首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a recently identified molecule involved in the amplification of inflammation. To determine the regulation of TREM-1, we studied TREM-1 expression and soluble TREM-1 plasma levels upon i.v. LPS challenge in healthy humans in vivo and in vitro. Granulocyte TREM-1 expression was high at baseline and immediately down-regulated upon LPS exposure along with an increase in soluble TREM-1. Monocytes displayed a gradual up-regulation of TREM-1 upon LPS in vivo and in vitro. In vitro studies extended these findings to highly purified lipoteichoic acid and Streptococcus pneumoniae. Nonbacterial TLR ligands such as polyinosine-polycytidylic acid and imidazoquinoline, as well as the TLR9 ligand CpG, did not impact TREM-1 expression. The LPS-induced alterations in TREM-1 surface expression were not a result of increased TNF-alpha or IL-10. Inhibitor studies disclosed a PI3K-dependent pathway in LPS-induced up-regulation of TREM-1 on monocytes, whereas MAPK played a limited role.  相似文献   

2.
Macrophages activate the production of cytokines and chemokines in response to LPS through signaling cascades downstream from TLR4. Lipid mediators such as PGE(2), which are produced during inflammatory responses, have been shown to suppress MyD88-dependent gene expression upon TLR4 activation in macrophages. The study reported here investigated the effect of PGE(2) on TLR3- and TLR4-dependent, MyD88-independent gene expression in murine J774A.1 macrophages, as well as the molecular mechanism underlying such an effect. We demonstrate that PGE(2) strongly suppresses LPS-induced IFN-beta production at the mRNA and protein levels. Poly (I:C)-induced IFN-beta and LPS-induced CCL5 production were also suppressed by PGE(2). The inhibitory effect of PGE(2) on LPS-induced IFN-beta expression is mediated through PGE(2) receptor subtypes EP(2) and EP(4), and mimicked by the cAMP analog 8-Br-cAMP as well as by the adenylyl cyclase activator forskolin. The downstream effector molecule responsible for the cAMP-induced suppressive effect is exchange protein directly activated by cAMP (Epac) but not protein kinase A. Moreover, data demonstrate that Epac-mediated signaling proceeds through PI3K, Akt, and GSK3beta. In contrast, PGE(2) inhibits LPS-induced TNF-alpha production in these cells through a distinct pathway requiring protein kinase A activity and independent of Epac/PI3K/Akt. In vivo, administration of a cyclooxygenase inhibitor before LPS injection resulted in enhanced serum IFN-beta concentration in mice. Collectively, data demonstrate that PGE(2) is a negative regulator for IFN-beta production in activated macrophages and during endotoxemia.  相似文献   

3.
Vasoactive intestinal peptide (VIP) is one of the most plentiful neuropeptides in the lung and it has anti-inflammatory effects in the respiratory system. Triggering receptors expressed on myeloid cells-1 (TREM-1) and triggering receptors expressed on myeloid cells-2 (TREM-2) regulate immune responses to lipopolysaccharide (LPS). In the present study, we tested the expressions of TREM-1 and TREM-2 in various pulmonary cell lines and/or tissue using an animal model of LPS-induced acute lung injury (ALI), and determined the effects of VIP on expression of the TREM-1 and TREM-2 in lung tissues and cells from ALI mice. We found 1) expression of the TREM-1 mRNA from lung tissues of ALI was significantly increased, whereas the expression of TREM-2 mRNA was decreased in these tissues; 2) TREM-1 mRNA was only expressed in macrophages, while TREM-2 mRNA was detected in HBECs, lung fibroblasts, lung adenocarcinoma cells and macrophages; 3) the ratio of TREM-1 mRNA to TREM-2 mRNA was increased in LPS-induced lung tissues and macrophages; 4) VIP inhibited expression of the TREM-1 mRNA in a time- and dose-dependent manner in lung cells from LPS-induced ALI mice; however, it increased expression of the TREM-2 mRNA. As a result of these effects, VIP normalized the ratio of TREM-1 to TREM-2 mRNA in these cells. Our results suggest that VIP might exert its anti-inflammatory effect through a mechanism involved in regulation of expression of the TREM-1 and TREM-2 in LPS-induced ALI.  相似文献   

