首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molecular basis of B cell receptor (BCR)-induced apoptosis during the negative selection of immature B cells is largely unknown. We use transitional immature B cells that are highly susceptible to BCR-induced apoptosis to show that Pten is selectively required for BCR-mediated initiation of the mitochondrial death pathway. Specifically, deleting Pten, but not other pro-apoptotic molecules, abrogates BCR-elicited apoptosis and improves viability in wild-type immature B cells. We further identify a physiologically and significantly higher intracellular Pten level in immature B cells, as compared to mature B cells, which is responsible for low AKT activity and the propensity towards death in immature B cells. Restoration of AKT activity using a constitutive form of AKT or reduction of Pten to a level comparable with that seen in mature B cells rescues immature B cells from BCR-induced apoptosis. Thus, we provide evidence that Pten is an essential mediator of BCR-induced cell death, and that differential regulation of intracellular Pten levels determines whether BCR ligation promotes cell death or survival. Our findings provide a valuable insight into the mechanisms underlying negative selection and clonal deletion of immature B cells.  相似文献   

3.
We have previously reported that CD40 stimulation sensitizes human memory B cells to undergo apoptosis upon subsequent B cell receptor (BCR) ligation. We have proposed that activation stimuli connect the BCR to an apoptotic pathway in mature B cells and that BCR-induced apoptosis of activated B cells could serve a similar function as activation-induced cell death in the mature T cell compartment. Although it has been reported that caspases are activated during this process, the early molecular events that link the Ag receptor to these apoptosis effectors are largely unknown. In this study, we report that acquisition of susceptibility to BCR-induced apoptosis requires entry of memory B cells into the S phase of the cell cycle. We also show that transduction of the death signal via the BCR sequentially proceeds through a caspase-independent and a caspase-dependent phase, which take place upstream and downstream of the mitochondria, respectively. Furthermore, our data indicate that the BCR-induced alterations of the mitochondrial functions are involved in activation of the caspase cascade. We have found both caspases-3 and -9, but not caspase-8, to be involved in the BCR apoptotic pathway, thus supporting the notion that initiation of the caspase cascade could be under the control of the caspase-9/Apaf-1/cytochrome c multimolecular complex. Altogether, our findings establish the mitochondria as the connection point through which the Ag receptor can trigger the executioners of apoptotic cell death in mature B lymphocytes.  相似文献   

4.
Engagement of antigen receptors on immature B cells induces apoptosis, while at the mature stage, it stimulates cell activation and proliferation. The difference in B cell receptor (BCR)-mediated signaling pathways regulating death or survival of B cells is not fully understood. We aimed to characterize the pathway leading to BCR-driven apoptosis. Transitional immature B cells were obtained from the spleen of sublethally irradiated and auto-reconstituted mice. We have detected a short-lived BCR-driven activation of mitogen-activated protein kinases (ERK1/2 and p38 MAPK) and Akt/PKB in transitional immature B cells that correlated with the lack of c-Fos expression, reduced phosphorylation of Akt substrates and a susceptibility for apoptosis. Simultaneous signaling through BCR and CD40 protected immature B cells from apoptosis, however, without inducing Bcl-2 expression. The BCR-induced apoptosis of immature B cells is a result of the collapse of mitochondrial membrane potential and the subsequent activation of caspase-3.  相似文献   

5.
Immature B cells display increased sensitivity to tolerance induction compared with their mature counterparts. The molecular mechanisms underlying these differences are poorly defined. In this study, we demonstrate unique maturation stage-dependent differences in B cell Ag receptor (BCR) signaling, including BCR-mediated calcium mobilization responses. Immature B cells display greater increases in intracellular calcium concentrations following Ag stimulation. This has consequences for the induction of biologically relevant responses: immature B cells require lower Ag concentrations for activation than mature B cells, as measured by induction of receptor editing and CD86 expression, respectively. BCR-induced tyrosine phosphorylation of CD79a, Lyn, B cell linker protein, and phospholipase Cgamma2 is enhanced in immature B cells and they exhibit greater capacitative calcium entry in response to Ag. Moreover, B cell linker protein, Bruton's tyrosine kinase, and phospholipase Cgamma2, which are crucial for the induction of calcium mobilization responses, are present at approximately 3-fold higher levels in immature B cells, potentially contributing to increased mobilization of calcium. Consistent with this possibility, we found that the previously reported lack of inositol-1,4,5-triphosphate production in immature B cells may be explained by enhanced inositol-1,4,5-triphosphate breakdown. These data demonstrate that multiple mechanisms guarantee increased Ag-induced mobilization of calcium in immature B cells and presumably ensure elimination of autoreactive B cells from the repertoire.  相似文献   

