首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Norepinephrine (NE):adenosinetriphosphate (ATP) ratios were studied in a highly purified fraction of large dense core vesicles isolated from the bovine splenic nerve. Vesicles prepared from nerves chilled ~10 and 30 min post mortem were compared. The NE:ATP molar ratio decreased from 6.3 to 4.8, p < 0.005; NE decreased from 61 to 42 nmol, while ATP decreased only from 9.6 to 8.8 nmol/mg protein. Animals weighing 180-360 kg were compared with heavier ones weighing 400-700 kg. NE increased from 42 to 68 nmol and ATP increased from 5.9 to 13.2 nmol/mg protein, while the NE:ATP molar ratio decreased from 7.2 to 5.2, p < 0.005. Changes during vesicle maturation were studied by comparing vesicles identically prepared from equal weights of a proximal nerve segment close to the coeliac ganglion and a distal, intrasplenic segment. NE increased from 45 to 70 nmol while ATP remained unchanged at 10.0 nmol/mg protein and the NE:ATP molar ratio increased from 4.5 to 7.0, p < 0.005. It was interpreted that vesicle ATP content, like dopamine β-hydroxylase, was established early in the cell body and remained unchanged during axoplasmic transport. ATP was in a complex which was relatively stable to post mortem hydrolysis at least between 10 and 30 min prior to chilling the nerves. The addition of newly synthesized NE into a readily releasable pool during axoplasmic transport occurs without ATP and can account for the increased ratio above 4:1 in the distal segment vesicles.  相似文献   

2.
Abstract— A fraction containing noradrenaline storage vesicles of the sympathetic nerve terminals in the rat heart was obtained by differential centrifugation. In this preparation, 17% of the dopamine β-hydroxylase was present in a soluble form. Cold exposure (3°C) for periods from 5 to 30 min led to an increase in the activity of soluble dopamine β-hydroxylase by about 50%, while the activity of membrane-bound dopamine β-hydroxylase was simultaneously decreased by approx 30%. The nor-adrenaline content of the vesicles rose concomitantly with the increase in the activity of soluble dopamine β-hydroxylase. This rise in noradrenaline content was caused by an enhanced synthesis and not by an alteration in the subcellular distribution. The results are discussed with respect to the fate of dopamine β-hydroxylase during enhanced sympathetic nerve activity.  相似文献   

3.
The net rate of proximo-distal transport of tyrosine hydroxylase, dopamine β-hydroxylase, DOPA decarboxylase and choline acetyltransferase was determined by measuring the accumulation of these enzymes proximal to a ligature of the rat sciatic nerve. The rate of accumulation was constant for at least 12 h. For the enzymes involved in the biosynthesis of norepinephrine the rate of transport was correlated to their subcellular distribution and a close correlation between these two parameters was found. Dopamine β-hydroxylase, an enzyme mainly localized in the particulate fraction of the sciatic nerve, showed the fastest rate of transport (1·94 mm/h) whereas DOPA decarboxylase, exclusively located in the high-speed supernatant fluid, gave the slowest (0·63 mm/h) rate of transport. Tyrosine hydroxylase, predominantly located in the non-particulate fraction of the sciatic nerve was transported much slower (0·75 mm/h) than dopamine β-hydroxylase but still significantly (P < 0.005) faster than DOPA decarboxylase. The subcellular distribution of dopamine β-hydroxylase in ganglia did not differ significantly (0·45 > P > 0·40) from that in the sciatic nerve, but in nerve endings a greater proportion of dopamine β-hydroxylase was localized in particulate fractions. Tyrosine hydroxylase and DOPA decarboxylase were found exclusively in the non-particulate fractions of ganglia. In the nerve endings of the effector organs a small but consistent portion of tyrosine hydroxylase was found in particulate fractions, whereas DOPA decarboxylase was exclusively localized in the high-speed supernatant fluid.  相似文献   

4.
The cat ovary presents unusually high levels of noradrenaline that change according to the endocrine status of the animal. Their functional meaning remains unknown. The cat ovary innervation, unlike that of other organs receiving noradrenergic innervation, has been poorly characterized on biochemical grounds. We present here a biochemical characterization of the neurotransmitter storage. By using hyperosmotic and isoosmotic gradients evidence is presented that noradrenaline is associated to two different populations of vesicles. In hyperosmomolarity conditions (sucrose gradients) “light” vesicles (density 1.12 g/ml) and “heavy” vesicles (density 1.17 g/ml) appeared. In both vesicles, noradrenaline and dopamine-β-hydroxylase were found. In isoosmotic Percoll gradients distribution of the markers also suggested the presence of two vesicle populations. Light vesicles (density 1.033 g/ml) with high dopamine-β-hydroxylase activity but very low levels of noradrenaline and adenosine triphosphate; [3H]noradrenaline, used as a specific exogenous vesicle marker, was feebly incorporated in this fraction. Heavy vesicles (density 1.041 g/ml) containing high levels of noradrenaline, adenosine triphosphate, low levels of dopamine-β-hydroxylase activity are able to incorporate high amounts of [3H]noradrenaline. In these gradients, Mg2+ activated ATPase activity was present in both vesicle fractions.