4.
Triggering receptor expressed on myeloid cells 1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells that plays an important role in the amplification of inflammation. Recent studies suggest a role for TREM-1 in tumor-associated macrophages with relationship to tumor growth and progression. Whether the effects of TREM-1 on inflammation and tumor growth are mediated by an alteration in cell survival signaling is not known. In these studies, we show that TREM-1 knock-out macrophages exhibit an increase in apoptosis of cells in response to lipopolysaccharide (LPS) suggesting a role for TREM-1 in macrophage survival. Specific ligation of TREM-1 with monoclonal TREM-1 (mTREM-1) or overexpression of TREM-1 with adeno-TREM-1 induced B-cell lymphoma-2 (Bcl-2) with depletion of the key executioner caspase-3 prevents the cleavage of poly(ADP-ribose) polymerase. TREM-1 knock-out cells showed lack of induction of Bcl2 with an increase in caspase-3 activation in response to lipopolysaccharide. In addition overexpression of TREM-1 with adeno-TREM-1 led to an increase in mitofusins (MFN1 and MFN2) and knockdown of TREM-1 decreased the expression of mitofusins suggesting that TREM-1 contributes to the maintenance of mitochondrial integrity favoring cell survival. Investigations into potential mechanisms by which TREM-1 alters cell survival showed that TREM-1-induced Bcl-2 in an Egr2-dependent manner. Furthermore, our data shows that expression of Egr2 in response to specific ligation of TREM-1 is ERK mediated. These data for the first time provide novel mechanistic insights into the role of TREM-1 as an anti-apoptotic protein that prolongs macrophage survival.  相似文献   

5.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

6.
Pro-inflammatory pathways participate in the pathogenesis of atherosclerosis. However, the role of endogenous anti-inflammatory pathways in atheroma has received much less attention. Therefore, using cDNA microarrays, we screened for genes regulated by prostaglandin E(2) (PGE(2)), a potential endogenous anti-inflammatory mediator, in lipopolysaccharide (LPS)-treated human macrophages (MPhi). PGE(2) (50 nm) attenuated LPS-induced mRNA and protein expression of chemokines including monocyte chemoattractant protein-1, interleukin-8, macrophage inflammatory protein-1alpha and -1beta, and interferon-inducible protein-10. PGE(2) also inhibited the tumor necrosis factor-alpha-, interferon-gamma-, and interleukin-1beta-mediated expression of these chemokines. In contrast to the case of MPhi, PGE(2) did not suppress chemokine expression in human endothelial and smooth muscle cells (SMC) treated with LPS and pro-inflammatory cytokines. To assess the potential paracrine effect of endogenous PGE(2) on macrophage-derived chemokine production, we co-cultured MPhi with SMC in the presence of LPS. In these co-cultures, cyclooxygenase-2-dependent PGE(2) production exceeded that in the mono-cultures, and MIP-1beta declined significantly compared with MPhi cultured without SMC. We further documented prominent expression of the PGE(2) receptor EP4 in MPhi in both culture and human atheroma. Moreover, a selective EP4 antagonist completely reversed PGE(2)-mediated suppression of chemokine production. Thus, endogenous PGE(2) may modulate inflammation during atherogenesis and other inflammatory diseases by suppressing macrophage-derived chemokine production via the EP4 receptor.  相似文献   

7.
PGE(2) affects growth of many cell types. Thus, we hypothesized that PGE(2) would stimulate growth of cardiac fibroblasts. To test our hypothesis we used neonatal rat ventricular fibroblasts (NVF). RT-PCR demonstrated the presence of all 4 PGE(2) receptor (EPs) mRNAs in NVF. Using flow cytometry, we found that PGE(2) decreased the percentage of cells in G0/G1 and increased the number of cells in S phase. PGE(2) also increased expression of cyclin D3, a known regulator of the cell cycle and this effect was mimicked by the EP1/EP3 agonist sulprostone. Next, we found that treatment of NVF with PGE(2) increased phosphorylation of p42/44 MAPK and Akt and that PGE(2)-stimulation of cyclin D3 was antagonized with both a MEK inhibitor and a PI3 kinase inhibitor. In conclusion, PGE(2) stimulates cardiac fibroblast proliferation via EP1 and/or EP3, p42/44 MAPK and Akt-regulation of cyclin D3. These results may be relevant to cardiac fibrosis.  相似文献   

