首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Embryonic bioactivation and formation of reactive oxygen species (ROS) are implicated in the mechanism of phenytoin teratogenicity. This in vivo study in pregnant CD-1 mice evaluated whether maternal administration of the antioxidative enzymes superoxide dismutase (SOD) and/or catalase conjugated with polyethylene glycol (PEG) could reduce phenytoin teratogenicity. Initial studies showed that pretreatment with PEG-SOD alone (0.5–20 KU/kg IP 4 or 8 h before phenytoin) actually increased the teratogenicity of phenytoin (65 mg/kg IP on gestational days [GD] 11 and 12, or 12 and 13) (p < .05), and appeared to increase embryonic protein oxidation. Combined pretreatment with PEG-SOD and PEG-catalase (10 KU/kg 8 or 12 h before phenytoin) was not embryo-protective, nor was PEG-catalase alone, although PEG-catalase alone reduced phenytoin-initiated protein oxidation in maternal liver (p < .05). However, time-response studies with PEG-catalase (10 KU/kg) on GDs 11, or 11 and 12, showed maximal 50-100% increases in embryonic activity sustained for 8-24 h after maternal injection (p < .05), and dose-response studies (10–50 KU/kg) at 8 h showed maximal respective 4-fold and 2-fold increases in maternal and embryonic activities with a 50 KU/kg dose (p < .05). In controls, embryonic catalase activity was about 4% of that in maternal liver, although with catalase treatment, enhanced embryonic activity was about 2% of enhanced maternal activity (p < .05). PEG-catalase pretreatment (10-50 KU/kg 8 h before phenytoin) also produced a dose-dependent inhibition of phenytoin teratogenicity, with maximal decreases in fetal cleft palates, resorptions and postpartum lethality at a 50 KU/kg dose (p < .05). This is the first evidence that maternal administration of PEG-catalase can substantially enhance embryonic activity, and that in vivo phenytoin teratogenicity can be modulated by antioxidative enzymes. Both the SOD-mediated enhancement of phenytoin teratogenicity, and the inhibition of phenytoin teratogenicity by catalase, indicate a critical role for ROS in the teratologic mechanism, and the teratologic importance of antioxidative balance.  相似文献   

2.
The limb plates and craniofacial regions in rabbit fetuses were examined shortly after the last dose of phenytoin on day 16 after daily administration by gavage with either 150 mg/kg on days 14-16 or 300 mg/kg on days 15-16. Both treatment regimens resulted in similar changes. Histologically, the digital areas of the limb plates showed extensive edema and dilated blood vessels within 2 h. After 8 h, vascular disruption occurred with hemorrhages. At 24-48 h after dosing, mesenchymal necrosis and, on some occasions, amputation of digits was observed. In the craniofacial region, well-defined superficial hemorrhage was seen in the frontal and nasal region at 8 h. Histologically, subectodermal hemorrhage caused by vascular disruption and microfocal mesenchymal necrosis was observed. At 48 h, some fetuses showed severe diffuse intracranial and superficial hemorrhage, resulting in massive tissue damage, also in the central nervous system (CNS). Maternal heart rate, blood pressure, PO2, and PCO2 were also measured in awake pregnant rabbits 6 h after the last dose on day 16 after daily administration with 150 mg/kg during gestational days 14-16. An attempt was also made to measure fetal heart rate in anesthetized rabbits. The maternal heart rate and blood pressure decreased with about 15% in phenytoin-treated animals, resulting in a decrease in PO2 (approximately 15%) and an increase in PCO2 (approximately 15%). A decrease in fetal heart rate was also registered. The results thus indicate that phenytoin exerts its teratogenic effects by inducing fetal hypoxia, leading to vascular disrupture and necrosis of existing and developing structures.  相似文献   