Sedimentation analysis by analytical differential centrifugation also disclosed two types of vesicles: large vesicles with a sedimentation coefficient between 348 and 308 and small vesicles with a sedimentation coefficient of 96 . Large vesicles were associated with noradrenaline-β-hydroxylase activity, while small vesicles were associated only with noradrenaline.

In isoosmotic conditions the use of other microsomal markers allowed us to define the degree of contamination of the vesicle fractions. It was found that the noradrenergic heavy vesicles fraction presented under 11% of 5′-nucleotidase activity of the total activity present in the gradient and less than 5% of acid phosphatase, NADH-cytochrome c reductase and monoaminooxidase of the total activities in the gradients.

In isoosmotic conditions the physical properties of presumed vesicles were apparently undisturbed supporting the current morphometric observations. Our results then suggest prevailing roles for each type of vesicle: synthesis for light vesicles, and storage and/or release for heavy ones.  相似文献   


5.
The dopamine β-hydroxylase (DβH) content and activity of large dense-core noradrenergic vesicles purified from bovine splenic nerve were determined using two assay procedures : enzymic activity expressed in Units per mg protein and homospecific activity based on radioimmunoassay expressed in Units per mg DβH antigen. Approximately two-thirds of the total enzyme activity is latent in these vesicles, even after various treatments designed to compromise vesicle integrity. DβH can be completely unmasked by brief treatment with 0.01-0.05% Triton X-100 and activity increases from 0.20 to 0.64 Units per mg vesicle protein. Calculations based on both assay methods suggested that an average of 7% (range 3-15%) of the total vesicle protein was DβH and that the average vesicle contained about 4 molecules of enzyme (range 2-9 molecules). The estimated homospecific activities indicated an average of 25 and 50% (range 18-72%) of the vesicle enzyme was inactive in the various samples using the two antibodies. The vesicle can synthesize up to 30 molecules of noradrenaline/s per molecule of DβH at near optimal substrate concentration, and 60-270 molecules of norepinephrine/s per vesicle. The assumptions used in the various calculations were critically analyzed and, based on the methods employed, it is tentatively considered to be unlikely that there could be more than 5-12 molecules of DβH per vesicle. The possibility that circulating DβH originates primarily, if not exclusively, from the large dense-core vesicle type is considered and the functional implications of the data support the concept of vesicle reuse during several cycles of exocytosis involving a quantal size equal to a fraction of the vesicle transmitter content.  相似文献   

6.
Norepinephrine (NE):adenosinetriphosphate (ATP) ratios were studied in a highly purified fraction of large dense core vesicles isolated from the bovine splenic nerve. Vesicles prepared from nerves chilled approximately 10 and 30 min post mortem were compared. The NE:ATP molar ratio decreased from 6.3 to 4.8, p less than 0.005; NE decreased from 61 to 42 nmol, while ATP decreased only from 9.6 to 8.8 nmol/mg protein. Animals weighing 180-360 kg were compared with heavier ones weighing 400-700 kg. NE increased from 42 to 68 nmol and ATP increased from 5.9 to 13.2 nmol/mg protein, while the NE:ATP molar ratio decreased from 7.2 to 5.2, p less than 0.005. Changes during vesicle maturation were studied by comparing vesicles identically prepared from equal weights of a proximal nerve segment close to the coeliac ganglion and a distal, intrasplenic segment. NE increased from 45 to 70 nmol while ATP remained unchanged at 10.0 nmol/mg protein and the NE:ATP molar ratio increased from 4.5 to 7.0, p less than 0.005. It was interpreted that vesicle ATP content, like dopamine beta-hydroxylase, was established early in the cell body and remained unchanged during axoplasmic transport. ATP was in a complex which was relatively stable to post mortem hydrolysis at least between 10 and 30 min prior to chilling the nerves. The addition of newly synthesized NE into a readily releasable pool during axoplasmic transport occurs without ATP and can account for the increased ratio above 4:1 in the distal segment vesicles.  相似文献   