8.
Costimulatory molecules play important roles in immune responses. In the present study we investigated the effects of PGE(2) on the expression of ICAM-1, B7.1, and B7.2 on monocytes in IL-18-stimulated PBMC using FACS analysis. Addition of PGE(2) to PBMC inhibited ICAM-1 and B7.2 expression elicited by IL-18 in a concentration-dependent manner. We examined the involvement of four subtypes of PGE(2) receptors, EP1, EP2, EP3, and EP4, in the modulatory effect of PGE(2) on ICAM-1 and B7.2 expression elicited by IL-18, using subtype-specific agonists. ONO-AE1-259-01 (EP2R agonist) inhibited IL-18-elicited ICAM-1 and B7.2 expression in a concentration-dependent manner with a potency slightly less than that of PGE(2), while ONO-AE1-329 (EP4R agonist) was much less potent than PGE(2). The EP2/EP4R agonist 11-deoxy-PGE(1) mimicked the effect of PGE(2) with the same potency. ONO-D1-004 (EP1R agonist) and ONO-AE-248 (EP3R agonist) showed no effect on IL-18-elicited ICAM-1 or B7.2 expression. These results indicated that EP2 and EP4Rs were involved in the action of PGE(2). Dibutyryl cAMP and forskolin down-regulated ICAM-1 and B7.2 expression in IL-18-stimulated monocytes. As EP2 and EP4Rs are coupled to adenylate cyclase, we suggest that PGE(2) down-regulates IL-18-induced ICAM-1 and B7.2 expression in monocytes via EP2 and EP4Rs by cAMP-dependent signaling pathways. The fact that anti-B7.2 as well as anti-ICAM-1 Ab inhibited IL-18-induced cytokine production implies that PGE(2) may modulate the immune response through regulation of the expression of particular adhesion molecules on monocytes via EP2 and EP4Rs.  相似文献   

9.
Lipopolysaccharide (LPS) was found to induce inflammatory responses in the airways and exerted as a potent stimulus for PG synthesis. This study was to determine the mechanisms of LPS-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). LPS markedly increased the expression of COX-2 and release of PGE(2) in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Both the expression of COX-2 and the generation of PGE(2) in response to LPS were attenuated by a tyrosine kinase inhibitor genistein, a phosphatidylcholine-phospholipase C inhibitor D609, a phosphatidylinositol-phospholipase C inhibitor U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. Furthermore, LPS-induced NF-kappaB activation correlated with the degradation of IkappaB-alpha, COX-2 expression, and PGE(2) synthesis, was inhibited by transfection with dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. LPS-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK inhibitor), but these two inhibitors had no effect on LPS-induced NF-kappaB activation, indicating that NF-kappaB is activated by LPS independently of activation of p42/p44 MAPK and p38 MAPK pathways in TSMCs. Taken together, these findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from LPS-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways. LPS-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.  相似文献   

10.
Using human blood monocytes (for determination of cyclooxygenase-2 (COX-2) mRNA by RT-PCR) and human whole blood (for prostanoid determination), the present study investigates the influence of the second messenger cAMP on lipopolysaccharide (LPS)-induced COX-2 expression with particular emphasis on the role of prostaglandin E(2) (PGE(2)) in this process. Elevation of intracellular cAMP with a cell-permeable cAMP analogue (dibutyryl cAMP), an adenylyl cyclase activator (cholera toxin), or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine) substantially enhanced LPS-induced PGE(2) formation and COX-2 mRNA expression, but did not modify COX-2 enzyme activity. Moreover, up-regulation of LPS-induced COX-2 expression was caused by PGE(2), butaprost (selective agonist of the adenylyl cyclase-coupled EP(2) receptor) and 11-deoxy PGE(1) (EP(2)/EP(4) agonist), whereas sulprostone (EP(3)/EP(1) agonist) left COX-2 expression unaltered. Abrogation of LPS-induced PGE(2) synthesis with the selective COX-2 inhibitor NS-398 caused a decrease in COX-2 mRNA levels that was restored by exogenous PGE(2) and mimicked by S(+)-flurbiprofen and ketoprofen. Overall, these results indicate a modulatory role of cAMP in the regulation of COX-2 expression. PGE(2), a cAMP-elevating final product of the COX-2 pathway, may autoregulate COX-2 expression in human monocytes via a positive feedback mechanism.  相似文献   