6.
Engagement of the B cell Ag receptor (BCR) on immature B cells leads to growth arrest followed by apoptosis. Concomitant signaling through CD40 sustains proliferation and rescues the cells from apoptosis. Previously, we have shown that cross-linking CD40 on B cells stimulates the expression of A1, an antiapoptotic member of the Bcl-2 family, and that transduction of the murine B lymphoma line WEHI 231, a model for immature B cells, with A1 protected the cells against BCR-induced apoptosis. Here we demonstrate that A1 strongly interferes with activation of caspase-7, the major effector caspase activated after BCR cross-linking on WEHI 231 lymphoma cells. The pathway leading to activation of the effector caspase cascade including caspase-7 is unclear. Using retrovirally transduced WEHI 231 cell populations, we show that a catalytically inactive mutant of caspase-7 is cleaved almost as efficiently as the wild-type form, arguing against autocatalysis as the sole activating process. In contrast, overexpression of catalytically inactive caspase-9 strongly interferes with caspase-7 processing, poly(ADP-ribose) polymerase cleavage, and DNA laddering, suggesting a role for caspase-9 and hence for the mitochondrial pathway. The importance of the mitochondrial/caspase-9 pathway for BCR-triggered apoptosis is highlighted by our finding that both A1 and the mutant caspase-9 attenuate BCR-induced apoptosis. Thus, our data suggest that the BCR-mediated apoptotic signal in immature B cells spreads via a mitochondrial/caspase-9 pathway.  相似文献   

7.
During the course of B lymphocyte development, newly emerging surface Ig+ B cells pass through a stage when Ag-Ag receptor interactions lead not to immune responsiveness but to a state of functional tolerance. We have explored the molecular basis of antigenic nonresponsiveness and tolerance susceptibility using tolerance-susceptible surface Ig+ splenic B lymphocytes from neonatal mice and anti-mu chain antibodies as a polyclonal ligand. In this population of cells, surface IgM is uncoupled from the inositol phospholipid (PI)-hydrolysis pathway at a point proximal to the receptor; anti-mu antibodies did not stimulate inositol phosphate generation despite the fact that PI-hydrolysis was observed after treatment with A1F4, implicating the existence of a functional G protein and phospholipase C. Further evidence for a difference early in the signal transduction pathway stems from the finding that anti-mu stimulation does not induce the expression of two immediate/early PKC-linked genes egr-1 and c-fos. This appears to be the primary signaling difference between the mature and immature B cells from the neonatal mouse splenic population, as these cells undergo a G0-G1 cell cycle phase transition when surface IgM is bypassed using phorbol diester and calcium ionophore. Interestingly, despite undetectable levels of PI-hydrolysis, we observed equivalent receptor-mediated changes in intracellular calcium when comparing the immature and mature populations. These results indicate incomplete coupling of surface IgM to the signal transduction machinery operative in mature, immunocompetent B cells and suggests a molecular mechanism accounting for the differential processing of surface IgM signals into activation vs tolerogenic responses observed in these two stages of B cell development.  相似文献   

8.
The BCR-triggered responses of mature and transitional immature B cells differ at both the biochemical and functional level. In this study, we show that in mature B cells, BCR signaling triggers Vav phosphorylation and Rac1 activation. Furthermore, we demonstrate that although downstream actin-dependent BCR capping is independent of Rac1 activation, actin-dependent membrane ruffling and cell spreading are Rac1-dependent processes. In contrast, BCR-induced Vav phosphorylation and Rac1 activation is impaired in transitional immature B cells, resulting in defects in actin polymerization-dependent spreading and membrane ruffling while Rac1-independent BCR capping remains intact. Because transitional immature murine B cells maintain lower steady-state levels of plasma membrane cholesterol, we augmented their levels to that of mature B cells and found that BCR-induced Rac1 activation and Rac1-dependent membrane ruffling and cell spreading were restored. These studies provide a direct link between B cell cholesterol levels and downstream cellular signaling processes.  相似文献   