3.
The effects of nifedipine (40-100 mumol/kg), nitrendipine (40 and 80 mumol/kg), hydralazine (381 and 763 mumol/kg), felodipine (12 mumol/kg), and the pharmacologically inactive first-step metabolite of felodipine, H152/37 (80 mumol/kg) were studied in rabbits (New Zeeland White) after oral administration on day 16 of gestation. The vasodilating drugs--nifedipine, nitrendipine, felodipine, and hydralazine--all induced digital defects in the fetuses. The defects consisted of a reduction, absence, or abnormal structure of the distal phalanx of especially the fourth digit on the hind paw(s). Histologically, a disturbed differentiation of the cartilage, and secondarily also of the ossification centre and joint structure of the distal phalanx, was observed. In contrast, no digital abnormalities were observed after administration of vehicle or H152/37. The findings that vasodilators with different structures, like dihydropyridines and hydralazine, induced the same type of digital defects strongly suggest that the observed phalangeal defects are secondary to pharmacological action, and not related to chemical structure. A decrease in uteroplacental blood flow, caused by excessive hypotension, is discussed as the most probable mechanism underlying the observed defects.  相似文献   

4.
J T Lum  P G Wells 《Teratology》1986,33(1):53-72
An in vivo murine model was developed to measure maternal phenytoin biotransformation along with the covalent binding of phenytoin to fetal tissues in the same fetuses which were assessed for fetal anomalies. Acetaminophen was administered to pregnant CD-1 mice 1 hour prior to phenytoin, both given i.p. at varying doses and gestational times between days 11 and 13. Dams were killed between days 12 and 19. Metabolites reflecting the enzymatic bioactivation of phenytoin were quantified in maternal plasma and urine with high-performance liquid chromatography (HPLC). Acetaminophen pretreatment caused a threefold increase in phenytoin-induced fetal cleft palates without increasing resorptions. The covalent binding of radiolabeled phenytoin to fetal and placental tissues measured on day 13 was increased twofold and threefold, respectively, by acetaminophen pretreatment. Phenytoin covalent binding measured on day 16 was significantly increased in the livers of fetuses with cleft palates, but not in the livers of dams with fetuses having cleft palates. Binding to fetal brain on day 16 was over fourfold higher than that in maternal brain. Acetaminophen pretreatment differentiated dams into poor and extensive metabolisers of phenytoin, with only the latter group carrying fetuses with cleft palates. The incidence of fetal cleft palates correlated positively with maternal urinary levels of phenytoin (r = +.81, P less than .01) and its dihydrodiol metabolite (r = +.61, 0.05 less than P less than .1), and negatively with levels of para-hydroxylated phenytoin (r = -.85, P less than .01). These findings related both to the mechanism of phenytoin teratogenicity and its potentiation by acetaminophen.  相似文献   

5.
BACKGROUND: Sodium thioglycolate, which has widespread occupational and consumer exposure to women from cosmetics and hair‐care products, was evaluated for developmental toxicity by topical exposure during the embryonic and fetal periods of pregnancy METHODS: Timed‐mated Sprague–Dawley rats (25/group) and New Zealand White (NZW) rabbits (24/group) were exposed to sodium thioglycolate in vehicle (95% ethanol:distilled water, 1:1) by unoccluded topical application on gestational days (GD) 6–19 (rats) or 6–29 (rabbits) for 6 hr/day, at 0, 50, 100, or 200 mg/kg body weight/day (rats) and 0, 10, 15, 25, or 65 mg/kg/day (rabbits). At termination (GD 20 rats; GD 30 rabbits), fetuses were examined for external, visceral, and skeletal malformations and variations. RESULTS: In rats, maternal topical exposure to sodium thioglycolate, at 200 mg/kg/day (the highest dose tested) on GD 6–19, resulted in maternal toxicity, including reduced body weights and weight gain, increased relative water consumption and one death. Treatment‐related increases in feed consumption and changes at the application site occurred at all doses, in the absence of increased body weights or body weight change. Fetal body weights/litter were decreased at 200 mg/kg/day, with no other embryo/fetal toxicity and no treatment‐related teratogenicity in any group. In rabbits, maternal topical exposure to sodium thioglycolate on GD 6–29 resulted in maternal dose‐related toxicity at the dosing site in all groups; no maternal systemic toxicity, embryo/fetal toxicity, or treatment‐related teratogenicity were observed in any group. CONCLUSIONS: A no observed adverse effect level (NOAEL) was not identified for maternal toxicity in either species with the dosages tested. The developmental toxicity NOAEL was 100 mg/kg/day (rats) and ≥65 mg/kg/day (rabbits; the highest dose tested). The clinical relevance of theses study results is uncertain because no data were available for levels, frequency, or duration of exposures in female workers or end users. Birth Defects Research Part B 68:144–161, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