11.
Comprehensive studies of prostaglandin (PG) synthesis in murine resident peritoneal macrophages (RPM) responding to bacterial lipopolysaccharide (LPS) revealed that the primary PGs produced by RPM were prostacyclin and PGE(2). Detectable increases in net PG formation occurred within the first hour, and maximal PG formation had occurred by 6-10 h after LPS addition. Free arachidonic acid levels rose and peaked at 1-2 h after LPS addition and then returned to baseline. Cyclooxygenase-2 (COX-2) and microsomal PGE synthase levels markedly increased upon exposure of RPM to LPS, with the most rapid increases in protein expression occurring 2-6 h after addition of the stimulus. RPM constitutively expressed high levels of COX-1. Studies using isoform-selective inhibitors and RPM from mice bearing targeted deletions of ptgs-1 and ptgs-2 demonstrated that COX-1 contributes significantly to PG synthesis in RPM, especially during the initial 1-2 h after LPS addition. Selective inhibition of either COX isoform resulted in increased secretion of tumor necrosis factor-alpha (TNF-alpha); however, this effect was much greater with the COX-1 than with the COX-2 inhibitor. These results demonstrate autocrine regulation of TNF-alpha secretion by endogenous PGs synthesized primarily by COX-1 in RPM and suggest that COX-1 may play a significant role in the regulation of the early response to endotoxemia.  相似文献   

12.
Prostaglandin E(2) (PGE(2)) has been implicated in the regulation of inflammatory and immunological events. Using RAW 264.7 macrophages, the present study investigates the influence of PGE(2) on the expression of cyclooxygenase-2 (COX-2). Incubation of cells with PGE(2) increased lipopolysaccharide (LPS)-induced COX-2 mRNA levels in a concentration-dependent manner. Upregulation of COX-2 expression by PGE(2) was completely abolished by the specific adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and mimicked by butaprost, a selective agonist of the adenylyl cyclase-coupled PGE(2) receptor subtype 2 (EP(2)), or 11-deoxy PGE(1), an EP(2)/EP(4) receptor agonist. By contrast, the EP(3)/EP(1) receptor agonists 17-phenyl-omega-trinor PGE(2) and sulprostone left LPS-induced COX-2 expression virtually unaltered. Upregulation of LPS-induced COX-2 expression and subsequent PGE(2) synthesis was also observed in the presence of the cell-permeable cAMP analogue dibutyryl cAMP and the adenylyl cyclase activator cholera toxin. Together, our data demonstrate that PGE(2) potentiates COX-2 mRNA expression via an adenylyl cyclase/cAMP-dependent pathway. In conclusion, upregulation of COX-2 expression via an autocrine feed-forward loop may in part contribute to the well-known capacity of PGE(2)/cAMP to modulate inflammatory processes.  相似文献   

13.

Purpose

To explore the possibility that inhibiting triggering receptor expressed on myeloid cells-1 (TREM-1) and Dendritic cell-associated C-type lectin-1(Dectin-1) could modulate the innate immune response and alleviate the severity of corneal fungal keratitis.

Method

TREM-1 and Dectin-1 expression was detected in fungus-infected human corneal specimens by real-time PCR. C57BL/6 (B6) mice were injected with Aspergillus fumigatus and divided into 4 groups that received subconjunctival injections of PBS and IgG as a control (group I), mTREM-1/IgG fusion protein (group II), the soluble β-glucan antagonist laminarin (group III), or mTREM-1/Fc and laminarin (group IV). Corneal virulence was evaluated based on clinical scores. TREM-1 and Dectin-1 mRNA levels were assayed using real-time PCR. The distribution patterns of TREM-1, Dectin-1 and cellular infiltrates in fungus-infected corneas were examined by immunohistochemistry. Moreover, changes in T Helper Type1 (Th1)-/ T Helper Type1 (Th2)- type cytokines and proinflammatory cytokines were measured.