7.
—The presence of phenylethanolamine-N-methyltransferase (EC 2.1.1.-) and dopamine-β-hydroxylase (EC 1.14.2.1) activities was demonstrated in the sciatic nerve of the toad, Bufo marinus. The rates of accumulation of phenylethanolamine-N-methyltransferase (PNMT) and dopamine-β-hydroxylase (DBH) proximal to a ligation of the sciatic nerve were studied. DBH accumulated proximal to the ligation at a more than 10-fold faster rate than PNMT. By measuring the rate of loss of enzyme activity distal to a ligation, an estimate of per cent clearance of each enzyme was made. Based on the per cent of enzyme activity free to move, the absolute transport rates for each enzyme were estimated to be: PNMT, 3.6 mm/24 h; DBH, 102 mm/24 h. PNMT activity (89 per cent) was recovered in the soluble fraction of sciatic nerve homogenates with no change occurring in the subcellular distribution of the enzyme proximal to ligations. In contrast, 43 per cent of DBH activity was found in the soluble fraction of sciatic nerve homogenates; but a disproportionate increase in paniculate DBH activity was found proximal to sciatic nerve ligations. Reduction of toad body temperature to 4°C resulted in a complete but totally reversible block of the axonal transport of both PNMT and DBH.  相似文献   

8.
The axoplasmic transport of aromatic l -amino acid decarboxylase and dopamine β-hydroxylase, two enzymes involved in the biosynthesis of catecholamines, was studied in rat sciatic nerve. The two enzymes exhibited markedly different axoplasmic flow characteristics, since dopamine β-hydroxylase activity accumulated on the proximal side of a ligation nearly three times as fast as aromatic l -amino acid decarboxylase activity. Distally dopamine β-hydroxylase activity remained essentially constant for 24 h, whereas aromatic l -amino acid decarboxylase activity fell precipitously. Evidence was obtained to rule out the possibility that differences in the rate of inactivation of the two enzymes could account for the different rates of accumulations observed. The conclusion, that aromatic L-amino acid decarboxylase and dopamine β-hydroxylase are transported in sympathetic nerve at different rates is discussed in relation to the biosynthesis of norepinephrine.  相似文献   

9.
Knowledge of the vesicular origin of circulating dopamine β-hydroxylase (DβH) is indispensable for any attempts to explain the parallelism or lack of it between circulating enzyme and catecholamines as they may relate to physiological stress, forms of hypertension, neurological disorders, and the response to pharmacological agents. The present study represents an effort to evaluate and to place in proper perspective data based on the DβH activity found in the region of the light vesicle peak of noradrenaline (NA), which is used as a quantitative measure of a population of small terminal vesicles. Distributions of vesicles and subvesicular components are compared with DβH and NA in sucrose-D2O density gradients used to prepare relatively pure fractions of large dense cored vesicles (LDV) from bovine splenic nerve. Although NA in sedimentable particles of the light vesicle peak is likely to be a valid measure of a small vesicle population, the following is demonstrated: (1) A substantial fraction (25%–37%) of the total sedimentable DβH acitivity can be proven to distribute in the region of the light vesicle peak from a tissue with an insignificant small vesicle population. Based on studies of vesicles from sequential nerve segments, this enzyme activity probably corresponds to a population of “immature” LDV which are undergoing axoplasmic transport and have not synthesized their full complement of transmitter. (2) Physical lysis which depletes the matrix of LDV causes redistribution of DβH activity from the heavy vesicle peak into the region of the light vesicle peak. Analogously, DβH associated with exocytosed LDV and retrograde transport particles is also likely to contaminate the region of the light vesicle peak. (3) Based on available data, it can be calculated that each small dense cored vesicle could contain only 0.1–0.5 molecules of DβH and that a contamination of only 0.016% LDV can account for all of the DβH reported to occur in the light vesicle peak of normal rat vas deferens preparations.  相似文献   

10.
"Light" noradrenaline storage vesicles from nerve endings have been isolated by differential centrifugation and differential gradient centrifugation. They have been further purified by isopycnic sucrose/D2O centrifugation. By using these centrifugation techniques, we obtained an isopycnic gradient fraction in which noradrenaline was enriched about 41 times versus a total homogenate. This factor could be raised to 61 by using seminal ducts of castrated rats. Comparison of the distribution patterns in sucrose/D2O isopycnic gradients indicated that light noradrenaline vesicles of nerve endings contain Mg2+-stimulated ATPase and ATP, but that only a minor part of the dopamine beta-hydroxylase can be associated with these vesicles.  相似文献   

