首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.  相似文献   

2.
During the past year, crystal structures of the PDK-1, ITK, Aurora-A, c-KIT and FLT-3 protein kinases in complex with several ATP-competitive inhibitors have been determined. Some structures have crystallized in catalytically active conformations, whereas others appear to be in inactive or native conformations. The differences between these two classes of structures provide further understanding of how kinase activity may be self-regulated in the cellular environment and how phosphorylation can modulate signalling at a molecular level. All of these structures provide a basis for designing selective protein kinase inhibitors of use in the treatment of cancer and autoimmune disease.  相似文献   

3.
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.  相似文献   

4.
Janus kinases (JAKs) play a key role in the proliferation, apoptosis and differentiation of immune cells, and JAKs are considered as an attractive target for the treatment of inflammatory and autoimmune diseases. Here we show the design and optimization of pyrimidine-4,6-diamine derivatives as selectivity JAK3 inhibitors. Compound 11e, which might interact with unique cysteine (Cys909) residue in JAK3, exhibited excellent JAK3 inhibitory activity (IC50?=?2.1?nM) and high JAK kinase selectivity. In cellular assay, 11e showed moderate potency inhibiting IL-2-stimulated T cell proliferation. The data supports the further development of novel JAKs inhibitors.  相似文献   

5.
Unique MAP Kinase binding sites   总被引:1,自引:0,他引:1  
Map kinases are drug targets for autoimmune disease, cancer, and apoptosis-related diseases. Drug discovery efforts have developed MAP kinase inhibitors directed toward the ATP binding site and neighboring "DFG-out" site, both of which are targets for inhibitors of other protein kinases. On the other hand, MAP kinases have unique substrate and small molecule binding sites that could serve as inhibition sites. The substrate and processing enzyme D-motif binding site is present in all MAP kinases, and has many features of a good small molecule binding site. Further, the MAP kinase p38alpha has a binding site near its C-terminus discovered in crystallographic studies. Finally, the MAP kinases ERK2 and p38alpha have a second substrate binding site, the FXFP binding site that is exposed in active ERK2 and the D-motif peptide induced conformation of MAP kinases. Crystallographic evidence of these latter two binding sites is presented.  相似文献   

6.
Anti-TNF biologics have achieved great success in the treatment of autoimmune diseases and have been the most selling biologics on market. However, the anti-TNF biologics have shown some disadvantages such as poor efficacy to some patients and high risk of infection and malignancies during clinical application. Current anti-TNF biologics are antibodies or antibody fragments that bind to TNF-α and subsequently block both TNF-TNFR1 and TNF-TNFR2 signaling. Transgenic animal studies indicate that TNFR1 signaling is responsible for chronic inflammation and cell apoptosis whereas TNFR2 signaling regulates tissue regeneration and inflammation. Recent studies propose to selectively inhibit TNFR1 to enhance efficacy and avoid side effects. In this review, we introduce the biology of TNF-TNFR1 and TNF-TNFR2 signaling, the advantages of selective inhibition of TNF-TNFR1 signaling and research updates on the development of selective inhibitors for TNF-TNFR1 signaling. Antibodies, small molecules and aptamers that selectively inhibit TNFR1 have showed therapeutic potential and less side effects in preclinical studies. Development of selective inhibitors for TNFR1 is a good strategy to enhance the efficacy and reduce the side effects of anti-TNF inhibitors and will be a trend for next-generation of anti-TNF inhibitors.  相似文献   

