首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study characterizes the reproductive activity of male European lynx kept in Central Russia. Four captive adult males were subjected to an electroejaculation prior to (November), during (March) and after (June) the breeding season. Concentration, motility and morphological integrity of spermatozoa as well as testis diameter and testosterone levels in serum were evaluated. Additionally, fecal samples were collected for 2 years to determine the fecal testosterone secretion. Testis sizes and serum testosterone concentrations were characterized by little changes with highest levels in March (2.98 mm3; 1.96 ng/ml testosterone) and lowest in June (2.34 mm3; 0.75 ng/ml testosterone). In faeces, the highest testosterone concentrations were measured in February followed by a second increase in May. The volume of ejaculates and percentages of motile and intact spermatozoa reached the maxima in March. By performing two-male mating experiments, we could prove multiple paternity within three litters. Paternity analysis of litter also revealed that 26 of 31 cubs (84%) were sired from the same male, independently from being the first or second mating partner of the respective female. This particular male showed the most developed and activated reproductive tract and also had the best semen quality, which seems to be important for sperm competition.  相似文献   

2.
The coyote is a seasonally breeding mammal, with most copulations occurring between December and April (depending on location). The objective of this study was to characterize seasonal changes in serum testosterone concentrations, testicular volume, and ejaculate quantity and quality in captive male coyotes. There were seasonal differences in testicular volume, with the greatest volume (20.2+/-5.4cm2), mean+/-S.E.M.) in February, corresponding with peak breeding season. Circulating serum testosterone concentrations peaked (3.31+/-0.9 ng/mL) during January and were positively correlated (P< or =0.001, r=0.413) with testicular volume. Ejaculate volume (1.67+/-0.4 mL) and sperm concentration (549.2 x 10(6)+/-297.7 spermatozoa/mL) both peaked during January and February, consistent with the height of the breeding season. Ejaculate volume and sperm concentrations were positively correlated with testicular size (r=0.679, P< or =0.001 and r=0.499, P< or =0.001, respectively) and with serum testosterone concentrations (r=0.368, P< or =0.01 and r=0.208, P< or =0.05). Progressively motile, viable, and morphologically normal spermatozoa fluctuated seasonally, peaked (90.4+/-4.5, 84.8+/-4.1, and 87.9+/-2.9%) during the breeding season, and then subsequently declined (period of aspermatogenesis). All three of these end points were positively correlated with testicular size (r=0.589, P< or =0.001; r=0.586, P< or =0.001; and r=0.469; P< or =0.001) and serum testosterone (r=0.167, P< or =0.05; r=0.190, P< or =0.05; and r=0.221, P< or =0.01). In conclusion, there were intricate relationships among testosterone concentrations, testicular volume, and the production of both functionally intact and morphologically normal spermatozoa.  相似文献   

3.
Seasonal variation in reproduction is common in mammals as an adaptation to annual changes in the habitat. In lynx, male reproduction activity is of special interest because female lynxes are monoestric with an unusual narrow (about 1 month) breeding season. In Eurasian lynx, mating occurs between January and April depending on the latitude. To characterize the seasonal pattern of sperm and testosterone production in free-ranging Eurasian lynxes, long-term frozen-stored testis material obtained postmortem from 74 hunted or road-killed lynxes in Sweden was used to analyze annual changes in testis mass, testicular testosterone content, and spermatogenetic activity. Values of most gonadal parameters obtained in subadult lynxes were significantly different from the values observed in adult males. In adult lynxes, a moderate annual fluctuation of gonadal parameters was found which was most profound for testis weight and testicular testosterone concentration reaching highest values in March (median of 2.18 g and 2.67 μg/g tissue respectively). Grouping the data of pre-/breeding (January–April) and postbreeding season (May–September) revealed significant changes in testis weight and testosterone concentration. The relative spermatogenetic activity remained high in postbreeding testes. However, net sperm production decreased according to reduction of testis mass and a tendency to lower cauda epididymal sperm numbers in the postbreeding period was observed. Our results demonstrate that it is possible to analyze the gonadal activity of frozen testis/epididymis tissue postmortem and that male Eurasian lynxes show—opposite to the females—only moderate seasonal changes in their reproductive capacity.  相似文献   