6.
The developmental toxicity of the potent adenosine deaminase (ADA) inhibitor, pentostatin (2'-deoxycoformycin), was investigated in pregnant rats and rabbits administered daily iv doses during organogenesis. Rats received 0, 0.01, 0.10, or 0.75 mg/kg on gestation days 6-15 and rabbits received 0, 0.005, 0.01, or 0.02 mg/kg on gestation days 6-18 and maternal and fetal parameters were evaluated on gestation day 21 (rats) or 30 (rabbits). Live fetuses were examined for external, visceral, and skeletal malformations and variations. In rats, maternal body weight gain and food consumption were significantly suppressed at doses of 0.10 and 0.75 mg/kg during the treatment period but returned to control levels during posttreatment. Increased postimplantation loss and decreased numbers of live fetuses, litter size, and fetal body weight were observed at 0.75 mg/kg. A statistically significant increase in the incidence of vertebral malformations occurred at 0.75 mg/kg. The incidence of certain skeletal variations (extra presacral vertebrae, extra ribs, hypoplastic vertebrae) was also increased at 0.75 mg/kg. Ossification of cervical centra was reduced at 0.75 mg/kg compared with controls. In rabbits, marked maternal toxicity (death, body weight loss, and decreased food consumption) and reproductive toxicity (abortion and premature delivery) occurred in all pentostatin-treated groups. However, there were no significant effects on number of live fetuses, pre- or postimplantation loss, litter size, or fetal body weights in the animals with live litters. There was also no apparent increase in the incidence of malformations or variations in the live fetuses of pentostatin-treated rabbits. Thus, these studies demonstrate developmental toxicity of pentostatin in rats and rabbits, and teratogenicity in rats, at maternally toxic doses.  相似文献   

7.
M Wong  L M Helston  P G Wells 《Teratology》1989,40(2):127-141
The teratogenicity of phenytoin may result from its enzymatic bioactivation to a reactive intermediate, which, if not detoxified, can interact with embryonic tissues and alter development. Glutathione (GSH) is an important cofactor/substrate for many physiological processes and for the detoxification of xenobiotic reactive intermediates. This study examined the effects of the GSH depletor diethyl maleate (DEM) and the GSH synthesis inhibitor L-buthionine-(S,R)-sulfoximine (BSO) on phenytoin embryopathy. Phenytoin, 55 mg/kg, was administered intraperitoneally (ip) to pregnant CD-1 mice at 0900 hr on gestational days 12 and 13. Pretreatment with DEM, 150 or 300 mg/kg ip, enhanced the incidence of phenytoin-induced cleft palates by 3.3-fold and 2.3-fold, respectively (P less than 0.05), without affecting the incidence of resorptions, postpartum death, or mean fetal weight. BSO, 1,800 mg/kg ip, given 0.5 hr prior to phenytoin, resulted in a 2.4-fold increase in postpartum lethality and a 5-fold increase in fetal weight loss (P less than 0.05), without altering the incidence of resorptions or cleft palates. In two subsequent studies, BSO, 680-1,018 mg/kg/day, was given in the drinking water on gestational days 9 to 13 in the first study and on days 10 to 14 in the second study. Phenytoin, 55 mg/kg ip, was given on days 11 and 12 and on days 11 to 13 in the respective studies. In the first drinking water study, BSO enhanced the incidence of phenytoin-induced fetal resorptions 3.8-fold and cleft palates 3.3-fold (P less than 0.05) but did not affect postpartum death. In the second study, BSO enhanced the incidence of resorptions, cleft palates, and postpartum death by 2-fold, 2.6-fold, and 1.7-fold, respectively (P less than 0.05). In both of the latter two studies, phenytoin-induced fetal weight loss was altered by BSO treatment (P less than 0.05). BSO alone had no embryopathic effects. These results suggest that GSH may be involved in the detoxification of a reactive intermediate of phenytoin and/or in fetal cytoprotection.  相似文献   

