首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topoisomerase (Topo) IIIalpha associates with BLM helicase, which is proposed to be important in the alternative lengthening of telomeres (ALT) pathway that allows telomere recombination in the absence of telomerase. Here, we show that human Topo IIIalpha colocalizes with telomeric proteins at ALT-associated promyelocytic bodies from ALT cells. In these cells, Topo IIIalpha immunoprecipitated with telomere binding protein (TRF) 2 and BLM and was shown to be associated with telomeric DNA by chromatin immunoprecipitation, suggesting that these proteins form a complex at telomere sequences. Topo IIIalpha depletion by small interfering RNA reduced ALT cell survival, but did not affect telomerase-positive cell lines. Moreover, repression of Topo IIIalpha expression in ALT cells reduced the levels of TRF2 and BLM proteins, provoked a strong increase in the formation of anaphase bridges, induced the degradation of the G-overhang signal, and resulted in the appearance of DNA damage at telomeres. In contrast, telomere maintenance and TRF2 levels were unaffected in telomerase-positive cells. We conclude that Topo IIIalpha is an important telomere-associated factor, essential for telomere maintenance and chromosome stability in ALT cells, and speculate on its potential mechanistic function.  相似文献   

2.
3.
4.
The localization of fructose 1,6-bisphosphatase (D-Fru-1,6-P2-1-phosphohydrolase, EC 3.1.3.11) in rat kidney and liver was determined immunohistochemically using a polyclonal antibody raised against the enzyme purified from pig kidney. The immunohistochemical analysis revealed that the bisphosphatase was preferentially localized in hepatocytes of the periportal region of the liver and was absent from the perivenous region. Fructose-1,6-bisphosphatase was also preferentially localized in the cortex of the kidney proximal tubules and was absent in the glomeruli, loops of Henle, collecting and distal tubules, and in the renal medulla. As indicated by immunocytochemistry using light microscopy and confirmed with the use of reflection confocal microscopy, the enzyme was preferentially localized in a perinuclear position in the liver and the renal cells. Subcellular fractionation studies followed by enzyme activity assays revealed that a majority of the cellular fructose-1,6-bisphosphatase activity was associated to subcellular particulate structures. Overall, the data support the concept of metabolic zonation in liver as well as in kidney, and establish the concept that the Fructose-1,6-bisphosphatase is a particulate enzyme that can not be considered a soluble enzyme in the classical sense. © 1996 Wiley-Liss, Inc.  相似文献   

5.
6.
7.
8.
9.
Gissot M  Walker R  Delhaye S  Huot L  Hot D  Tomavo S 《PloS one》2012,7(3):e32671

Background

Apicomplexan parasites are responsible for some of the most deadly parasitic diseases afflicting humans, including malaria and toxoplasmosis. These obligate intracellular parasites exhibit a complex life cycle and a coordinated cell cycle-dependant expression program. Their cell division is a coordinated multistep process. How this complex mechanism is organised remains poorly understood.

Methods and Findings

In this study, we provide evidence for a link between heterochromatin, cell division and the compartmentalisation of the nucleus in Toxoplasma gondii. We characterised a T. gondii chromodomain containing protein (named TgChromo1) that specifically binds to heterochromatin. Using ChIP-on-chip on a genome-wide scale, we report TgChromo1 enrichment at the peri-centromeric chromatin. In addition, we demonstrate that TgChromo1 is cell-cycle regulated and co-localised with markers of the centrocone. Through the loci-specific FISH technique for T. gondii, we confirmed that TgChromo1 occupies the same nuclear localisation as the peri-centromeric sequences.

Conclusion

We propose that TgChromo1 may play a role in the sequestration of chromosomes at the nuclear periphery and in the process of T. gondii cell division.  相似文献   

10.
11.
12.
13.
The yeast silent mating loci HML and HMR are located at opposite ends of chromosome III adjacent to the telomeres. Mutations in the N terminus of histone H4 have been previously found to derepress the yeast silent mating locus HML to a much greater extent than HMR. Although differences in the a and alpha mating-type regulatory genes and in the cis-acting silencer elements do not appear to strongly influence the level of derepression at HMR, we have found that the differential between the two silent cassettes is largely due to the position of the HMR cassette relative to the telomere on chromosome III. While HML is derepressed to roughly the same extent by mutations in histone H4 regardless of its chromosomal location, HMR is affected to different extends depending upon its chromosomal positioning. We have found that HMR is more severely derepressed by histone H4 mutations when positioned far from the telomere (cdc14 locus on chromosome VI) but is only minimally affected by the same mutations when integrated immediately adjacent to another telomere (ADH4 locus on chromosome VII). These data indicate that the degree of silencing at HMR is regulated in part by its neighboring telomere over a distance of at least 23 kb and that this form of regulation is unique for HMR and not present at HML. These data also indicate that histone H4 plays an important role in regulating the silenced state at both HML and HMR.  相似文献   