Results

The expression of TREM-1 and Dectin-1 increased significantly and correlated positively with the progression of fungal keratitis. Most infiltrated cells were neutrophils and secondarily macrophages in infected cornea. The clinical scores decreased after interfering with TREM-1 and Dectin-1 expression in infected mouse corneas. Levels of Th1-type cytokines including interleukin-12 (IL-12), IL-18 and interferon-γ (IFN-γ) were decreased in the cornea, while the levels of Th2-type cytokines, including IL-4, IL-5 and IL-10, showed obvious increases.

Conclusion

TREM-1 and Dectin-1 function concurrently in the corneal innate immune response by regulating inflammatory cytokine expression in fungal keratitis. Inhibition of TREM-1 and Dectin-1 can alleviate the severity of corneal damage by downregulating the excessive inflammatory response.  相似文献   

14.
Macrophage activation participates pivotally in the pathophysiology of chronic inflammatory diseases, including atherosclerosis. Through the receptor EP4, prostaglandin E(2) (PGE(2)) exerts an anti-inflammatory action in macrophages, suppressing stimulus-induced expression of certain proinflammatory genes, including chemokines. We recently identified a novel EP4 receptor-associated protein (EPRAP), whose function in PGE(2)-mediated anti-inflammation remains undefined. Here we demonstrate that PGE(2) pretreatment selectively inhibits lipopolysaccharide (LPS)-induced nuclear factor kappaB1 (NF-kappaB1) p105 phosphorylation and degradation in mouse bone marrow-derived macrophages through EP4-dependent mechanisms. Similarly, directed EPRAP expression in RAW264.7 cells suppresses LPS-induced p105 phosphorylation and degradation, and subsequent activation of mitogen-activated protein kinase kinase 1/2. Forced expression of EPRAP also inhibits NF-kappaB activation induced by various proinflammatory stimuli in a concentration-dependent manner. In co-transfected cells, EPRAP, which contains multiple ankyrin repeat motifs, directly interacts with NF-kappaB1 p105/p50 and forms a complex with EP4. In EP4-overexpressing cells, PGE(2) enhances the protective action of EPRAP against stimulus-induced p105 phosphorylation, whereas EPRAP silencing in RAW264.7 cells impairs the inhibitory effect of PGE(2)-EP4 signaling on LPS-induced p105 phosphorylation. Additionally, EPRAP knockdown as well as deficiency of NF-kappaB1 in macrophages attenuates the inhibitory effect of PGE(2) on LPS-induced MIP-1beta production. Thus, PGE(2)-EP4 signaling augments NF-kappaB1 p105 protein stability through EPRAP after proinflammatory stimulation, limiting macrophage activation.  相似文献   

15.
Although PGE(2) is a potent inhibitor of fibroblast function, PGE(2) levels are paradoxically elevated in murine lungs undergoing fibrotic responses. Pulmonary fibroblasts from untreated mice expressed all four E prostanoid (EP) receptors for PGE(2). However, following challenge with the fibrogenic agent, bleomycin, fibroblasts showed loss of EP2 expression. Lack of EP2 expression correlated with an inability of fibroblasts from bleomycin-treated mice to be inhibited by PGE(2) in assays of proliferation or collagen synthesis and blunted cAMP elevations in response to PGE(2). PGE(2) was similarly unable to suppress proliferation or collagen synthesis in fibroblasts from EP2(-/-) mice despite expression of the other EP receptors. EP2(-/-), but not EP1(-/-) or EP3(-/-) mice, showed exaggerated fibrotic responses to bleomycin administration in vivo as compared with wild-type controls. EP2 loss on fibroblasts was verified in a second model of pulmonary fibrosis using FITC. Our results for the first time link EP2 receptor loss on fibroblasts following fibrotic lung injury to altered suppression by PGE(2) and thus identify a novel fibrogenic mechanism.  相似文献   