8.
M Singh  G L Shah 《Teratology》1989,40(5):453-458
The antiepileptic drug phenytoin was injected into the yolk sac of White Leghorn chick embryos. A dose-response study was followed by a detailed teratological study using a single dose of 3 mg. The surviving embryos were sacrificed on the 19th day of incubation. The embryos showed a generalized decrease in body weight together with a wide range of malformations. The malformations could be roughly divided into limb, craniofacial, abdominal, and ocular defects, as well as deficiencies in growth. Skeletal defects included hypoplasia of digital phalanges and nails and shortened wings.  相似文献   

9.
10.
BACKGROUND: Lenalidomide, a thalidomide analog, is indicated for treatment of patients with deletion-5q myelodysplastic syndromes or multiple myeloma. NZW rabbits were used because of sensitivity to thalidomide's teratogenicity. METHODS: Range-finding and pulse-dosing studies preceded a full developmental toxicity study in New Zealand white (NZW) rabbits (25/group) given lenalidomide (0, 3, 10, or 20 mg/kg/day) or thalidomide (180 mg/kg/day) by stomach tube on gestation days (GD) 7-19. Clinical signs, body weights, and feed consumption were recorded daily from GD 7. On GD 29, standard maternal necropsy, uterine content, and fetal evaluations were carried out. RESULTS: In all studies, thalidomide was selectively toxic to development. In the pulse-dosing study, lenalidomide did not affect development at 100 mg/kg/day. Increases in C(max) and AUC(0-24 hr) values for lenalidomide were slightly less than dose-proportional; lenalidomide occurred in the fetuses. At 10 and 20 mg/kg/day, lenalidomide was maternally toxic (reduced body weight gain and feed consumption; at 20 mg/kg/day, weight loss and one abortion). Developmental toxicity at 10 and 20 mg/kg/day included reduced fetal body weights and increased postimplantation losses and fetal variations (morbidity/purple-discolored skin, undeveloped intermediate lung lobe, irregular nasal-frontal suture, and delayed metacarpal ossification). Thalidomide selectively reduced fetal body weight, increased postimplantation loss and caused characteristic limb and other dysmorphology. CONCLUSIONS: The maternal and developmental NOAELs for lenalidomide are 3 mg/kg/day. Unlike thalidomide, lenalidomide affected embryo-fetal development only at maternally toxic dosages, confirming that structure-activity relationships may not predict maternal or developmental effects. No fetal malformations were attributable to lenalidomide.  相似文献   

11.
Effect of route of administration on phenytoin teratogenicity in A/J mice   总被引:1,自引:0,他引:1  
Acute administration of the anticonvulsant drug, phenytoin (PHT) has been shown to result in embryotoxicity and teratogenicity in several strains of mice. The A/J strain is reported to be most susceptible to the effects of the drug including an increased incidence of resorptions and orofacial clefts in treated animals. When administered chronically, the drug has been shown to be teratogenic in the absence of maternal toxicity and embryolethality in Swiss Webster mice [Hansen and Billings, 1985]. In this paper, we have compared the embryopathic effects of chronic and acute administrations of PHT to A/J mice. PHT was administered to pregnant females by intraperitoneal (i.p.) injection on day 10 of gestation at a dose of either 60 or 75 mg/kg body weight. Alternatively, PHT was added to ground chow and fed to animals prior to and throughout gestation; animals received a daily dose of either 60 or 75 mg/kg body weight. Pregnant animals were sacrificed on day 18 or 19 of gestation, and fetuses were examined for the presence of orofacial clefts and other anomalies. There was a significant increase in the frequency of cleft lip and palate in animals receiving the drug by i.p. administration, but there was no increase in the incidence of clefts if the drug were added to the diet. The results of this study reiterate the importance of the route of administration of a drug in determining its embryopathic effect.  相似文献   