4.
Roe deer are seasonal breeders with a short rutting season from mid-July to mid-August. The seasonality of reproductive activity in males is associated with cyclic changes between growth and involution of both testes and the accessory sex glands. This study characterizes morphological and functional parameters of these organs prior to, during and after breeding season in live adult roe deer bucks. Size and morphology of the reproductive tract was monitored monthly by transcutaneous (testes, epididymis) and transrectal (accessory glands) ultrasonography. Semen was collected by electroejaculation. Concentration, motility and morphological integrity of spermatozoa as well as the content of proteins and testosterone in semen plasma were evaluated. Proportions of haploid, diploid and tetraploid cells were estimated by flow cytometry in testicular tissue biopsies. Serum testosterone was measured by enzyme immunoassay. Most parts of the male reproductive tract showed distinct circannual changes in size and texture. These changes were most pronounced in the testes, seminal vesicles, and prostate. All reproductive organs were highly developed during the rut only. The volume of ejaculates, total sperm number and percentages of motile and intact spermatozoa also showed a maximum during this period and corresponded with high proportions of haploid cells in the testis. The highest percentages of tetraploid cells were found in the prerutting period. The production of motile and intact spermatozoa correlated with both the protein content of semen plasma and the concentration of testosterone in semen plasma and blood serum. These results suggest the importance of combined actions of the testes and accessory sex glands and the crucial role of testosterone in facilitating the optimal timing of intensified semen production to ensure sufficient numbers of normal spermatozoa in seasonal breeders.  相似文献   

5.
Captive adult male ocelots (Leopardus pardalis, n = 3), margays (L. wiedii, n = 3) and tigrinas (L. tigrinus, n = 4) in two locations in southern Brazil were studied for 14 consecutive months to evaluate the effect of season on testicular function. Reproductive evaluations, including testicular measurements, electroejaculation and blood collection were conducted monthly. Fecal samples were collected weekly for androgen metabolite analysis to assess testicular steroidogenic activity. Ocelots had the highest number of motile spermatozoa in the ejaculate (114.7+/-15.8 x 10(6); P < 0.05), the highest percentage of morphologically normal spermatozoa (82.4+/-1.2%; P < 0.05) and the highest concentration of fecal androgens (1.71 vs. 0.14 microg/g; P < 0.05). Margays and tigrinas had lower numbers of motile spermatozoa (23.4+/-2.8 x 10(6), 74.2+/-8.9 x 10(6), respectively), lower percentages of morphologically normal spermatozoa (57.4+/-2.8, 59.2+/-3.5%, respectively), and lower fecal androgen concentrations (0.15+/-0.01, 0.23+/-0.01 microg/g, respectively). Serum testosterone concentrations were similar among the three species. Fecal androgen concentrations were not affected by season, with the exception of the ocelot where concentrations were higher (P < 0.05) in the summer. Ejaculates were collected throughout the year; however, peaks in average sperm production were observed during the summer for all species. In summary, this study has identified several species differences in male testicular traits among ocelots, margays and tigrinas. Results of longitudinal reproductive assessments suggest males of each species are capable of breeding throughout the year.  相似文献   

6.
Ten adult male spotted deer were monitored over a 2-year interval to determine seasonal variations in testicular size, semen characteristics and serum testosterone concentrations, and to determine if there was an association between season and type of antler. Mean (+/-S.E.M.) testicular volume (118.8+/-4.6 cm(3)), serum testosterone concentration (1.2+/-0.1 ng/mL), semen volume (4.1+/-0.6 mL), sperm concentration (338.3+/-24.9 x 10(6) mL(-1)), percentage of morphologically normal sperm (79.1+/-2.8%), and percentage of motile sperm (66.5+/-1.5%) were higher (P<0.05) in hard antler deer (peaked from March to May) than in deer with velvet antlers or in deer in which the antler has been shed. Thus, March-May was considered the physiologic breeding season for these deer; at this time, all stags had hard antlers. Furthermore, a Tris-citrate-based semen extender containing 4% glycerol and 20% egg-yolk was adequate for cryopreservation of semen. Estrus was induced with an implant containing norgestomet, timed transcervical AI was done with fresh semen, and 3 of 10 females were pregnant at 60 days, with fawns born 120 (premature), 240 and 243 days after AI. These results were considered a model for the use of assisted reproductive techniques to conserve other critically endangered deer species of India.  相似文献   