16.
During in vitro maturation of porcine cumulus-oocyte complexes (COCs), follicle-stimulating hormone (FSH) increases both prostaglandin E2 (PGE2) production and the expression levels of EGF-like factors. The ligands act on cumulus cells by the autocrine system due to their specific receptors, EP2, EP4, or EGF receptor. When each pathway is suppressed by inhibitors, complete cumulus expansion and oocyte maturation do not occur. In this study, we examined the relationship between both of these pathways in cumulus cells of porcine COCs. When COCs were cultured with FSH, Fshr mRNA expression was immediately decreased within 5 h, whereas Ptger2, Ptger4, and Ptgs2 expression levels were significantly increased in cumulus cells in the culture containing FSH for 5 or 10 h. The PTGS2 inhibitor NS398 significantly suppressed not only PGE2 secretion at any culture time point but also Areg, Ereg, and Tace/Adam17 expression in cumulus cells at 10 and 20 h but not at 1 or 5 h. During the early culture period, phosphorylation of MAPK3 and MAPK1 (MAPK3/1) was not affected by NS398; however, at 10 and 20 h, phosphorylation was suppressed by the drug. Furthermore, down-regulations of MAPK3/1 phosphorylation and expression of the target genes by NS398 was overcome by the addition of either PGE2 or EGF. FSH-induced cumulus expansion and meiotic progression to the MII stage were also suppressed by NS398, whereas these effects were also overcome by addition of either PGE2 or EGF. These results indicated that PGE2 is involved in the sustainable activation of MAPK3/1 in cumulus cells via the induction of EGF-like factor, which is required for cumulus expansion and meiotic maturation of porcine COCs.  相似文献   

17.
TREM-1 (triggering receptor expressed on myeloid cells-1) is an orphan immunoreceptor expressed on monocytes, macrophages, and neutrophils. TREM-1 associates with and signals via the adapter protein DAP12/TYROBP, which contains an ITAM. TREM-1 activation by receptor cross-linking has been shown to be proinflammatory and to amplify some cellular responses to TLR ligands such as bacterial LPS. To investigate the cellular consequences of TREM-1 activation, we have characterized global gene expression changes in human monocytes in response to TREM-1 cross-linking in comparison to and combined with LPS. Both TREM-1 activation and LPS up-regulate chemokines, cytokines, matrix metalloproteases, and PTGS/COX2, consistent with a core inflammatory response. However, other immunomodulatory factors are selectively induced, including SPP1 and CSF1 (i.e., M-CSF) by TREM-1 activation and IL-23 and CSF3 (i.e., G-CSF) by LPS. Additionally, cross-talk between TREM-1 activation and LPS occurs on multiple levels. Although synergy in GM-CSF protein production is reflected in commensurate mRNA abundance, comparable synergy in IL-1beta protein production is not. TREM-1 activation also attenuates the induction of some LPS target genes, including those that encode IL-12 cytokine family subunits. Where tested, positive TREM-1 outputs are greatly reduced by the PI3K inhibitor wortmannin, whereas this attenuation is largely PI3K independent. These experiments provide a detailed analysis of the cellular consequences of TREM-1 activation and highlight the complexity in signal integration between ITAM- and TLR-mediated signaling.  相似文献   

18.
Prostaglandins (PGs) have been implicated in lowering intraocular pressure (IOP). A possible role of cyclooxygenase-2 (COX-2) in this process was emphasized by findings showing impaired COX-2 expression in the non-pigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. The present study investigates the effect of the major COX-2 product, PGE(2), on the expression of its synthesizing enzyme in human NPE cells (ODM-2). PGE(2) led to an increase of COX-2 mRNA and protein expression, whereas the expression of COX-1 remained unchanged. Upregulation of COX-2 expression by PGE(2) was accompanied by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, and was abrogated by inhibitors of both pathways. Moreover, PGE(2)-induced COX-2 expression was suppressed by the intracellular calcium chelator, BAPTA/AM, and the protein kinase C inhibitor bisindolylmaleimide II, whereas the protein kinase A inhibitor H-89 was inactive in this respect. Induction of COX-2 expression was also elicited by butaprost (EP(2) receptor agonist) and 11-deoxy PGE(1) (EP(2)/EP(4) receptor agonist), but not by EP(1)/EP(3) receptor agonists (17-phenyl-omega-trinor PGE(2), sulprostone). Consistent with these findings, the EP(1)/EP(2) receptor antagonist, AH-6809, and the selective EP(4) receptor antagonist, ONO-AE3-208, significantly reduced PGE(2)-induced COX-2 expression. Collectively, our results demonstrate that PGE(2) at physiologically relevant concentrations induces COX-2 expression in human NPE cells via activation of EP(2)- and EP(4) receptors and phosphorylation of p38 and p42/44 MAPKs. Positive feedback regulation of COX-2 may contribute to the production of outflow-facilitating PGs and consequently to regulation of IOP.  相似文献   