12.
Amiodarone, lamotrigine, and phenytoin, common antiarrhythmic and antiepileptic drugs, inhibit a persistent sodium current in neurons (I(NaP)). Previous results from our laboratory suggested that I(NaP) is critical for functionality of peripheral chemoreceptors. In this study, we determined the effects of therapeutic levels of amiodarone, lamotrigine, and phenytoin on peripheral chemoreceptor and ventilatory responses to hypoxia. Action potentials (APs) of single chemoreceptor afferents were recorded using suction electrodes advanced into the petrosal ganglion of an in vitro rat peripheral chemoreceptor complex. AP frequency (at Po(2) approximately 150 Torr and Po(2) approximately 90 Torr), conduction time, duration, and amplitude were measured before and during perfusion with therapeutic dosages of the drug or vehicle. Hypoxia-induced catecholamine secretion within the carotid body was measured using amperometry. With the use of whole body plethysmography, respiration was measured in unanesthesized rats while breathing room air, 12% O(2), and 5% CO(2), before and after intraperitoneal administration of amiodarone, lamotrigine, phenytoin, or vehicle. Lamotrigine (10 microM) and phenytoin (5 microM), but not amiodarone (5 microM), decreased chemoreceptor AP frequency without affecting other AP parameters or magnitude of catecholamine secretion. Similarly, lamotrigine (5 mg/kg) and phenytoin (10 mg/kg) blunted the hypoxic but not the hypercapnic ventilatory response. In contrast, amiodarone (2.5 mg/kg) did not alter the ventilatory response to hypoxia or hypercapnia. We conclude that lamotrigine and phenytoin at therapeutic levels impair peripheral chemoreceptor function and ventilatory response to acute hypoxia. These are consistent with I(NaP) serving an important function in AP generation and may be clinically important in the care of patients using these drugs.  相似文献   

13.
C V Vorhees 《Teratology》1987,35(3):287-303
Sprague-Dawley rats were gavaged once daily on days 7-18 of gestation with, 100, 150, or 200 mg/kg of phenytoin. Only the highest dose of phenytoin decreased maternal weight during gestation or increased offspring mortality up to weaning. Offspring were evaluated for activity prior to weaning (pivoting and photocell) and afterwards (figure 8, open-field, and hole-board), dynamic righting development, maze learning (Biel maze), and visual discrimination (Y maze), and for startle reaction to both auditory and tactile stimuli. The highest dose of phenytoin produced increased activity on all tests of activity, delayed dynamic righting development, impaired Biel maze and Y-maze learning, and inhibited tactile startle responses. The two lower doses of phenytoin generally showed a dose-effect relationship with values on most measures intermediate between values for controls and for the highest-dose group. Dose-effect relationships were most evident on measures of early activity (both tests), dynamic righting, and Biel maze learning, whereas only trends were evident on measures of later activity, Y maze, and startle. A dose-related rotational defect was found in a minority of phenytoin offspring, and although these individuals contributed to the behavioral abnormalities observed, they in no instance accounted for the overall pattern of effects seen in the phenytoin offspring. Maternal plasma phenytoin levels at the end of treatment were dose-related. Offspring showed no effects on postnatal growth, total brain weight, or brain protein content as adults. The data support the view that phenytoin is a potent behavioral teratogen at doses well below those causing any evidence of gross teratogenicity or embryotoxicity.  相似文献   

14.
Present study was undertaken to determine if an interaction exists during co-administration of ciprofloxacin with phenytoin. Eight healthy male rabbits received oral phenytoin, 40 mg/kg, od, for 7 days. On day 7, phenytoin blood sampling was done at times 0, 0.1, 1, 2, 3, 4, 5, 6, 8 and 24 hr. From day 8 to 14, phenytoin was co-administered with oral ciprofloxacin, 70 mg/kg, od. On day 14, blood samples were collected as previously described. Pharmacokinetic analysis revealed significant decrease in steady state maximum concentration (Cmax), through concentration (Cmin), elimination half life (t 1/2 e) and the area under plasma time concentration curve (AUC0-24) of phenytoin when co-administered with ciprofloxacin. It warrants close monitoring of levels when these two agents are given simultaneously.  相似文献   

