  相似文献   

17.
A functional assay has been developed to identify cell surface proteins involved in the formation of epithelial tight junctions. Transepithelial electrical resistance was used to measure the presence of intact tight junctions in monolayers of Madin-Darby canine kidney (MDCK) cells cultured on nitrocellulose filters. The strain I MDCK cells used have a transmonolayer resistance greater than 2,000 ohm . cm2. When the monolayers were incubated at 37 degrees C without Ca2+, the intercellular junctions opened and the transmonolayer resistance dropped to the value of a bare filter, i.e., less than 40 ohm . cm2. When Ca2+ was restored, the cell junctions resealed and the resistance recovered rapidly. Polyclonal antibodies raised against intact MDCK cells inhibited the Ca2+-dependent recovery of electrical resistance when applied to monolayers that had been opened by Ca2+ removal. Cross-linking of cell surface molecules was not required because monovalent Fab' fragments also inhibited. In contrast, a variety of other antibodies that recognize specific proteins on the MDCK cell surface failed to inhibit the recovery of resistance. Monoclonal antibodies have been raised and screened for their ability to inhibit resistance recovery. One such monoclonal antibody has been obtained that stained the lateral surface of MDCK cells. This antibody, rr1, recognized a 118-kD polypeptide in MDCK cell extracts and an 81-kD fragment released from the cell surface by trypsinization in the presence of Ca2+. Sequential immunoprecipitation with antibody rr1 and a monoclonal antibody to uvomorulin showed that this polypeptide is related to uvomorulin. The role of uvomorulin-like and liver cell adhesion molecule (L-CAM)-like polypeptides in the establishment of the epithelial occluding barrier is discussed.  相似文献   

18.
The herpes simplex virus (HSV) glycoprotein complex gE-gI mediates the spread of viruses between adjacent cells, and this property is especially evident for cells that form extensive cell junctions, e.g., epithelial cells, fibroblasts, and neurons. Mutants lacking gE or gI are not compromised in their ability to enter cells as extracellular viruses. Therefore, gE-gI functions specifically in the movement of virus across cell-cell contacts and, as such, provides a molecular handle on this poorly understood process. We expressed gE-gI in human epithelial cells by using replication-defective adenovirus (Ad) vectors. gE-gI accumulated at lateral surfaces of the epithelial cells, colocalizing with the adherens junction protein β-catenin but was not found on either the apical or basal plasma membranes and did not colocalize with ZO-1, a component of tight junctions. In subconfluent monolayers, gE-gI was found at cell junctions but was absent from those lateral surfaces not in contact with another cell, as was the case for β-catenin. Similar localization of gE-gI to cell junctions was observed in HSV-infected epithelial cells. By contrast, HSV glycoprotein gD, expressed using a recombinant Ad vectors, was found primarily along the apical surfaces of cells, with little or no protein found on the basal or lateral surfaces. Expression of gE-gI without other HSV polypeptides did not cause redistribution of either ZO-1 or β-catenin or alter tight-junction functions. Together these results support a model in which gE-gI accumulates at sites of cell-cell contact by interacting with junctional components. We hypothesize that gE-gI mediates transfer of HSV across cell junctions by virtue of these interactions with cell junction components.  相似文献   

19.
Summary Fetal bovine serum (FBS) or heat-inactivated FBS (56° C for 30 min, HFBS) caused a dose-dependent decrease in the transepithelial electrical resistance of an epithelial monolayer (MDCK). A saturating concentration of HFBS (30%) caused an average fall of 25 ± 2% within 60 min. Upon removal of HFBS, the resistance returned to its starting value within 1 h. Flux studies with [3H]mannitol demonstrate that the fall in resistance is due to an increased permeability of the tight junctions. Thirty percent heat inactivated sera from goat, newborn calf, calf, bovine, and horse caused falls ranging from 26 to 47%. In contrast with the basolateral preference of human and bovine adult sera, fetal bovine and newborn calf sera elicit this response primarily by interacting with the apical surface of the epithelium. HFBS-treated monolayers show a significant increase in the condensation of F-actin at points where ≥3 cells meet. These results demonstrate that FBS and other sera used as nutritional supplements can increase the permeability of the tight junctions of cultured epithelial cells.  相似文献   

20.
Analysis of epithelial cell surface polarity with monoclonal antibodies   总被引:3,自引:0,他引:3  
The hybridoma technique of K?hler and Milstein was utilized to isolate hybrid cell lines secreting monoclonal antibodies against cell surface proteins on the Madin-Darby canine kidney (MDCK) epithelial cell line. These antibodies were employed as high-affinity ligands to study the development and maintenance of epithelial cell polarity in MDCK cells and for the identification of nephron segment-specific proteins. Using standard procedures, we were able to immunoprecipitate glycoproteins with molecular weights of 25,000 ( 25K ), 35,000 ( 35K ), and 50,000 (50K). Immunofluorescence and immunoelectron microscopy of MDCK demonstrated that the 35K and 50K proteins could be localized on both the apical and basolateral membranes of subconfluent cells but primarily on the basolateral membranes of confluent cells. By determining the cell surface distribution of the 35K and 50K proteins on MDCK cells during growth into a confluent monolayer, and after the experimental disruption of tight junctions, evidence was obtained that the polarized distribution of these cell surface glycoproteins required the presence of tight junctions. We propose that confluent MDCK cells have a mechanism that is responsible for the establishment and maintenance of epithelial apical and basolateral membranes as distinct cell surface domains. These monoclonal antibodies were also used to localize the 25K and 35K glycoproteins in the kidney. The distribution of these proteins was mapped by immunofluorescence and immunoelectron microscopy and was determined to be on the basolateral membranes of epithelial cells in only certain tubular segments of the nephron. The possible functional implications of these distributions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号