7.
Longitudinal serum testosterone concentrations (n=10 males) and semen production (n=2 males) in killer whales were evaluated to: (1) characterize fluctuations in serum testosterone concentrations with respect to reproductive maturity and season; (2) compare morphologic changes to estimated age of sexual maturity, based on changes in serum testosterone concentrations; and (3) evaluate seasonal changes in sperm production. Classification of reproductive status and age class was based on differences (P < 0.05) in serum testosterone concentrations according to age; juvenile males ranged from 1 to 7 years (mean+/-S.D. testosterone, 0.13+/-0.20 ng/mL), pubertal males from 8 to 12 years (2.88+/-3.20 ng/mL), and sexually mature animals were 13 years and older (5.57+/-2.90 ng/mL). For captive-born males, serum testosterone concentrations, total body length and height to width ratio of the dorsal fin were 0.7+/-0.7 ng/mL, 495.6+/-17.5 cm and 1.14+/-0.13c m, respectively, at puberty; at sexual maturity, these end points were 6.0+/-3.3 ng/mL, 548+/-20 cm and 1.36+/-0.1cm. Serum testosterone concentrations were higher (P<0.05) from March to June than from December to February in pubertal animals (4.2+/-3.4 ng/mL versus 1.4+/-2.6 ng/mL) and than from September to December in sexually mature animals (7.2+/-3.3 ng/mL versus 4.0+/-2.0 ng/mL). Ejaculates (n = 90) collected from two males had similar (P > 0.05) sperm concentrations across all months. These data represent the first comprehensive study on male testosterone concentrations during and after sexual maturation, and on reproductive seasonality in the killer whale.  相似文献   

8.
Semen was collected from six mature and sexually rested Angora bucks at one-hour intervals five times a day on each of 5 consecutive days in the breeding season. There was a marked decline in semen volume (P less than 0.001), sperm concentration (P less than 0.05) and number of spermatozoa (P less than 0.001) on consecutive days. Successive ejaculates within days differed only in number of spermatozoa (P less than 0.001). The following year at the beginning of the breeding season, the weights of testes and epididymides and the reserves of spermatozoa in these parts were examined after slaughter of the six bucks. The mean number of spermatozoa in the paired testes, capita, corpora and caudae of the epididymides were (22.8 +/- 1.24) x 10(9), (9.4 +/- 1.19) x 10(9), (3.4 +/- 0.22) x 10(9) and (35.0 +/- 2.21) x 10(9), respectively. Epididymal reserves of spermatozoa were correlated with testicular weight (r = 0.50, P = 0.01) and number of spermatozoa in the testes (r = 0.42, P = 0.07), but not with epididymal weight. The daily production of spermatozoa per animal in the breeding season was estimated to be 4.0-6.4 x 10(9).  相似文献   

9.
Semen quality was determined in a sexually mature male Giant Panda, electroejaculated 13 times during a 5-year interval, before, during and after estrus of a female Giant Panda housed nearby. Testis volume and plasma testosterone concentrations were also measured. Mean testis volumes were 1223.0 +/- 64.7(S.E.M.)cm3 (before estrus), 1213.2 +/- 218.2 cm3 (during estrus), and 1360.2+/-160.4 cm3 (after estrus). Compared to before and during estrus in the female, testis volume decreased 70 days after estrus and there was no projectile ejaculation. The mean semen volume and sperm count were 2.2+/-0.7 mL and 8.3 +/- 3.1 x 10(8) before estrus, 2.4 +/- 0.9 mL and 5.7 +/- 0.9 x 10(8) during estrus, and 1.3 +/- 0.3 mL and 8.1 +/- 1.7 x 10(8) after estrus, respectively. The semen volume, sperm count, and testis volume markedly differed from 90 days before estrus until 66 days after estrus, whereas no marked differences in sperm motility, sperm viability, and proportion of morphologically abnormal spermatozoa were observed. Plasma testosterone concentrations were elevated both before and during estrus (0.62 +/- 0.23 ng/mL and 0.95 ng/mL), but decreased substantially after estrus (0.20 +/- 0.0 ng/mL). We inferred that spermatogenesis was active in this male panda from approximately 3 months before estrus to 2 months after estrus in the adjacent female.  相似文献   