9.
10.
Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, differentiation, and activation of myeloid cells. It binds to a high affinity receptor (G-CSF-R) expressed on myeloid cells, for which the signal transduction mechanisms other than protein tyrosine kinase (PTK) activation have not been completely identified. We explored the potential involvement of protein kinase-C (PKC) in G-CSF-R signal transduction. In this report, we provide direct evidence of PKC activation by G-CSF-R. G-CSF treatment of peripheral blood neutrophils, granulocytic cell lines (HL-60, NFS-60, KG-1), and monocytic cell lines (WEHI-3B,U-937) resulted in PKC activation. Chelerythrine chloride and HA-100, an isoquinolinesulfonamide derivative, the specific inhibitors of PKC, 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA), a chelator of intracellular calcium, and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester (TMB-8), an inhibitor of intracellular calcium release, blocked G-CSF-induced PKC activation in HL-60 cells, and reduced CD11b upregulation in neutrophils, but did not affect ligand-binding or down-modulation of G-CSF-R. Methyl 2,5-dihydroxycinnamate (MDHC), a potent inhibitor of protein tyrosine kinases (PTK), also inhibited PKC activation in response to G-CSF treatment, suggesting that PKC activation may occur downstream of PTK activation. Our results demonstrate the involvement of PKC in G-CSF-R signal transduction, and suggest a common signaling pathway in myeloid cells of granulocytic and monocytic lineages. J. Cell. Biochem. 66:286–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Ligand binding to alpha beta TCR has different consequences in thymocytes at different developmental stages, causing alternatively positive selection, clonal deletion, or activation. These various functional consequences may be due to changes in the signaling properties of the receptor complex during development. In this report we show that alpha beta TCR engagement on immature thymocytes has different effects on intracellular free calcium concentrations than alpha beta TCR engagement on mature T cells. In contrast, CD3 engagement on immature thymocytes and mature T cells has the same effect on intracellular free calcium, suggesting that altered signal transduction in immature thymocytes may be due to inefficient alpha beta TCR-CD3 coupling. These studies also suggest that in certain T cell populations, activation events resulting from ligation of CD3 may not accurately reflect the activation events resulting from ligation of the physiologic receptor, alpha beta TCR.  相似文献   

12.
The cAMP-response element-binding protein (CREB) is activated by phosphorylation on Ser-133 and plays a key role in the proliferative and survival responses of mature B cells to B cell receptor (BCR) signaling. The signal link between the BCR and CREB activation depends on a phorbol ester (phorbol 12-myristate 13-acetate)-sensitive protein kinase C (PKC) activity and not protein kinase A or calmodulin kinase; however, the identity and role of the PKC(s) activity has not been elucidated. We found the novel PKCdelta (nPKCdelta) activator bistratene A is sufficient to induce CREB phosphorylation in murine splenic B cells. The pharmacological inhibitor G?6976, which targets conventional PKCs and PKCmu, has no effect on CREB phosphorylation, whereas the nPKCdelta inhibitor rottlerin blocks CREB phosphorylation following BCR cross-linking. Bryostatin 1 selectively prevents nPKCdelta depletion by phorbol 12-myristate 13-acetate when coapplied, coincident with protection of BCR-induced CREB phosphorylation. Ectopic expression of a kinase-inactive nPKCdelta blocks BCR-induced CREB phosphorylation in A20 B cells. In addition, BCR-induced CREB phosphorylation is significantly diminished in nPKCdelta-deficient splenic B cells in comparison with wild type mice. Consistent with the essential role for Bruton's tyrosine kinase and phospholipase Cgamma2 in mediating PKC activation, Bruton's tyrosine kinase- and phospholipase Cgamma2-deficient B cells display defective CREB phosphorylation by the BCR. We also found that p90 RSK directly phosphorylates CREB on Ser-133 following BCR cross-linking and is positioned downstream of nPKCdelta. Taken together, these results suggest a model in which BCR engagement leads to the phosphorylation of CREB via a signaling pathway that requires nPKCdelta and p90 RSK in mature B cells.  相似文献   