11.
FAST AXOPLASMIC TRANSPORT OF ACETYLCHOLINESTERASE IN MAMMALIAN NERVE FIBRES   总被引:9,自引:4,他引:5  
Abstract— Acetylcholinesterase (acetylcholine acetyl-hydrolase, EC 3.1.1.7) is carried down mammalian nerve fibres by the fast axoplasmic transport system. This conclusion was derived from experiments involving the ligation of cat sciatic nerves at two sites placed 83.5 mm apart. The enzyme accumulated in segments of nerve proximal to the upper ligation in a linear fashion over a period of at least 20 h. At approximately 5 h the accumulation of enzyme ceased in the nerve segment proximal to the distal ligation within the isolated length of nerve, an observation indicating that the portion of AChE free to move within the isolated nerve had been depleted during this period of time. The freely moving fraction of AChE was estimated to be 15% of the total enzyme activity present in the nerve (10% in the proximo-distal direction and 5% in the retrograde direction). The rate of AChE downflow (as estimated from the intercept of the curve plotting accumulation with the line denoting when depletion started) was 431 mm/day within a 95% confidence interval of 357–543 mm/day. In view of the variability, our results demonstrated that AChE was being carried by the fast axoplasmic transport system, which in earlier studies was estimated to have a characteristic rate close to 410 mm/day.
An accumulation of AChE was also found on the distal side of the ligations that represented a movement of AChE in the distal-proximal direction in the fibres. This retrograde transport was smaller in amount (about one-half) than the proximo-distal rate of transport, or close to 220 mm/day. The rate of AChE transport was discussed in relation to the 'transport filament' hypothesis of fast axoplasmic transport.  相似文献   

12.
The axonal transport and subcellular distribution of noradrenaline (NA), dopamine beta-hydroxylase (DBH) and neuropeptide Y (NPY) were determined in dog sciatic nerve using an accumulation technique. The results were compared with those obtained by application of the same procedures and methods on the splenic nerve in the same animal species. Evidence was found for the coexistence of NA and NPY in large dense-cored vesicles in dog sciatic nerve axons. After differential centrifugation and isopyenic sucrose density gradient centrifugation of 24 h ligated sciatic nerve pieces NA and NPY equilibrated around 1M sucrose. The DBH activity was dispersed broadly on the gradient. Subsequently, the accumulation of NA, DBH and NPY was studied in proximal and sital segments of 8, 12 and 24 h dog ligated sciatic nerve and inferences were made concerning the axonal transport of these compounds. NA, DBH and NPY displayed a divergent accumulation proximal to the ligation. After 12 h of ligation a transport rate was calculated of 4.8 +/- 1.8 mm/h for NA, of 5.9 +/- 1.5 mm/h for DBH and of 4.9 +/- 2.0 mm/h for NPY. With a correction for the stationary fractions, a similar fast transport rate of approximately 10 to 12 mm/h was proposed for NA, DBH and NPY. The occurrence was shown of a limited retrograde transport of DBH and possibly NPY, but not of NA.  相似文献   

13.
To clarify when the cholinergic receptor-mediated secretion mechanism of developing adrenal chromaffin cells is expressed and becomes functional, morphological changes and intracellular calcium dynamics were studied by immunohistochemistry, electron microscopy, and Fura-2 digital image analysis. From embryonic day 14 to 16, adrenal medullary cells were immunoreactive to noradrenaline-synthesizing enzyme (dopamine β-hydroxylase) but not to adrenaline-synthesizing enzyme (phenylethanolamine N-methyltransferase). These cells contained either no granules or just a few granules of high electron density. Exocytotic figures were rarely observed in cells of the control or in cells after carbamylcholine stimulation. Nerve fibers in the adrenal medulla contained either no clear vesicles or very few. Neither methacholine nor nicotine caused a change of intracellular Ca2+ in most chromaffin cells. From embryonic day 18 to 20, chromaffin cells were immunoreactive to both dopamine β-hydroxylase and phenylethanolamine N-methyltransferase and they contained relatively numerous secretory granules. Exocytotic figures were often seen in cells after carbamylcholine stimulation. The intra-adrenal nerve fibers contained numerous clear vesicles and a few dense-cored vesicles. Methacholine caused no rise of intracellular Ca2+, but nicotine induced a low to relatively high rise in many cells. From postnatal day 2 or 3 to postnatal week 1, numerous cells were immunoreactive to both dopamine β-hydroxylase and phenylethanolamine N-methyltransferase, whereas some cells were reactive to dopamine β-hydroxylase alone. Chromaffin cells were divisible into noradrenaline cells and adrenaline cells based on the ultrastructural features of their granules. Methacholine induced a moderate rise of intracellular Ca2+ and nicotine caused a high rise in many chromaffin cells, whereas, in some chromaffin cells, methacholine induced no rise of intracellular Ca2+ and nicotine induced a high rise. These results suggest that morphological changes of the developing cells and the intra-adrenal nerve fibers are related to the expression of a cholinergic receptor-mediated secretion mechanism and that this mechanism via a nicotinic receptor-mediated Ca2+ signaling pathway precedes the muscarinic receptor-mediated one during development.  相似文献   