19.
Despite a widely accepted role of arrestins as "uncouplers" of G protein-coupled receptor (GPCR) signaling, few studies have demonstrated the ability of arrestins to affect second messenger generation by endogenously expressed receptors in intact cells. In this study we demonstrate arrestin specificity for endogenous GPCRs in primary cultures of human airway smooth muscle (HASM). Expression of arrestin-green fluorescent protein (ARR2-GFP or ARR3-GFP) chimeras in HASM significantly attenuated isoproterenol (beta(2)-adrenergic receptor (beta(2)AR)-mediated)- and 5'-(N-ethylcarboxamido)adenosine (A2b adenosine receptor-mediated)-stimulated cAMP production, with fluorescent microscopy demonstrating agonist-promoted redistribution of cellular ARR2-GFP into a punctate formation. Conversely, prostaglandin E(2) (PGE(2))-mediated cAMP production was unaffected by arrestin-GFP, and PGE(2) had little effect on arrestin-GFP distribution. The pharmacological profile of various selective EP receptor ligands suggested a predominantly EP2 receptor population in HASM. Further analysis in COS-1 cells revealed that ARR2-GFP expression increased agonist-promoted internalization of wild type beta(2)AR and EP4 receptors, whereas EP2 receptors remained resistant to internalization. However, expression of an arrestin whose binding to GPCRs is largely independent of receptor phosphorylation (ARR2(R169E)-GFP) enabled substantial agonist-promoted EP2 receptor internalization, increased beta(2)AR internalization to a greater extent than did ARR2-GFP, yet promoted EP4 receptor internalization to the same degree as did ARR2-GFP. Signaling via endogenous EP4 receptors in CHO-K1 cells was attenuated by ARR2-GFP expression, whereas ARR2(R169E)-GFP expression in HASM inhibited EP2 receptor-mediated cAMP production. These findings demonstrate differential effects of arrestins in altering endogenous GPCR signaling in a physiologically relevant cell type and reveal a variable dependence on receptor phosphorylation in dictating arrestin-receptor interaction.  相似文献   

20.
The expression of cyclooxygenase-2 (COX-2) and the synthesis of prostaglandin E2 (PGE2) as well as of cytokines such as interleukin-6 (IL-6) have all been suggested to propagate neuropathology in different brain disorders such as HIV-dementia, prion diseases, stroke and Alzheimer's disease. In this report, we show that PGE2-stimulated IL-6 release in U373 MG human astroglioma cells and primary rat astrocytes. PGE2-induced intracellular cAMP formation was mediated via prostaglandin E receptor 2 (EP2), but inhibition of cAMP formation and protein kinase A or blockade of EP1/EP2 receptors did not affect PGE2-induced IL-6 synthesis. This indicates that the cAMP pathway is not part of PGE2-induced signal transduction cascade leading to IL-6 release. The EP3/EP1-receptor agonist sulprostone failed to induce IL-6 release, suggesting an involvement of EP4-like receptors. PGE2-activated p38 mitogen-activated kinase (p38 MAPK) and protein kinase C (PKC). PGE2-induced IL-6 synthesis was inhibited by specific inhibitors of p38 MAPK (SB202190) and PKC (GF203190X). Although, up to now, EP receptors have only rarely been linked to p38 MAPK or PKC activation, these results suggest that PGE2 induces IL-6 via an EP4-like receptor by the activation of PKC and p38 MAPK via an EP4-like receptor independently of cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号