13.
14.
In order to examine the role of phosphatidylinositol bisphosphate (PIP2) hydrolysis in B cell activation, we studied the effect of various classes of protein kinase C (PKC) activators on anti-Ig-mediated B cell stimulation. Anti-Ig-stimulated PIP2 hydrolysis, elevations in [Ca2+]i, and induction of DNA synthesis were inhibited by PMA (a phorbol ester) as previously reported. In contrast, indolactam (an alkaloid PKC activator) inhibited PIP2 hydrolysis and elevations in [Ca2+]i, but stimulated rather than inhibited cellular proliferation. In order to examine whether the binding avidity of the PKC activators to PKC played a role in determining their activity to stimulate or inhibit B cell activation, we studied two other PKC activators, bryostatin and mezerein. Again, both inhibited anti-Ig mediated PIP2 hydrolysis and elevations in [Ca2+]i, whereas only the former inhibited induction of DNA synthesis. These data suggest that a) high levels of PIP2 hydrolysis and elevations in [Ca2+]i are not essential for anti-Ig-mediated induction of B cell DNA synthesis and b) activation of PKC may induce both stimulatory and inhibitory pathways of B cell activation, and whether stimulation or inhibition of cell activation is observed may depend on the combined intensity of these two signals.  相似文献   

15.
Phosphatidylinositol-4,5-bisphosphate (PIP2) is hydrolyzed in response to the tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and plays an important role in regulating cell proliferation and differentiation through the generation of second messengers diacylglycerol (DAG) and trisphosphate inositol (IP3) which lead to the activation of protein kinase C (PKC) and increased levels of intracellular calcium, respectively. In the paper, a mathematical model was established to simulate the accumulation of DAG due to PIP2 hydrolysis mediated by EGFR. Molecular mechanisms between DAG, PIP2, EGFR and phosphatidylinositol transfer protein (PITP) were explained successfully, and positive cooperativity which existed between phospholipase C-gamma1 (PLC-gamma1) and PIP2 was also explained. In the model the effects of parameters on simulation of PIP2 hydrolysis were analyzed and the efficacies of some molecular intervention strategies were predicted. To test the coherence between the model and the biological response to epidermal growth factor (EGF) in cells, the levels of DAG and the tyrosine phosphorylation-EGFRs in NIH3T3 mouse embryonic fibroblast (MEF) were determined by biochemical experiments which showed that the accumulation of DAG was a sigmoidal function of phosphorylation-EGFR concentration, and the consistency between the mathematical model and experimental results was confirmed. In brief, this mathematical model provided a new idea for the further study of the dynamic change of biological characteristics in inositol phospholipid hydrolysis, predicting the efficacy of molecular intervention and the relationship between the metabolisms of inositol phospholipid and other signal transduction pathways.  相似文献   

16.
The role of protein kinase C PKC in B cell activation is controversial. These studies were undertaken to determine whether protein kinase C has a stimulatory or inhibitory role in B cell activation. We found that treatment of B cells for a short period of time (30 min) with the PKC activator phorbol 12,13-dibutyrate (PDBU) primed the cells for enhanced proliferative responses to anti-immunoglobulin (anti-Ig) antibody whereas treatment for a longer period of time (3 h or more) resulted in suppression of proliferation. The enhanced proliferative response to treatment of B cells with PDBU for short periods of time was associated with inhibition of anti-Ig-stimulated increases in phosphatidyl 4,5-bisphosphate (PIP2) hydrolysis and inhibition of increases in [Ca2+]i, indicating that activation of PKC per se might be sufficient for enhancing B cell activation. The time-dependent effect of phorbol esters on the inhibition of B cell proliferation was found to be closely correlated with the kinetics of disappearance of PKC as measured by Western blot and by enzymatic activity but not with inhibition of [Ca2+]i and PIP2. These data demonstrate a bimodal time-dependent effect of PDBU on B cell activation and suggest that (a) the inhibitory effect of phorbol ester on anti-Ig-induced proliferation may be due to the disappearance of PKC rather than to the inhibition of PIP2 and Ca2+; and (b) the early activation of PKC is a stimulatory rather than an inhibitory signal in the induction of B lymphocyte proliferation by anti-Ig.  相似文献   

