首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protoplasts and vacuoles were isolated from immature apple fruit(Malus pumila Mill. cv. Golden Delicious). ATP-stimulated Ca2+uptake was identified in both protoplast vesicles and tonoplastvesicles. The apparent Km for Ca2+ of the tonoplast transportsystem was 43.4 µM. The pH optima were 7.2 and 6.7 forCa2+ transport by protoplast and tonoplast vesicles, respectively.Ca2+ transport in tonoplast vesicles was strongly inhibitedby the calmodulin antagonists fluphenazine and N-(6-aminohexyl)-5-chloro-l-naphthalensulfonamidehydrochloride (W-7), while N-aminohexyl)-l-naphthalensulfonamidehydrochloride (W-5) was relatively ineffective. Addition ofexogenous calmodulin stimulated transport by 35%. Ca2+ uptakewas inhibited by vanadate, but not by the ionophores carbonylcyanidem-chlorophenyl hydrazone (CCCP) or valinomycin. The resultsindicate that apple tonoplasts have a Ca2+ transport systemthat is driven by the direct hydrolysis of ATP, and may be calmodulindependent. 1Present address: Morioka Branch, Fruit Tree Research Station,Ministry of Agriculture, Forestry and Fisheries, Shimokuriyagawa,Morioka 020-01, Japan. To whom reprint requests should be addressed. (Received October 18, 1985; Accepted January 29, 1986)  相似文献   

2.
Leek (Allium porrum) plasma membrane is enriched in phosphatidylserine (PS) by the vesicular pathway, in a way similar to that already observed in animal cells (B. Sturbois-Balcerzak, D.J. Morré, O. Loreau, J.P. Noel, P. Moreau, C. Cassagne [1995] Plant Physiol Biochem 33: 625–637). In this paper we document the formation of PS-rich small vesicles from leek endoplasmic reticulum (ER) membranes upon addition of ATP and other factors. The omission of ATP or its replacement by ATPγ-S prevents vesicle formation. These vesicles correspond to small structures (70–80 nm) and their phospholipid composition, characterized by a PS enrichment, is compatible with a role in PS transport. Moreover, the PS enrichment over phosphatidylinositol in the ER-derived vesicles is the first example, to our knowledge, of phospholipid sorting from the ER to ER-derived vesicles in plant cells.  相似文献   

3.
Dashek WV 《Plant physiology》1970,46(6):831-838
Plant cell walls contain a glycoprotein rich in hydroxyproline. To determine how Acer pseudoplatanus L. cells transport this glycoprotein to the wall, the pulse-chase technique was used to follow changes in specific radio-activity of hydroxyproline and proline in isolated, mitochondrial, Golgi, microsomal, soluble protein, and wall fractions. The turnover rates or changes in specific radioactivity of cytoplasmic hydroxyproline in these cell fractions indicated that the bulk of this hydroxyproline was transferred not by the Golgi apparatus but by a smooth membranous component.  相似文献   

4.
Three phenotypically distinct strains of Escherichia coli B were studied: one in which the transport of glutamate was strongly stimulated by sodium, one in which the transport was relatively independent of sodium, and one which did not transport glutamate. Membrane vesicle preparations from the three strains followed the behavior of whole cells with respect to sodium-stimulated transport. Although glutamate-binding material could be released from cells by osmotic shock, its affinity for glutamate was not significantly influenced by sodium. Furthermore, the shocked cells retained sodium-stimulated transport. The accumulated results suggest that the sodium-activated glutamate transport system resides in the cytoplasmic membrane and that releasable binding protein(s) is not intimately involved in its function.  相似文献   