7.
The initial phase of muscle differentiation depends on the activities of protein kinases including phosphatidylinositol-3 kinase (PI-3K), the extracellular signal-regulated kinases ERK1/2 (p42 and p44), and p38 kinase. Myogenesis is also characterized by an apoptosis-resistant phenotype of myotubes. The effects of inhibitors of the above-mentioned protein kinases on myogenesis from C2C12 mouse myoblasts and on muscle cell apoptosis were examined individually over 5 successive days. The negative effects of PD98059 (5, 25, 50 microM), LY294002 (1, 5, 10 microM) and SB203580 (1, 5, 10 microM) on cell viability were evident at the initial stage of myogenesis (up to the 3rd day). On the 3rd day, nuclear expression of myogenin was suppressed dose-dependently by SB203580. In contrast, decreased cytoplasmic levels but elevated nuclear expressions of myogenin were observed in myotubes treated with PD98059 or LY294002. SB203580 treatment confirmed that p38 kinase is involved in the onset of myogenesis. The cytoplasmic and nuclear expression of NF-kappaB was elevated after treatment with the above-mentioned protein kinase inhibitors. Likewise, Bcl-2 expression in the cytosol increased. These studies might shed more light on the role of selected kinases and some survival systems in myogenesis impaired by neuromuscular disorders as well as safety of the treatment of the proliferative diseases with the kinase inhibitors.  相似文献   

8.
9.
10.
Small-molecule inhibitors of several intracellular signaling proteins, mostly protein kinases, show tremendous selectivity and potency. The complexity and redundancy of signaling pathways presents opportunities for therapeutic selectivity and some clinical results are remarkable. New strategies are being developed to interfere with previously intractable targets, such as protein-protein interactions.  相似文献   

11.
The decrease in estrogen levels with the use of aromatase inhibitors results in an increase in the rate of bone remodelling. This result in an acceleration of bone loss, and probably to an increase in the risk of fractures. The risk of fracture is particularly high in the older woman and in the woman with a low bone mineral density. We have a number of proven treatments for the treatment of postmenopausal osteoporosis and it is likely that some of these, particularly bisphosphonates, could be effective at preventing bone loss with aromatase inhibitors.  相似文献   

12.
Protein kinases have been important targets for antitumor targets due to their key roles in regulating multiple cell signaling pathways. Numerous compounds containing flavonoid scaffold as an indispensable anchor have been found to be potent inhibitors of protein kinases. Some of these flavonoids have been in clinical research as protein kinases inhibitors. Thus, the present review mainly focuses on the structural requirement for anticancer potential of flavone derivatives targeting several key serine/threonine protein kinases. This information may provide an opportunity to scientists of medicinal chemistry to design multi-functional flavone derivatives for the treatment of cancer.  相似文献   

13.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Kinases are attractive therapeutic targets since they are commonly altered in cancers. Here, to identify kinases of potential therapeutic interest in HCC, a quantitative kinomic study of tumour and adjacent non-tumour liver tissues was performed using a chemical proteomics approach. In total, 124 kinases were found differentially expressed and they were distributed over all nine kinase groups. Exploration of The Cancer Genome Atlas (TCGA) data showed that the dysregulation of 45 kinases was correlated with poor prognosis in HCC patients. We then tested 11 inhibitors targeting 12 crucial protein kinases alone or in combination for their ability to inhibit cell growth in Hep3B and PLC/PRF/5 cell lines. Six inhibitors significantly reduced viability in both cell lines. Combination inhibition of polo-like kinase 1 (PLK1) and casein kinase 1 epsilon (CSNK1E) significantly induced growth arrest in both cell lines synergistically. In summary, our analysis presents the most complete view of kinome reprogramming in HCC and provides novel insight into crucial kinases in HCC and potential therapeutic targets for HCC treatment. Moreover, the identification of hundreds of differentially expressed kinases forms a rich resource for novel drug targets or diagnostic biomarker discovery. Data are available via ProteomeXchange (identifier PXD023806).  相似文献   

14.
Microtubule targeting agents (MTAs) have attracted extensive attention for cancer treatment. However, their clinical efficacies are limited by intolerable toxicities, inadequate efficacy and acquired multidrug resistance. The combination of MTAs with other antineoplastics has become an efficient strategy to lower the toxicities, overcome resistance and improve the efficacies for cancer treatment. In this article, we review the combinations of MTAs with some other anticancer drugs, such as cytotoxic agents, kinases inhibitors, histone deacetylase inhibitors, immune checkpoints inhibitors, to overcome these obstacles. We strongly believe that this review will provide helpful information for combination therapy based on MTAs.  相似文献   