10.
The female giant panda (Ailuropoda melanoleuca) experiences a brief (24-72 h) seasonal estrus, occurring once annually in spring (February-May). Our aim was to determine the existence and temporal profile of reproductive seasonality in the male of this species. The study was facilitated by 3 yr of access to eight giant panda males living in a large breeding center in China. Seasonal periods for the male were defined on the basis of female reproductive activity as prebreeding, breeding (early, peak, late), and nonbreeding seasons. Testes size, fecal androgen excretion, ejaculated sperm density, and frequency of reproductive behaviors (i.e., locomotion, scent marking, vocalizations) increased (P < 0.05) from the prebreeding period (October 1-January 31) to the early breeding season (February 1-March 21). Testes volume and sperm concentration were maximal from March 22 through April 15, a period coinciding with maximal female breeding activity. The occurrence of male reproductive behaviors and fecal androgen concentrations began declining during peak breeding and continued from April 16 through May 31 (late breeding period), returning to nadir throughout the nonbreeding interval (June 1-September 30). Reproductive quiescence throughout the latter period was associated with basal testes size/volume and aspermic ejaculates. Our results reveal that testes morphometry, fecal androgen excretion, seminal quality, and certain behaviors integrated together clearly demonstrate reproductive seasonality in the male giant panda. The coordinated increases in testes size, androgen production, sperm density, and sexual behaviors occur over a protracted interval, likely to prepare for and then accommodate a brief, unpredictable female estrus.  相似文献   

11.
This study reports the development and application of techniques to assess the reproductive status of male echidnas. The pattern of testosterone secretion over a 24-h period in five echidnas was documented. Testosterone secretion after injection i.m. of either 1000 IU hCG (n=4) or 4 microg GnRH agonist (n=6) was determined to establish whether this could be used as a practical index of the prevailing steroidogenic capacity of the testes. hCG (1000 IU) was also used to assess seasonal changes in testosterone secretion in six echidnas over a 13-month period. Seasonal changes in testicular volume were examined by transabdominal ultrasonography. Electroejaculation was attempted to monitor seasonal changes in sperm production, which was also determined by spermatorrhea. There was no apparent diurnal pattern of testosterone secretion in echidnas and circulating concentrations of testosterone remained relatively low (maximum 1.2 ng/mL) and stable over 24h. Injection of hCG resulted in an increase (P<0.01; n=4) in testosterone concentration with a peak (2.9+/-0.3 ng/mL) approximately 4h after injection. GnRH also induced an increase (P<0.01; n=6) in circulating testosterone that was apparent after 1h (2.6+/-0.3 ng/mL) and concentrations remained elevated (3.4+/-0.3 ng/mL) for up to 8h after injection. Seasonal changes in testosterone secretion determined after injection of hCG, increased (P=0.03; n=6) from late-autumn, peaked in late-winter, and decreased by early-spring. Testicular volume followed a similar seasonal pattern (P<0.01; n=6) with an increase from late-autumn, peak in winter and a decline in mid-spring. There was no seasonal change in live weight. Electroejaculation was attempted throughout two breeding seasons but no semen was obtained. Spermatorrhoea in the echidna was described for the first time and was subsequently used to assess seasonal sperm production. Spermatozoa were found in the urine from June to September. This study has demonstrated that exogenous hormones can be used to obtain an index of the prevailing steroidogenic capacity of the testes in echidnas, which is not apparent with repetitive non-stimulated samples over 24 h. The assessment of testosterone secretion after injection of trophic hormones provides a valuable and practical procedure for the assessment of reproductive status. Testicular ultrasonography and spermatorrhea are useful in assessing reproductive status and in this study were successfully used to determine seasonal reproduction in captive echidnas.  相似文献   