5.
The membrane electrical potential difference was measured in cultured cells and isolated protoplasts of tobacco (Nicotiana glutinosa L.) by inserting a microelectrode into cells held fast by a suction micropipette. The potential difference (± standard deviation) for unplasmolyzed tobacco cells was −52 ± 12 millivolts, for cells in 0.3 molar mannitol, −50 ± 11 millivolts; and for cells plasmolyzed in 0.7 molar mannitol, −49 ± 12 millivolts all inside negative. The potential difference for isolated protoplasts in 0.7 molar mannitol was −49 ± 16 millivolts, inside negative. In both cultured cells and protoplasts, the addition of 0.1 millimolar KCN caused a depolarization of the membrane potential. It was concluded that plasmolysis and enzymic release of the protoplast had no significant effect on the membrane potential of cultured tobacco cells.  相似文献   

6.
The uptake and efflux of Rb+ by membrane vesicles isolated fromshoots of the halophyte Suaeda maritima have been investigated.Uptake came to an apparent equilibrium after 1 h and the initialrate of uptake was considerably slower than that reported forbacterial membrane vesicles Additions of ATP reduced both Rb+uptake and the half-time for loss in efflux experiments, althoughthis effect was not specific for ATP and probably was not associatedwith energy transfer The permeability coefficient for Rb+ wascalculated to be between 0 1 and 0 3 x 10–2 cm s–1.The value of membrane vesicles in ion transport studies in plantsis discussed. Suaeda maritima, seablite, halophyte, membrane vesicles, ion transport, rubidium  相似文献   

7.
In vivo studies with leaf cells of aquatic plant species such as Elodea nuttallii revealed the proton permeability and conductance of the plasma membrane to be strongly pH dependent. The question was posed if similar pH dependent permeability changes also occur in isolated plasma membrane vesicles. Here we report the use of acridine orange to quantify passive proton fluxes. Right-side out vesicles were exposed to pH jumps. From the decay of the applied ΔpH the proton fluxes and proton permeability coefficients (PH+) were calculated. As in the intact Elodea plasma membrane, the proton permeability of the vesicle membrane is pH sensitive, an effect of internal pH as well as external pH on PH+ was observed. Under near symmetric conditions, i.e., zero electrical potential and zero ΔpH, PH+ increased from 65 × 10−8 at pH 8.5 to 10−1 m/sec at pH 11 and the conductance from 13 × 10−6 to 30 × 10−4 S/m2. At a constant pH i of 8 and a pH o going from 8.5 to 11, PH+ increased more than tenfold from 2 to 26 × 10−6 m/sec. The calculated values of PH+ were several orders of magnitude lower than those obtained from studies on intact leaves. Apparently, in plasma membrane purified vesicles the transport system responsible for the observed high proton permeability in vivo is either (partly) inactive or lost during the procedure of vesicle preparation. The residue proton permeability is in agreement with values found for liposome or planar lipid bilayer membranes, suggesting that it reflects an intrinsic permeability of the phospholipid bilayer to protons. Possible implications of these findings for transport studies on similar vesicle systems are discussed. Received: 5 April 1995/Revised: 28 March 1996  相似文献   