15.
The Janus kinase 2 mutant V617F occurs with high frequency in myeloproliferative neoplasms. Further mutations affecting the Janus kinase family have been discovered mostly in leukaemias and in myeloproliferative neoplasms. Owing to their involvement in neoplasia, inflammatory diseases and in the immune response, Janus kinases are promising targets for kinase inhibitor therapy in these disease settings. Various quantitative assays including two newly developed screening assays were used to characterize the function of different small‐molecule compounds in cells expressing Jak2V617F. A detailed comparative analysis of different Janus kinase inhibitors in our quantitative assays and the subsequent characterization of additional activities demonstrated for the first time that the most potent Jak2 inhibitor in our study, CEP701, also targets Aurora kinases. CEP701 shows a unique combination of both activities which is not found in other compounds also targeting Jak2. Furthermore, colony forming cell assays showed that Janus kinase 2 inhibitors preferentially suppressed the growth of erythroid colonies, whereas inhibitors of Aurora kinases preferentially blocked myeloid colony growth. CEP701 demonstrated a combined suppression of both colony types. Moreover, we show that combined application of a Janus and an Aurora kinase inhibitor recapitulated the effect observed for CEP701 but might allow for more flexibility in combining both activities in clinical settings, e.g. in the treatment of myeloproliferative neoplasms. The newly developed screening assays are high throughput compatible and allow an easy detection of new compounds with Janus kinase 2 inhibitory activity.  相似文献   

16.
The activin-like kinases are a family of kinases that play important roles in a variety of disease states. Of this class of kinases, ALK2, has been shown by a gain-of-function to be the primary driver of the childhood skeletal disease fibrodysplasia ossificans progressiva (FOP) and more recently the pediatric cancer diffuse intrinsic pontine glioma (DIPG). Herein, we report our efforts to identify a novel imidazo[1,2-a]pyridine scaffold as potent inhibitors of ALK2 with good in vivo pharmacokinetic properties suitable for future animal studies.  相似文献   

17.
Spleen tyrosine kinase (Syk) and zeta-associated protein kinase of 70k Da (ZAP-70) are members of the Syk family and non-receptor-type protein tyrosine kinases, which play crucial roles in B- and T-cell activation. Therefore, a Syk family tyrosine kinases inhibitor would be a useful therapeutic agent for the treatment of various allergic disorders and autoimmune diseases. Previously, we reported that 1,2,4-triazolo[4,3-c]pyrimidine derivative 1 and 1,2,4-triazolo[1,5-c]pyrimidine derivative 2 showed strong inhibitory activities against Syk family kinases. These compounds also exhibited high-level suppression of IL-2 in cellular assays. However, their oral efficacies were poor in a mouse model of IL-2 production. To improve oral effectiveness, we investigated a new series of Syk family kinases inhibitors. We found that imidazo[1,2-c]pyrimidine derivatives potently inhibited the Syk family kinases. Among these agents, compound 9f not only showed strong inhibitory activities against Syk and ZAP-70 kinases in vitro, but its oral administration resulted in the in vivo suppression of both the passive cutaneous anaphylaxis reaction and Concanavalin A-induced IL-2 production in a mouse model.  相似文献   

18.
Molecular pharmacology of protein kinases   总被引:2,自引:0,他引:2  
  相似文献   

19.
The MAPK pathways are an enduring area of interest due to their essential roles in cell processes. Increased expression and activity can lead to a multitude of diseases, sparking research efforts in developing inhibitors against these kinases. Though great strides have been made in developing MEK1/2 inhibitors, there is a notable lack of chemical probes for MEK3-7, given their central role in stimuli response, cell growth, and development. This review summarizes the progress that has been made on developing small molecule probes for MEK3-7, the specific disease states in which they have been studied, and their potential to become novel therapeutics.  相似文献   

20.
We report the synthesis and biological evaluation of 5-substituted indazoles and amino indazoles as kinase inhibitors. The compounds were synthesized in a parallel synthesis fashion from readily available starting materials employing [2+3] cycloaddition reactions and were evaluated against a panel of kinase assays. Potent inhibitors were identified for numerous kinases such as Rock2, Gsk3β, Aurora2 and Jak2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号