12.
Seasonal cycles of testicular activity occur in many mammals and can include transitions between total arrest and recrudescence of spermatogenesis. We hypothesize that involution and reactivation of testis result from two antagonistic processes, proliferation and programmed cell death (apoptosis), which are activated at different times. To test this hypothesis, quantitative measurements of both proliferation-specific marker and apoptotic produced nucleosomes have been compared with sperm and testosterone production in testes from adult roe deer during breeding and non-breeding seasons (May to September). Testes of brown hare were included from periods of testes regression (June to August) and recrudescence (November to December). The highest testicular weights in roe deer were found in the rutting period from late July to early August (27.25 +/- 8.56 g), corresponding with the highest number of testicular sperm/g parenchyma. The peak of sperm production coincided with a peak in testosterone concentration (1.19 +/- 0.53 microg/g testis). The maximum level of proliferation-specific marker was also found during the breeding season (98.6 +/- 58.2 U/g testis in comparison to 20.1 +/- 22.0 U/g in the prerutting period). In contrast, the most significant apoptosis was observed in the nonbreeding season than the breeding period (71.11 +/- 5.79 U/mg testis and 18.88 +/- 6.79 U/mg, respectively). Testicular proliferation was low in the brown hare (0.061 +/- 0.062 U/g) during involution of the testes. It was newly activated in November and December (0.85 +/- 0.33 U/g), preceding the increase in testicular volume. Testosterone production increased in conjunction with testicular proliferation. At this time, testicular apoptosis was significantly lower (14.16 +/- 2.12 U/mg testis) than during the period of pronounced testicular regression (30.16 +/- 19.95 U/g). These results suggest that regulation of seasonal testicular activity is characterized by an inverse relationship of proliferation and apoptosis.  相似文献   

13.
There is a paucity of information regarding the influence of plasma testosterone concentrations and inorganic cations secreted in the different seminal fractions on the spermatozoon activity throughout the reproductive life of the one-humped camels. To demonstrate these relationships, the genital organs of 12 prepubertal (<3 years), 9 peripubertal (3-<5 years), 16 mature (5-<15 years) and 15 aged (>/=15 years) camels were collected from the Buraidah slaughter house (Al-Qassim Province, Saudi Arabia) during two consecutive breeding seasons (November-April) over 2 years. Plasma testosterone concentrations (mean+/-S.E.) did not exceed 1.4 ng/ml in prepubertal animals with a 3-4 fold increase in peripubertal (3.2+/-0.4 ng/ml) and mature (4.8+/-0.6 ng/ml) camels followed by about 50% decrease (2.6+/-0.3 ng/ml) in aged ones. These hormonal changes were correlated significantly with concentrations of certain elements in the testes (highest Na, Ca and Cu contents), epididymides (highest P and Fe contents), prostate (highest Zn content), and bulbo-urethral glands (highest K and Mg contents). The significance of some interrelationships among the different cations and their biological effects on sperm production and metabolic activity were discussed.  相似文献   

14.
Testes were obtained from 47 1-20-year-old stallions during the natural breeding season. Total testicular testosterone and testosterone/g testis increased with age (P less than 0.005), and total testicular testosterone was associated with larger testis size (P less than 0.05). Neither testosterone per gram nor per paired testes were related to total Sertoli cell number (P greater than 0.05), but greater testosterone per paired testes was associated with fewer Sertoli cells per unit of seminiferous tubule length (P less than 0.005) or basement membrane area (P less than 0.02) and with a higher number of germ cells supported per Sertoli cell (P less than 0.05). Although values for testosterone per gram and per paired testes were unrelated (P greater than 0.10) to sperm production/g testis or to the yield of spermatids/spermatogonium, testosterone per paired testes was positively related to sperm production per paired testes (P less than 0.05). It is concluded that intratesticular testosterone increases with age, is related in a positive manner to quantitative rates of sperm production, and can account for some of the differences in sperm production among individual stallions within a single breeding season.  相似文献   