8.
In a fructose-containing medium in which rye root-microsomal membrane vesicles had reached the equilibrium of uptake of fructose, the presence of both Mg2+ and ATP caused the efflux of fructose from the vesicles. Among nucleotides examined, ATP caused the largest efflux of fructose. The efflux of fructose dependent on Mg2+ and ATP was quite insensitive to a protonophore, carbonylcyanide m-chlorophenylhydrazone (CCCP), which actually abolished MgATP-dependent proton accumulation in the vesicles, while it was largely inhibited by vanadate, which inhibits ATP-binding cassette transporters (ABCTs). The Michaelis-Menten constant (Km) of the efflux of fructose was 0.4 mM. It was observed that fructose stimulated the ATPase activity of the vesicles and that vanadate markedly decreased the fructose-stimulated ATPase activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The plasma membrane (PM) is a highly dynamic interface that contains detergent-resistant microdomains (DRMs). The aim of this work was to determine the main functions of such microdomains in poplar through a proteomic analysis using gel-based and solution (iTRAQ) approaches. A total of 80 proteins from a limited number of functional classes were found to be significantly enriched in DRM relative to PM. The enriched proteins are markers of signal transduction, molecular transport at the PM, or cell wall biosynthesis. Their intrinsic properties are presented and discussed together with the biological significance of their enrichment in DRM. Of particular importance is the significant and specific enrichment of several callose [(1→3)-β-glucan] synthase isoforms, whose catalytic activity represents a final response to stress, leading to the deposition of callose plugs at the surface of the PM. An integrated functional model that connects all DRM-enriched proteins identified is proposed. This report is the only quantitative analysis available to date of the protein composition of membrane microdomains from a tree species.The plasma membrane (PM)1 is considered as one of the most interactive and dynamic supramolecular structures of the cell (1, 2). It forms a physical interface between the cytoplasm and the extracellular environment and is involved in many biological processes such as metabolite and ion transport, gaseous exchanges, endocytosis, cell differentiation and proliferation, defense against pathogens, etc. (3). Various combinations of biochemical and analytical approaches have been used to characterize the PM proteome in different organisms such as yeast, plants, and animals (48). Typically, PM proteins are either embedded in the phospholipid bilayer through transmembrane helices or less tightly bound to the membrane through reversible or irreversible surface interactions. In eukaryotic cells, some PM proteins are enriched in lateral lipid patches that form microdomains within the membrane (9, 10). These microdomains are considered to act as functional units that support and regulate specific biological processes associated with the PM (9, 10). Often referred to as “membrane (lipid) rafts” in animals and other organisms, they are typically described as being enriched in sphingolipids, sterols, and phospholipids that contain essentially saturated fatty acids (911). Early work on PM microdomains has suggested that their specific lipid composition confers resistance to certain concentrations of nonionic detergents, such as Triton X-100 and Nonidet P-40 (10, 11). Although this property has been exploited experimentally to isolate so-called detergent-resistant microdomains (DRMs), the relationship between DRMs and membrane rafts remains controversial (12). Indeed, the relation between the two is much debated, essentially because the use of Triton X-100 at 4 °C to prepare DRMs has been proposed to potentially induce the artificial formation of detergent-resistant structures whose composition may not fully reflect that of physiological membrane rafts (12). Nonetheless, DRM preparations represent an excellent system for the isolation and identification of groups of proteins—eventually associated in complexes—that tend to naturally interact with specific sets of lipids, thereby forming specialized functional units. Their biochemical characterization is therefore most useful in attempts to better understand the mode of interaction of specific proteins with sterols and sphingolipids and to gain insight into the protein composition and biological activity of subdomains from the PM.Plant DRMs have been understudied relative to their animal counterparts. Indeed, proteomic studies have been undertaken on DRM preparations from only a limited number of plant species. These include tobacco (1315), Arabidopsis (16), barrel clover (Medicago truncatula) (17), rice (18), oat, and rye (19). These studies, essentially based on qualitative or semi-quantitative proteomics, led to the identification of hundreds of proteins involved in a large range of mechanisms, functions, and biochemical activities (1519). Depending on the report considered, a variable proportion of the identified proteins can be intuitively linked to DRMs and potentially to PM microdomains. However, many proteins that are clearly not related to the PM and its microdomains co-purify with DRM. These include, for instance, soluble proteins from cytoplasmic metabolic pathways; histones; and ribosomal, chloroplastic, and mitochondrial proteins (1519). Thus, there is a need to obtain a more restricted list of proteins that are specifically enriched in DRMs and that define specialized functional structures. One way to tackle this problem is through quantitative proteomics, eventually in combination with complementary biochemical approaches. Although quantitative techniques have been increasingly applied to the proteomic analysis of complex mixtures of soluble proteins, their exploitation for the characterization of membrane samples remains challenging. As a result, very few studies of plant DRMs have been based on truly quantitative methods. For instance, stable isotope labeling combined with the selective disruption of sterol-rich membrane domains by methylcyclodextrin was performed in Arabidopsis cell cultures (20). A similar approach was used to study compositional changes of tobacco DRMs upon cell treatment with the signaling elicitor cryptogenin (21). In another study, 64 Arabidopsis proteins were shown to be significantly enriched in DRMs in response to a pathogen-associated molecular pattern protein (22). Together, these few quantitative proteomics analyses suggest a role of plant membrane microdomains in signal transduction, as in mammalian cells.Although several reports describe the partial characterization of DRMs from higher plants (1323), there are no data available to date on the protein composition of DRMs from a tree species. We have therefore employed a quantitative proteomic approach for the characterization of DRMs from cell suspension cultures of Populus trichocarpa. In addition, earlier work in our laboratory based on biochemical activity assays revealed the presence of cell wall polysaccharide synthases in DRMs from poplar (23), which suggests the existence of DRM populations specialized in cell wall biosynthesis. This concept was further supported by similar investigations performed on DRMs isolated from the oomycete Saprolegnia monoica (24). The comprehensive quantitative proteomic analysis performed here revealed enrichment in the poplar DRMs of specific carbohydrate synthases involved in callose polymerization. Consistent with the role of callose in plant defense mechanisms, additional proteins related to stress responses and signal transduction were found to be specifically enriched in the poplar DRMs, together with proteins involved in molecular transport. To date, our report is the only analysis available of the DRM proteome of a tree species based on quantitative proteomics. The specific biochemical properties of the 80 proteins significantly enriched in DRMs are described and examined in relation to their localization in membrane microdomains. The relationship between poplar DRMs and molecular transport, signal transduction, stress responses, and callose biosynthesis is discussed, with support from a hypothetical model that integrates the corresponding enriched proteins.  相似文献   

