首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Based on previous in vivo genetic analysis of bacteriophage lambda growth, we have developed two in vitro lambda DNA replication systems composed entirely of purified proteins. One is termed 'grpE-independent' and consists of supercoiled lambda dv plasmid DNA, the lambda O and lambda P proteins, as well as the Escherichia coli dnaK, dnaJ, dnaB, dnaG, ssb, DNA gyrase and DNA polymerase III holoenzyme proteins. The second system includes the E.coli grpE protein and is termed 'grpE-dependent'. Both systems are specific for plasmid molecules carrying the ori lambda DNA initiation site. The major difference in the two systems is that the 'grpE-independent' system requires at least a 10-fold higher level of dnaK protein compared with the grpE-dependent one. The lambda DNA replication process may be divided into several discernible steps, some of which are defined by the isolation of stable intermediates. The first is the formation of a stable ori lambda-lambda O structure. The second is the assembly of a stable ori lambda-lambda O-lambda P-dnaB complex. The addition of dnaJ to this complex also results in an isolatable intermediate. The dnaK, dnaJ and grpE proteins destabilize the lambda P-dnaB interaction, thus liberating dnaB's helicase activity, resulting in unwinding of the DNA template. At this stage, a stable DNA replication intermediate can be isolated, provided that the grpE protein has acted and/or is present. Following this, the dnaG primase enzyme recognizes the single-stranded DNA-dnaB complex and synthesizes RNA primers. Subsequently, the RNA primers are extended into DNA by DNA polymerase III holoenzyme. The proposed model of the molecular series of events taking place at ori lambda is substantiated by the many demonstrable protein-protein interactions among the various participants.  相似文献   

3.
4.
Abstract The complete dnaJ gene of Clostridium acetobutylicum was isolated by chromosome walking using the previously cloned 5' end of the gene as a probe. Nucleotide sequencing of a positively reacting 2.2-kb Hin cII fragment, contained in the recombinant plasmid pKG4, revealed that the reading frame of the dnaJ gene of C. acetobutylicum consists of 1125 bp, encoding a protein of 374 amino acids with a calculated M r of 40376 and an isoelectric points of 9.54. The deduced amino acid sequence showed high similarity to the DnaJ proteins of other bacteria (e.g. Escherichia coli, Bacillus subtilis ) as well as of an archaeon ( Methanosarcina mazei ) and to the corresponding proteins of eukaryotes ( Saccharomyces cerevisiae, Homo sapiens ). The areas of similarity included a conserved N-terminal domain of about 70 amino acids, a glycine-rich region of about 30 residues, and a central domain containing four repeats of a CXXCXGXG motif, whereas the C-terminal domain was less conserved. Northern (RNA) blot analysis indicated that dnaJ is induced by heat shock and that it is part of the dnaK operon of C. acetobutylicum . The 5' end (901 bp) of another gene ( orfB ), downstream of dnaJ and not heat-inducible, showed no significant similarity to other sequences available in EMBL and GenBank databases.  相似文献   

5.
K I Wolska  J Paciorek  K Kardy? 《Microbios》1999,97(386):55-67
Mutations in the heat shock genes, dnaK and dnaJ, cause severe defects of several cellular functions. Null dnaJ and dnaKdnaJ mutations can be transduced in a restricted range of temperature. The efficiency of transformation with three unrelated plasmids, viz pACYC184, pBR322 and pSC101, is two times lower in dnaK mutants while the dnaJ mutant is characterized by slightly impaired transformation with pSC101 only. The lack of DnaJ function negatively influences the stability of pSC101 at 42 degrees C, and this plasmid cannot be stably maintained at 30 degrees C in the delta dnaKdnaJ mutant. The double deletion mutant, delta dbaKdnaJ, is characterized by impaired osmoadaptation. The galactokinase content is lower in both mutants tested compared with wild-type strains even at 30 degrees C. The efficient complementation of some of these defects by the wild-type alleles present on low-copy number plasmid was achieved.  相似文献   

6.
7.
8.
9.
10.
11.
12.
A gene expression reporter system (pHT3) for Clostridium acetobutylicum ATCC 824 was developed by using the lacZ gene from Thermoanaerobacterium thermosulfurogenes EM1 as the reporter gene. In order to test the reporter system, promoters of three key metabolic pathway genes, ptb (coding for phosphotransbutyrylase), thl (coding for thiolase), and adc (coding for acetoacetate decarboxylase), were cloned upstream of the reporter gene in pHT3 in order to construct vectors pHT4, pHT5, and pHTA, respectively. Detection of beta-galactosidase activity in time course studies performed with strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA) demonstrated that the reporter gene produced a functional beta-galactosidase in C. acetobutylicum. In addition, time course studies revealed differences in the beta-galactosidase specific activity profiles of strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA), suggesting that the reporter system developed in this study is able to effectively distinguish between different promoters. The stability of the beta-galactosidase produced by the reporter gene was also examined with strains ATCC 824(pHT4) and ATCC 824(pHT5) by using chloramphenicol treatment to inhibit protein synthesis. The data indicated that the beta-galactosidase produced by the lacZ gene from T. thermosulfurogenes EM1 was stable in the exponential phase of growth. In pH-controlled fermentations of ATCC 824(pHT4), the kinetics of beta-galactosidase formation from the ptb promoter and phosphotransbutyrylase formation from its own autologous promoter were found to be similar.  相似文献   

13.
The nucleotide sequence of a 2.0-kilobase DNA segment containing the Clostridium acetobutylicum glnA gene was determined. The upstream region of the glnA gene contained two putative extended promoter consensus sequences (p1 and p2), characteristic of gram-positive bacteria. A third putative extended gram-positive promoter consensus sequence (p3), oriented towards the glnA gene, was detected downstream of the structural gene. The sequences containing the proposed promoter regions p1 and p2 or p3 were shown to have promoter activity by subcloning into promoter probe vectors. The complete amino acid sequence (444 residues) of the C. acetobutylicum glutamine synthetase (GS) was deduced, and comparisons were made with the reported amino acid sequences of GS from other organisms. To determine whether the putative promoter p3 and a downstream region with an extensive stretch of inverted repeat sequences were involved in regulation of C. acetobutylicum glnA gene expression by nitrogen in Escherichia coli, deletion plasmids were constructed lacking p3 and various downstream sequences. Deletion of the putative promoter p3 and downstream inverted repeat sequences affected the regulation of GS and reduced the levels of GS approximately fivefold under nitrogen-limiting conditions but did not affect the repression of GS levels in cells grown under nitrogen-excess conditions.  相似文献   

14.
B Wu  C Georgopoulos    D Ang 《Journal of bacteriology》1992,174(16):5258-5264
The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号