15.
Sodium orthovanadate in deionized water was administered once daily by gavage on gestational days 6-15 to mice at doses of 0, 7.5, 15, 30, and 60 mg/kg. Dams were killed on day 18 of pregnancy, and fetuses were examined for external, visceral, and skeletal defects. Maternal toxicity was observed at the highest doses of sodium orthovanadate, as evidenced by a significant number of deaths (60 and 30 mg/kg/d) and reduced weight gain and food consumption (30 and 15 mg/kg/d). Embryolethality and teratogenicity were not observed at maternally toxic doses and below, but fetal toxicity was evidenced by a significant delay in the ossification process of some skeletal districts at 30 mg/kg/d. The no-observed-adverse-effect level (NOAEL) for maternal toxicity was 7.5 mg/kg/d, and 15 mg/kg/d represented a NOAEL for developmental toxicity in mice under the conditions of this study.  相似文献   

16.
A humanized monoclonal antibody targeting transforming growth factor β1 (TGF‐β1 mab) has been used in development for the treatment of chronic kidney disease. Embryo‐fetal development studies were conducted in rats and rabbits using 30 and 25 animals per group, respectively. The TGF‐β1 mab was administered subcutaneously to rats at 0, 2, or 50 mg/kg/dose on gestation days (GDs) 6, 10, and 14 and intravenously to rabbits at 0 or 3 mg/kg/dose on GDs 7, 12 to 19, and at 30 mg/kg/dose on GDs 7, 12, 14, 16, and 18. Maternal reproductive endpoints and fetal viability, weight, and morphology were evaluated. There was no indication of maternal or embryo‐fetal toxicity in the rat. Effects in the rabbit were limited to the fetus where the 30 mg/kg TGF‐β1 mab dose produced a slight decrease in fetal weight and an increase in the incidence of retrocaval ureter and an absent and/or malpositioned kidney/ureter in two fetuses. In conclusion, TGF‐β1 mab produced no adverse maternal or embryo‐fetal findings in rats when administered ≤50 mg/kg on GDs 6, 10, and 14. TGF‐β1 mab did not demonstrate maternal toxicity or embryo‐fetal lethality at doses as high as 30 mg/kg when administered on GDs 7, 12, 14, 16, and 18 in rabbits. Fetal growth and morphology were affected only at 30 mg/kg; thus, the no observed adverse effect level was 3 mg/kg in rabbits. The margin of safety for both rats and rabbits was ≥37‐fold the clinical exposure level.  相似文献   

17.
BACKGROUND: VLA‐4 (Very late antigen 4, integrin α4β1) plays an important role in cell‐cell interactions that are critical for development. Homozygous null knockouts of the α4subunit of VLA‐4 or VCAM‐1 (cell surface ligand to VLA‐4) in mice result in abnormal placental and cardiac development and embryo lethality. Objectives of the current study were to assess and compare the teratogenic potential of three VLA‐4 antagonists. METHODS: IVL745, HMR1031, and IVL984 were each evaluated by the subcutaneous route in standard embryo‐fetal developmental toxicity studies in rats and rabbits. IVL984 was also evaluated in mice. Fetuses were examined externally, viscerally, and skeletally. RESULTS: IVL745 did not cause significant maternal or fetal effects at doses up to 100 or 250 mg/kg/day in rats or rabbits, respectively. HMR1031 treatment resulted in marked maternal toxicity and slight fetal toxicity at the highest tested doses of 200 and 75 mg/kg/day in rats and rabbits, respectively. HMR1031 embryo‐fetal effects consisted of slightly lower body weight and crown‐rump length in rats and minor sternebral defects in rabbits. IVL984 treatment resulted in minimal maternal effects at doses up to 40, 15, and 100 mg/kg/day in rats, rabbits, and mice, respectively (excluding abortions in rabbits). However, marked developmental effects were observed at the lowest tested IVL984 doses, 1, 0.2, and 3 mg/kg/day in rats, rabbits, and mice, respectively. IVL984 embryo‐fetal effects consisted of increased total post‐implantation loss due to early resorptions and high incidences of cardiac malformations and skeletal malformations and/or variations. Notably, spiral septal defects were observed in up to 76% of rat fetuses and up to 58% of rabbit fetuses. CONCLUSIONS: Dramatic differences in teratogenic potential were observed: IVL745 was not teratogenic, HMR1031 caused slight embryo‐fetal effects at maternally‐toxic doses, and IVL984 was a potent teratogen at doses where direct maternal toxicity was limited to abortions in rabbits. Prominent effects of IVL984 included embryo lethality and cardiac malformations including spiral septal defects in three species. Birth Defects Res B 71:55–68, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