10.
Dupont FM 《Plant physiology》1987,84(2):526-534
The effects of NO3 and assay temperature on proton translocating ATPases in membranes of barley (Hordeum vulgare L. cv California Mariout 72) roots were examined. The membranes were fractionated on continuous and discontinuous sucrose gradients and proton transport was assayed by monitoring the fluorescence of acridine orange. A peak of H+-ATPase at 1.11 grams per cubic centimeter was inhibited by 50 millimolar KNO3 when assayed at 24°C or above and was tentatively identified as the tonoplast H+-ATPase. A smaller peak of H+-ATPase at 1.16 grams per cubic centimeter, which was not inhibited by KNO3 and was partially inhibited by vanadate, was tentatively identified as the plasma membrane H+-ATPase. A step gradient gave three fractions enriched, respectively, in endoplasmic reticulum, tonoplast ATPase, and plasma membrane ATPase. There was a delay before 50 millimolar KNO3 inhibited ATP hydrolysis by the tonoplast ATPase at 12°C and the initial rate of proton transport was stimulated by 50 millimolar KNO3. The time course for fluorescence quench indicated that addition of ATP in the presence of KNO3 caused a pH gradient to form that subsequently collapsed. This biphasic time course for proton transport in the presence of KNO3 was explained by the temperature-dependent delay of the inhibition by KNO3. The plasma membrane H+-ATPase maintained a pH gradient in the presence of KNO3 for up to 30 minutes at 24°C.  相似文献   

11.
Abstract: Tryptophan uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on the Na+ gradient [Na+] outside > [Na+] inside and is maximal when both Na+ and Cl are present. The uptake represents transport into an os-motically active space and not a binding artifact, as indicated by the effect of increasing the medium osmo-larity. The uptake of tryptophan is stimulated by a membrane potential (interior negative) as demonstrated by the effects of the ionophores valinomycin and carbonyl cyanide m-chlorophenylhydrazone and anions with different permeabilities. Kinetic data show that tryptophan is accumulated by two systems with different affinities. Ouabain, an inhibitor of Na+, K+-activated ATPase, does not affect tryptophan transport. The uptake of tryptophan is inhibited by high concentrations of phenylalanine, tyrosine, leucine and 3, 4-dihydroxyphenylalanine.  相似文献   