15.
To compare physiological and developmental differences between two cogeneric species that differ by seasonal vs. aseasonal breeding, values for morphological measurements, testicular volume, serum testosterone, estradiol, and dehydroepiandrosterone-sulfate levels were obtained from 53 rhesus during the early breeding season, as well as 41 pig-tailed macaque males maintained at the Tulane Primate Center. The two species exhibited similar body size, testosterone, and estradiol levels, but differed substantially in testicular volume (3.00 +/- 1.7 vs. 1.72 +/- 1.3 cc), abdominal skinfold measures (15.7 +/- 9.2 vs. 9.0 +/- 7.7 mm), and DHEA-S levels (18.0 +/- 11.7 vs. 7.6 +/- 5.4 microg/dl). Significant interaction effects for species by age group were found for weight, tricep circumference, length, and estradiol level. In addition, length was more closely related to testicular volume among rhesus compared to pig-tailed macaques, suggesting different developmental patterns between the species. Predictors of hormonal levels differed between the two species. In the rhesus, estradiol levels were related to testicular volume and testosterone levels while there were no anthropometric predictors of testosterone or DHEA-S. For the pig-tailed macaques, testicular volume was related to tricep circumference, testosterone to triceps skinfold and testicular volume, and estradiol to weight. It is argued that rhesus have larger testes for body size and more abdominal fat deposits during the early breeding season relative to pig-tailed macaques reflecting the increased demands of sperm competition in a seasonally breeding species. Hormonal differences associated with the difference in breeding system appear to be primarily related to adrenal rather than testicular activity.  相似文献   

16.
Eight mature Damascus male goats were randomly divided into two equal groups. The first group served as control and the second group was used to study the effect of exposure to longday (16L/8D) followed by melatonin treatment (2mg/(animal/day)) on semen characteristics and blood hormonal levels during breeding and non-breeding seasons. During breeding season, longday exposure followed by melatonin treatments resulted in significant increases (P<0.01) in means of sperm motility, ejaculate volume, sperm concentration, total sperm output, total functional sperm fraction and blood testosterone concentration, while means of reaction time, dead sperm, abnormal sperm and blood triiodothyronine (T(3)) concentration were significantly decreased (P<0.01). During non-breeding season, longday exposure followed by melatonin treatment exhibited improvements in some reproductive parameters by reducing (P<0.05) reaction time and percentage of dead sperm (P<0.01) and increasing (P<0.05) total functional sperm fraction. Furthermore, longday exposure followed by melatonin treatment resulted in significant increases (P<0.01) in both of blood testosterone and T(3) concentrations. It is concluded that longday exposure followed by melatonin treatment successfully improve semen characteristics of Damascus male goats during breeding and non-breeding seasons. However, the beneficial effects were more pronounced during the breeding season.  相似文献   