14.
Presynaptic muscarinic receptors labeled with [3H]dexetimide and noradrenaline in dog splenic nerves accumulated proximally to a ligature at the same rate of axonal transport. After fractionation by differential centrifugation, specific [3H]quinuclidinyl benzilate or [3H]dexetimide binding revealed a distribution profile similar to that of dopamine-β-hydroxylase and noradrenaline. Subfractionation by density gradient centrifugation showed two peaks of muscarinic receptors; the peak of density 1.17 contained noradrenaline and dopamine-β-hydroxylase whereas that of density 1.14 was devoid of noradrenaline. Therefore the foregoing experiments provide evidence that presynaptic muscarinic receptors are transported in sympathetic nerves in synaptic vesicles which are similar to those containing noradrenaline and dopamine-β-hydroxylase. This suggests a possible coexistence of receptor and neurotransmitter in the same vesicle.  相似文献   

15.
—The enzyme dopamine-β-hydroxylase (EC 1.14.17.1) which converts dopamine to noradrenaline was found to be present in substantial amounts in sheep brain hypothalamus and caudate nucleus and was located to the synaptic vesicle fractions in these two brain regions by subcellular fractionation. This dopamine-β-hydroxylase was associated with paniculate matter in these two brain regions since it was resistant to solubilization with butan-1-ol and 0.1% Triton X-100. As highly significant levels of dopamine-β-hydroxylase were present in the caudate nucleus, factors other than a simple lack of this enzyme must operate to maintain the low levels of noradrenaline and high levels of dopamine in the caudate nucleus. Purified adrenal dopamine-β-hydroxylase was substantially inhibited by two factors prepared from sheep brain hypothalamus and caudate nucleus. These were found to be cupric ions and a sulphydryl inhibitor. High levels of the sulphydryl inhibitor of dopamine-β-hydroxylase were found in synaptosomal fractions from sheep brain hypothalamus and caudate nucleus and the levels were comparable in both regions. Upon subfractionation of a synaptosome-containing fraction from the hypothalamus, the inhibitor was located predominantly in the soluble fraction, although there were significant levels in the synaptic vesicle fraction. Therefore, the sulphydryl inhibitor must be considered as a possible regulator of dopamine-β-hydroxylase activity. Free cupric ion concentrations as low as 2·5 μM were found to inhibit purified adrenal dopamine-β-hydroxylase in vitro and the concentration of copper in the soluble tissue component of hypothalamus and caudate nucleus was well above this minimal copper concentration. The percentage content of soluble copper in the caudate nucleus was significantly higher than in the hypothalamus. The importance of the soluble to particulate-bound ratio of copper in brain was shown in studies of the developing rat brain. A rapid increase in the level of copper in brain was found in the first 4 weeks but the level was constant by 2 months of age. The percentage of soluble copper, however, was maximal soon after birth and had declined to a constant figure by 2 months of age. A scheme for the regulation of dopamine-β-hydroxylase activity involving these factors is proposed.  相似文献   

16.
Abstract: Changes in sympathetic nerve terminals of the heart after varying periods of exposure of rats to 4°C were investigated. Two indices were used for changes in the number of noradrenaline storage vesicles, i.e., vesicular dopamine β-hydroxylase (DBH) activity and noradrenaline storage capacity. The latter was obtained after uptake of [3H]noradrenaline; endogenous content, uptake of exogenous noradrenaline, and degree of saturation of the vesicles were calculated using the specific activity of the [3H]noradrenaline. As a measure of tyrosine hydroxylase activity, whole ventricular noradrenaline, dopamine, and dihydroxyphenylacetic acid content were used. After 4 h of cold exposure there was an increase in vesicular endogenous noradrenaline content, uptake, storage capacity, and DBH activity as well as a large increase in whole ventricular dopamine. After 6 h in the cold, vesicular endogenous noradrenaline content, storage capacity, and DBH activity were decreased. The results suggest that during cold exposure there is an initial increase followed by a decrease in the number of functional vesicles in the nerve terminal, which could explain the fluctuations in the rate of noradrenaline release.  相似文献   