12.
Abstract: Aspartate uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on a Na+ gradient ([Na+] outside > [Na+] inside). Active transport of aspartate is strictly dependent upon the presence of sodium and maximal extent of transport is reached when both Na+ and Cl ions are present. The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. The uptake of aspartate is stimulated by a membrane potential (negative inside), as demonstrated by the effect of the ionophore carbonyl cyanide m -chlorophenylhydrazone and anions with different permeabilities. The presence of ouabain, an inhibitor of (Na++ K+)-ATPase, does not affect aspartate transport. The kinetic analysis shows that aspartate is accumulated by two systems with different affinities, showing K m and V max values of similar order to those found in slightly "cruder" preparations. Inhibition of the l -aspartate uptake by d -aspartate and d - and l -glutamate indicates that a common carrier is involved in the process, this being stereospecific for the d - and l -glutamate stereoisomers.  相似文献   

13.
Proton extrusion from cucumber roots decreased markedly duringCa2+ starvation in the presence of KC1. Vesicles with ATP-dependentproton transport activity were prepared from the microsomalmembrane fraction of control and Ca2+-starved roots. The protontransport rate of the vesicles from Ca2+-starved roots was repressedto less than half of the vesicles prepared from the controlroots. K+-Mg2+-ATPase activity associated with the vesiclesprepared from Ca2+-starved roots was approximately one-thirdof the activity associated with those prepared from controlroots. Km values of the proton transport rate and K+-Mg2+-ATPasefor ATP were much higher in vesicles prepared from Ca2+-starvedroots. The repression of proton extrusion linked with K+ uptake inthe Ca2+-starved roots could be largely caused by the reducedproton pumping activity associated with microsomal membranesin the roots. (Received May 25, 1987; Accepted October 14, 1987)  相似文献   

14.
L-lysine Transport in Chicken Jejunal Brush Border Membrane Vesicles   总被引:2,自引:0,他引:2  
The properties of l-lysine transport in chicken jejunum have been studied in brush border membrane vesicles isolated from 6-wk-old birds. l-lysine uptake was found to occur within an osmotically active space with significant binding to the membrane. The vesicles can accumulate l-lysine against a concentration gradient, by a membrane potential-sensitive mechanism. The kinetics of l-lysine transport were described by two saturable processes: first, a high affinity-transport system (K mA= 2.4 ± 0.7 μmol/L) which recognizes cationic and also neutral amino acids with similar affinity in the presence or absence of Na+ (l-methionine inhibition constant KiA, NaSCN = 21.0 ± 8.7 μmol/L and KSCN = 55.0 ± 8.4 μmol/L); second, a low-affinity transport mechanism (KmB= 164.0 ± 13.0 μmol/L) which also recognizes neutral amino acids. This latter system shows a higher affinity in the presence of Na+ (KiB for l-methionine, NaSCN = 1.7 ± 0.3 and KSCN = 3.4 ± 0.9 mmol/L). l-lysine influx was significantly reduced with N-ethylmaleimide (0.5 mmol/L) treatment. Accelerative exchange of extravesicular labeled l-lysine was demonstrated in vesicles preloaded with 1 mmol/L l-lysine, l-arginine or l-methionine. Results support the view that l-lysine is transported in the chicken jejunum by two transport systems, A and B, with properties similar to those described for systems b 0,+ and y+, respectively. Received: 14 August 1995/Revised: 2 April 1996  相似文献   