18.
19.
It has been proposed that the anticonvulsant drug phenytoin (PHT) and glucocorticoids induce orofacial clefting by the same mechanism. Previous work had demonstrated that PHT treatment significantly increased endogenous maternal corticosterone concentrations for approximately 48 hr after dosing in A/J mice. The purpose of the present investigation was to determine whether PHT is embryotoxic in the absence of endogenous maternal glucocorticoids. Maternal adrenal glands were removed on Day 7 of gestation, and the incidence of clefting after PHT treatment was determined. There was a high level of maternal toxicity following adrenalectomy (ADX) and PHT treatment at either 60 or 75 mg/kg. This increased toxicity did not appear to be due to altered maternal drug levels in ADX mice. There was a significant increase in the clefting incidence among offspring of ADX dams treated with PHT at 60 mg/kg. This dose of PHT did not elevate maternal corticosterone levels in ADX dams. These data suggest that PHT is capable of producing clefts in the absence of endogenous maternal corticosterone.  相似文献   

20.
BACKGROUND: The purpose of this study was to evaluate the effects of lasofoxifene, a selective estrogen receptor modulator (SERM), on rat and rabbit fetal development. METHODS: Lasofoxifene was administered orally to rats (1, 10, 100 mg/kg) between gestation days (GD) 6-17, and in rabbits (0.1, 1, 3 mg/kg) between GD 6-18. Maternal body weight and food consumption were monitored throughout pregnancy. Fetuses were delivered by Cesarean section on GD 21 in rats, and GD 28 in rabbits, to evaluate fetal viability, weight, and morphology. Drug concentrations in maternal plasma were measured in a separate cohort of animals at several time points commencing on GD 17 (rats) and 18 (rabbits). On GD 18 (rat) and GD 19 (rabbit) drug concentrations were measured in maternal plasma and in fetal tissue 2 hr post dosing to determine the fetal to maternal drug ratio. RESULTS: In rats, there were dose-related declines in maternal weight gain and food consumption. Post implantation loss was significantly increased at dosages of 10 and 100 mg/kg, and the number of viable fetuses was decreased at 100 mg/kg. The placental weights increased, whereas fetal weights decreased in a dose-dependent manner. Lasofoxifene-related teratologic findings were noted at 10 and 100 mg/kg and included imperforate anus with hypoplastic tails, dilatation of the ureters and renal pelvis, misaligned sternebrae, hypoflexion of hindpaw, wavy ribs, and absent ossification of sternebrae. In rabbits, neither maternal weight gain nor food consumption were affected during treatment. Between GD 26-28, there was a dose-dependent increased incidence of red discharge beneath the cages. At 1 and 3 mg/kg, resorptions and post-implantation loss increased. There were no significant external or visceral effects, but 3 mg/kg there was an increased incidence of supernumerary ribs. Although the maternal plasma Cmax and AUC(0-24) were dose-dependent, the exposures in the rat were many orders of magnitude greater than in the rabbit even for the same 1 mg/kg dose. The single time point fetal/maternal drug ratio was higher in the rat (1.3-0.78) than in the rabbit (0.21-0.16). CONCLUSION: In general, both maternal and fetal effects of lasofoxifene were similar to those reported with other SERMs. Although the incidence or severity of these effects was, in some instances, greater in the rat than in the rabbit, the doses and the resultant maternal and fetal exposures were many orders of magnitude higher in the rat, suggesting the rabbit to be more sensitive to the toxicological effects of lasofoxifene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号