17.
Cross-linking of surface Ig has been shown to stimulate phosphatidylinositol hydrolysis in murine B cells, leading to increases in [Ca2+]i and activation of protein kinase C (PKC). Preliminary evidence suggests that a similar activation mechanism occurs in human B cells. We wished to examine whether anti-Ig antibody-stimulated human B cell proliferation is as dependent upon the presence of PKC as is anti-Ig-mediated murine B cell proliferation. Using highly purified, small, dense peripheral-blood B lymphocytes from healthy adult donors, we confirmed that PMA, a direct activator of PKC, is a potent mitogen for human B cells that synergizes with anti-mu antibody. Furthermore, we demonstrated that PMA treatment abolishes detectable cellular stores of immunoreactive PKC. However, after such depletion of cellular PKC, anti-mu antibody is still capable of delivering a proliferative signal to human B cells. It is unlikely that this signal occurs solely on the basis of increases in [Ca2+]i, because the calcium ionophore A23187 does not induce a proliferative response in PMA-treated B cells similar in magnitude to that seen with anti-mu. Additionally, the finding that pretreatment of B cells with PMA ablates the ability of anti-Ig antibody to mobilize intracellular and extracellular calcium also suggests that the ability of PMA to enhance anti-Ig mediated stimulation does not depend on elevations of [Ca2+]i induced by anti-Ig. Together, these observations suggest that anti-Ig signaling of human B cells may occur via other pathways in addition to the phosphatidylinositol system of calcium influx and PKC activation.  相似文献   

18.
Prostaglandin E2 (PGE2) is emerging as an important co-modulator of B cell responses. Using a pharmacological approach, we aimed to delineate the role of PGE2 in B cell receptor (BCR) induced apoptosis of immature B cells. Gene and protein expression analyses showed that, of the four PGE2 receptors subtypes, only EP4 receptor is upregulated upon BCR cross-linking, leading to sensitization of WEHI 231 cells towards PGE2 mediated inhibitory effects. EP4 receptor antagonist ONO-AE3-208, was able to completely revert the observed effects of PGE2. The engagement of EP4 receptor promotes BCR-induced G0/G1 arrest of WEHI 231 cells, resulting in enhanced caspase mediated, BCR-induced apoptosis. We addressed, mechanistically, the interplay between BCR and EP4 receptor signaling components. Prostaglandin1-alcohol (Pge1-OH), a selective EP4 receptor agonist inhibits BCR-induced activation of NF-κB by suppression of BCR-induced IκBα phosphorylation. Disruption of prosurvival pathways is a possible mechanism by which PGE2 enhances BCR-induced apoptosis in immature B lymphocytes.  相似文献   

19.
Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical fórces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolárity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels0 and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.  相似文献   

20.
Lipid rafts serve as platforms for BCR signal transduction. To better define the molecular basis of these membrane microdomains, we used two-dimensional gel electrophoresis and mass spectrometry to characterize lipid raft proteins from mature as well as immature B cell lines. Of 51 specific raft proteins, we identified a total of 18 proteins by peptide mass fingerprinting. Among them, we found vacuolar ATPase subunits alpha-1 and beta-2, vimentin, gamma-actin, mitofilin, and prohibitin. None of these has previously been reported in lipid rafts of B cells. The differential raft association of three proteins, including a novel potential signaling molecule designated swiprosin-1, correlated with the stage-specific sensitivity of B cells to BCR-induced apoptosis. In addition, MHC class II molecules were detected in lipid rafts of mature, but not immature B cells. This intriguing finding points to a role for lipid rafts in regulating Ag presentation during B cell maturation. Finally, a fraction of the BCR in the B cell line CH27 was constitutively present in lipid rafts. Surprisingly, this fraction was neither expressed at the cell surface nor fully O-glycosylated. Thus, we conclude that partitioning the BCR into lipid rafts occurs in the endoplasmic reticulum/cis-Golgi compartment and may represent a control mechanism for surface transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号