14.
The distribution of the type III isozyme of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) in rat kidney, liver, spleen, lung, and brain was determined immunohistochemically, using a monoclonal antibody generated against the enzyme purified from rat Novikoff hepatoma.In all tissues, specific cell types exhibited intense staining at the nuclear periphery, as confirmed by analysis using confocal microscopy. Isolated nuclei from kidney or liver were devoid of detectable type III hexokinase, although the enzyme was found in the "soluble" fraction from kidney or liver homogenates; these results suggest that the type III isozyme is associated in a labile manner with the external surface of the nucleus, with this association being disrupted by conventional homogenization and nuclear isolation procedures. The nuclear localization of the type III isozyme contrasts with previously demonstrated association of the type I and II isozymes with mitochondria. The physiological significance of a nuclear localization for the type III isozyme remains unclear. However, it was noted that many of the cells exhibiting prominent nuclear staining for type III hexokinase are endothelial or epithelial cells, suggesting a possible relationship between nuclear type III hexokinase and transport functions which are prominent in such cells.  相似文献   

15.
16.
The actin-related proteins (Arps), which are subdivided into at least eight subfamilies, are conserved from yeast to humans. A member of the Arp6 subfamily in Drosophila, Arp4/Arp6, co-localizes with heterochromatin protein 1 (HP1) in pericentric heterochromatin. Fission yeast Schizosaccharomyces pombe possesses both an HP1 homolog and an Arp6 homolog. However, the function of S.pombe Arp6 has not been characterized yet. We found that deletion of arp6+ impaired telomere silencing, but did not affect centromere silencing. Chromatin immunoprecipitation assays revealed that Arp6 bound to the telomere region. However, unlike Drosophila Arp4/Arp6, S.pombe Arp6 was distributed throughout nuclei. The binding of Arp6 to telomere DNA was not affected by deletion of swi6+. Moreover, the binding of Swi6 to telomere ends was not affected by deletion of arp6+. These results suggest that Arp6 and Swi6 function independently at telomere ends. We propose that the Arp6-mediated repression mechanism works side by side with Swi6-based telomere silencing in S.pombe.  相似文献   

17.
Heme plays key regulatory roles in numerous molecular and cellular processes for systems that sense or use oxygen. In the yeast Saccharomyces cerevisiae, oxygen sensing and heme signaling are mediated by heme activator protein 1 (Hap1). Hap1 contains seven heme-responsive motifs (HRMs): six are clustered in the heme domain, and a seventh is near the activation domain. To determine the functional role of HRMs and to define which parts of Hap1 mediate heme regulation, we carried out a systematic analysis of Hap1 mutants with various regions deleted or mutated. Strikingly, the data show that HRM1 to -6, located in the previously designated Hap1 heme domain, have little impact on heme regulation. All seven HRMs are dispensable for Hap1 repression in the absence of heme, but HRM7 is required for Hap1 activation by heme. More importantly, we show that a novel class of repression modules-RPM1, encompassing residues 245 to 278; RPM2, encompassing residues 1061 to 1185; and RPM3, encompassing residues 203 to 244-is critical for Hap1 repression in the absence of heme. Biochemical analysis indicates that RPMs mediate Hap1 repression, at least partly, by the formation of a previously identified higher-order complex termed the high-molecular-weight complex (HMC), while HRMs mediate heme activation by permitting heme binding and the disassembly of the HMC. These findings provide significant new insights into the molecular interactions critical for Hap1 repression in the absence of heme and Hap1 activation by heme.  相似文献   

18.

Background

Different cell types have distinctive patterns of chromosome positioning in the nucleus. Although ectopic affinity-tethering of specific loci can be used to relocate chromosomes to the nuclear periphery, endogenous nuclear envelope proteins that control such a mechanism in mammalian cells have yet to be widely identified.

Results

To search for such proteins, 23 nuclear envelope transmembrane proteins were screened for their ability to promote peripheral localization of human chromosomes in HT1080 fibroblasts. Five of these proteins had strong effects on chromosome 5, but individual proteins affected different subsets of chromosomes. The repositioning effects were reversible and the proteins with effects all exhibited highly tissue-restricted patterns of expression. Depletion of two nuclear envelope transmembrane proteins that were preferentially expressed in liver each reduced the normal peripheral positioning of chromosome 5 in liver cells.

Conclusions

The discovery of nuclear envelope transmembrane proteins that can modulate chromosome position and have restricted patterns of expression may enable dissection of the functional relevance of tissue-specific patterns of radial chromosome positioning.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号