15.
Although model protocellular membranes consisting of monoacyl lipids are similar to membranes composed of contemporary diacyl lipids, they differ in at least one important aspect. Model protocellular membranes allow for the passage of polar solutes and thus can potentially support cell-to functions without the aid of transport machinery. The ability to transport polar molecules likely stems from increased lipid dynamics. Selectively permeable vesicle membranes composed of monoacyl lipids allow for many lifelike processes to emerge from a remarkably small set of molecules.Lipid bilayer membranes are an integral component of living cells, providing a permeability barrier that is essential for nutrient transport and energy production. It is reasonable to assume that a similar boundary structure would be required for the origin of cellular life (Szostak et al. 2001). Even though bilayer membranes are a cellular necessity, they also pose a significant obstacle to early cellular functions, the most obvious being that the permeability barrier would inhibit chemical exchange with the environment. Such an exchange is important not only for acquiring nutrient substrates for primitive metabolic processes, but also for the release of inhibitory side-products.Contemporary cells circumvent the permeability problem by incorporating complex transmembrane protein machinery that provides specific transport capabilities. It is unlikely that Earth’s first cells assembled bilayer membranes together with specific membrane protein transporters. Rather, intermediate evolutionary steps must have existed in which simple lipid molecules provided many of the characteristics of contemporary membranes without relying on advanced protein machinery. What seems to have been necessary was the appearance of a simple membrane system capable of retaining and releasing specific molecules. In short, a protocell needed to be selectively permeable.  相似文献   

16.
Kosterin  S. O. 《Neurophysiology》2003,35(3-4):187-200
Calcium ions play a crucial role in the excitation/contraction coupling in smooth muscles. I would like to interpret the biochemical mechanisms underlying Ca2+ exchange and dynamics of such an exchange in the smooth muscles. Particular emphasis is laid on the examination of kinetic, energetic, and catalytic properties of the membrane-linked energy-dependent Ca2+-transporting systems involved in regulation of the intracellular Ca2+ concentration in smooth muscle cells (SMC). It was suggested that the Mg2+,ATP-dependent plasma membrane calcium pump (Ca2+,Mg2+-ATPase) plays a key role in regulation of the Ca2+ concentration in SMC. The purpose of this review is to analyze some of our own results concerning kinetic, energetic, and catalytic properties of the calcium pump of the SMC plasma membrane. In our experiments, we used different biochemical models (namely, fractions of the membrane subcellular structures, highly purified Ca2+,Mg2+-ATPase of the SMC plasma membrane solubilized and reconstituted in the lyposomes, and suspension of digitonin-treated SMC) and a number of methods (including preparative biochemistry, enzymology, membranology, tracer 45Ca2+ flux analysis, and chemical and enzymological kinetics). We have shown that sodium azide-insensitive Mg2+,ATP-dependent Ca2+ accumulation in ureter smooth muscle microsomes is determined by two components. One component represents the Mg2+,ATP-dependent calcium pump of the sarcoplasmic reticulum functionally potentiated by Ca2+-precipitating permeating anions, oxalate or phosphate and inhibited by thapsigargin or cyclopiazonic acid, the highly selective inhibitors of the calcium pump of sarco(endo)plasmic rerticulum. Another component represents the Mg2+,ATP-dependent calcium pump of the plasma membrane functionally potentiated by phosphate. This pump is not inhibited by thapsigargin and cyclopiazonic acid. The effects of temperature, dielectric permeability (D), and ionic strength on the activity of purified Ca2+,Mg2+-ATPase solubilized from the myometrial sarcolemma were studied. The results suggest that changes in the polarity of the incubation medium markedly affect the activity of transport Ca2+,Mg2+-ATPase, and electrostatic interactions between the enzyme activity center and specific ligands (Mg·ADP-, in particular) significantly contribute to the energetics of ATP hydrolysis. Therefore, our data show that changes in the incubation medium polarity significantly affects the ATP-hydrolase activity of Ca2+,Mg2+-ATPase solubilized from the SMC plasma membranes, and electrostatic interactions between the enzyme active sites and reactants (in particular, Mg·ADP-) contribute to a significant extent to the energetics of ATP hydrolysis. We cannot rule out that under physiological conditions the local D values of the myoplasm may differ from that of water, and, moreover, may change (especially near the membrane surface) depending on the metabolic level of SMC. We suppose that local changes in the cytoplasmic D value will affect the plasma membrane calcium pump and, consequently, the efficiency of control of intracellular Ca2+ homeostasis in smooth muscle. So, our biochemical models are suitable experimental objects for studying the kinetic, energetic, and catalytic properties of the Mg2+,ATP-dependent calcium pump of the SMC plasma membrane. In addition, our data might be useful for screening of the mechanisms underlying the action of different physico-chemical factors involved in modulation of the contraction/relaxation cycle.  相似文献   