17.
Blood, testicular biopsies and electroejaculates were collected from adult male impala, free-ranging in the Kruger National Park (Republic of South Africa), during the breeding (rut; April-May) and nonbreeding (September-October) seasons. Blood samples were collected at 5-min intervals for 120 min from anaesthetized males (n = 7 impala/group) treated intravenously with saline, gonadotrophin-releasing hormone (GnRH: 1 microgram/kg body weight) or human chorionic gonadotrophin (hCG: 10 or 30 iu/kg). Semen was collected from six more animals during the breeding season and 12 animals during the nonbreeding season using a standardized electroejaculation protocol. Ejaculates obtained during the nonbreeding season were of inferior quality to those collected during the breeding season, and were characterized by lower sperm concentrations, poorer sperm motility and more morphologically abnormal sperm forms. Within season, there were no differences in testosterone secretion between the two hCG doses, and these responses were similar to those observed after GnRH, but during the rut, testosterone secretion stimulated by both GnRH and hCG was approximately nine times greater than during the nonbreeding season. This seasonal increase in testosterone production was associated with a doubling in testicular volume and concentrations of luteinizing hormone (LH) receptors. Although concentrations of testicular follicle-stimulating hormone (FSH) receptors were similar between seasons, receptor content increased during rut as a result of increased testicular volume. In contrast to testosterone secretion, basal LH and FSH secretions were unaffected by season and GnRH-induced gonadotrophin secretion was reduced during rut.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The influence of season on the ejaculate characteristics of Zebu, Friesian and their crossbred bulls in an A.I. programme in Nigeria was investigated over a 2-year period.Ejaculate volume, sperm concentration, percent morphologically normal spermatozoa and percent live spermatozoa were significantly higher in the rainy season than in the dry season. Total spermatozoa per ejaculate averaged 3.32 × 109 and 10.10 × 109 for the dry and rainy seasons respectively. Corresponding proportions of total morphologically defective spermatozoa per ejaculate were 14.05% and 6.46%. Percent live spermatozoa were 82.34% and 84.61% while the corresponding sperm concentrations were 0.97 × 109 rmand 1.74 × 109 for the dry and rainy seasons respectively. All differences were statistically significant (P < 0.05).Ejaculate quality was better during the rainy season. Consequently semen collected and frozen during the rainy season may produce higher fertility rates in an A.I. programme.  相似文献   

19.
The black-footed ferret (Mustela nigripes), which was extirpated from its native North American prairie habitat during the 1980s, is being reintroduced to the wild because of a successful captive-breeding program. To enhance propagation, the reproductive biology of this endangered species is being studied intensively. The typical life span of the black-footed ferret is approximately 7 yr. Female fecundity declines after 3 yr of age, but the influence of age on male reproduction is unknown. In this study, testis volume, seminal traits, sperm morphology, and serum testosterone were compared in 116 males from 1 to 7 yr of age living in captivity. Results demonstrated that testes volume during the peak breeding season was similar (P > 0.05) among males 1 to 5 yr of age, reduced (P < 0.05) among males 6 yr of age, and further reduced (P < 0.05) among males 7 yr of age. Motile sperm/ejaculate was similar in males 1 to 6 yr of age but diminished (P < 0.05) in those 7 yr of age. Males at 6 and 7 yr of age produced fewer (P < 0.05) structurally normal sperm than younger counterparts; however, serum testosterone concentrations were not reduced (P > 0.05) in older males. Histological comparison of testicular/epididymal tissue from 5- and 7-yr-old black-footed ferrets confirmed that the interval between these two ages may represent a transitional period to reproductive senescence. In summary, functional reproductive capacity of male black-footed ferrets exceeds that of females by at least 2 yr. Testes and seminal quality are indistinguishable among males 1 to 5 yr of age, with progressive reproductive aging occurring thereafter.  相似文献   

20.
The possibility of seasonal variation in the feedback effect of testosterone or oestradiol was investigated by giving replacement treatment to geldings for 2-3 weeks during breeding and non-breeding seasons. In the non-breeding season, testosterone suppressed LH values (mean +/- s.e.m., ng/ml) in all geldings (before treatment, 7.5 +/- 2.3; final treatment week, 1.8 +/- 0.2; P less than 0.05), whereas early in the breeding season, testosterone caused a prolonged rise in LH (before, 6.8 +/- 2.3; final week, 18.9 +/- 6.4; P less than 0.05). In all testosterone experiments, LH returned to pretreatment levels within 2 weeks after treatment. Oestradiol treatment caused a prolonged increase (P less than 0.05) in LH concentrations (mean +/- s.e.m., ng/ml) in both seasons (breeding: before 5.2 +/- 1.1; final week, 16.2 +/- 4.8; non-breeding before, 10.9, 20.1 +/- 5.2). We conclude that in geldings the feedback effect of testosterone varies with season and, further, that testosterone replacement may be able to restore to geldings the stallion's seasonal pattern of LH secretion. The results suggest that, in male horses, testosterone and possibly oestradiol, are important components in the neuroendocrine pathway controlling seasonal breeding and, moreover, are essential for the generation of a positive signal for LH secretion in the breeding season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号