17.
Synaptic vesicles are released from membranes during incubation at 37°C in the presence of ATP (adenosine triphosphate). The donor membranes are a rapidly sedimenting fraction derived from the neuroendocrine cell line PC12 (pheochromocytoma 12). These starting membranes contain the synaptic vesicle proteins, synaptophysin and SV2, and the endosomal markers transferrin receptor and cation-independent MPR (mannose 6-phosphate receptor). Incubating the membranes in vitro increased the amount of organelles that migrate as synaptic vesicles in velocity sedimentation gradients. The synaptic vesicle fractions that contain both synaptophysin and SV2 do not contain endosomal markers. A synaptic vesicle increase in vitro is time-, cytosol-, ATP- and temperature-dependent and is inhibited by NEM (N-ethylmaleimide), BFA (brefeldin A) and aluminum fluoride, but not GTPS (guanosine-5-O-C3-thiotriphosphate). The production of synaptic vesicles under these conditions is unlike the de novo generation of vesicles from endosomes (1). Incubation in vitro under the conditions described here may allow the final stages of synaptic vesicle formation, uncoating or undocking, to occur but not the initiation of formation de novo.  相似文献   

18.
用蔗糖密度梯度离心法制备出密闭程度较高的大麦根细胞质膜微囊。喹吖咽荧光猝灭和~(45)Ca~(2 )同位素示踪测定表明所制备的微囊具H~ ,Ca~(2 )转运活性。对制备出的质膜制剂纯度和膜朝向进行了分析,并探讨了质膜纯化中影响膜微囊密闭性的因素。匀浆液和悬浮液巾的单价离子盐有利于密闭膜微囊的形成。蔗糖密度梯度和葡聚糖密度睇度离心法均可得到密闭性较高的膜微囊,但后者的纯化效果较差。  相似文献   

19.
A vacuolar H+-ATPase-negative mutant of Saccharomyces cerevisiae was highly sensitive to nickel ion. Accumulation of nickel ion in the cells of this mutant of less than 60% of the value for the parent strain arrested growth, suggesting a role for this ATPase in sequestering nickel ion into vacuoles. An artificially imposed pH gradient (interior acid) induced transient nickel ion uptake by vacuolar membrane vesicles, which was inhibited by collapse of the pH difference but not of the membrane potential. Nickel ion transport into vacuoles in a pH gradient-dependent manner is thus important for its detoxification in yeast.  相似文献   

20.
Abstract: Transport of GABA by a high-affinity transport system ( K m≃ 10−5 M) is thought to terminate the action of this postulated neurotransmitter. 2,4-Diaminobutyric acid (DABA), a structural analogue, is taken up by neuronal elements and inhibits GABA uptake. Localization of [3H]DABA by auto-radiography has been used to identify neurons with the GABA high-affinity transport system. After reconstitution of lysed synaptosomal fractions in potassium salts, transfer of these membrane vesicles to sodium salts produces sodium and potassium ion gradients which drive [3H]GABA and [3H]DABA transport. For each, transport requires external sodium, is abolished by ionophores that dissipate the Na+ gradient, and is enhanced by conditions which make the intravesicular electromotive force more negative. Some characteristics of the transport of these substances, however, differ. For example, external chloride is required for GABA, but not DABA, transport. Internal potassium is required for DABA, but not GABA, transport. DABA is a competitive inhibitor ( K i≃ 0.6 MM) of GABA transport into membrane vesicle and synaptosomes. GABA, however, is a feeble inhibitor of DABA uptake into the membrane vesicles. These differences suggest that the two substances are transported by different mechanisms and possibly by different carriers. In addition to these experiments, using enzymatic-fluorometric techniques, it was shown that the artificially imposed ion gradients drive net chemical transport of GABA into the vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号