17.
The bovine splenic nerve trunk contins mast cells, ganglion cells, small intensely flurescent (SIF) cells, and varicosities which exhibit a brilliant fluorescence characteristic for noradrenaline (NA) and dopamine (DA) after formaldehyde exposure. All these catecholamine-rich structure could contribute particles to isolated nerve vesicle fractions. Mast cells are recognized ultrastructurally by their large (300–800nm) dense granules. SIF cells may be represented by cells and processes containing dense cored vesicles (120–140 nm) which are larger than the typical vesicles in axons and terminals. Terminal-like areas with typical large dense cored vesicles (LDV, 75 nm) and small dense cored vesicles (SDV, 45–55 nm) probably correspond to the fluorescent varicosities. The LDV constitute about 40% of all vesicle in terminal-like areas and terminals. Their staining properties indicate the presence of protein, phospholipids, and ATP. Tyramine depletes NA without loss of matrix density. The LDV can fuse with the terminal membrane, and released material outside omega profiles is interpreted to depict exocytosis. Large and small vesicles are easily distinguished from the very large mast cell granules and the moderately dense Schwann cell vesicles. Neither appear to contaminate the LDV fractions but the latter may contain a small population of SIF cell vesicles. Golgi vesicles from the Schwann cells mainly occur in the lighter zones of the gradient.  相似文献   

18.
Abstract— Differential and gradient centrifugation revealed that 90 per cent of the 5-HT, dopamine and noradrenaline in the CNS of the fresh water mussel was bound to particles; 60-70 per cent of the bound monoamines appeared in the mitochondrial and 15-20 per cent in the microsomal fraction. Spectrofluorimetric assay and electron microscopic analysis of the subfractions obtained by separation of the mitochondrial fraction on sucrose density gradients showed that the nerve endings and their dense-core vesicles were concentrated in fractions with high relative specific activity of the three monoamines. This supports the proposed function of these monoamines as interneuronal mediators. Osmotic shock treatment resulted in the formation of a synaptosomal subfraction of low density displaying a high relative specific activity for 5-HT. From the results obtained one cannot draw clear-cut conclusions regarding the participation of subcellular particles in the storage of serotonin detectable in the perikarya by means of histochemical methods.  相似文献   

19.
The recycling of synaptic vesicles in nerve terminals is thought to involve clathrin-coated vesicles. However, the properties of nerve terminal coated vesicles have not been characterized. Starting from a preparation of purified nerve terminals obtained from rat brain, we isolated clathrin-coated vesicles by a series of differential and density gradient centrifugation steps. The enrichment of coated vesicles during fractionation was monitored by EM. The final fraction consisted of greater than 90% of coated vesicles, with only negligible contamination by synaptic vesicles. Control experiments revealed that the contribution by coated vesicles derived from the axo-dendritic region or from nonneuronal cells is minimal. The membrane composition of nerve terminal-derived coated vesicles was very similar to that of synaptic vesicles, containing the membrane proteins synaptophysin, synaptotagmin, p29, synaptobrevin and the 116-kD subunit of the vacuolar proton pump, in similar stoichiometric ratios. The small GTP-binding protein rab3A was absent, probably reflecting its dissociation from synaptic vesicles during endocytosis. Immunogold EM revealed that virtually all coated vesicles carried synaptic vesicle proteins, demonstrating that the contribution by coated vesicles derived from other membrane traffic pathways is negligible. Coated vesicles isolated from the whole brain exhibited a similar composition, most of them carrying synaptic vesicle proteins. This indicates that in nervous tissue, coated vesicles function predominantly in the synaptic vesicle pathway. Nerve terminal-derived coated vesicles contained AP-2 adaptor complexes, which is in agreement with their plasmalemmal origin. Furthermore, the neuron-specific coat proteins AP 180 and auxilin, as well as the alpha a1 and alpha c1-adaptins, were enriched in this fraction, suggesting a function for these coat proteins in synaptic vesicle recycling.  相似文献   

20.
Highly purified sympathetic nerve vesicles isolated from bovine splenic nerves were treated by hypo-osmotic shocks, freeze-thawing or incubation in the absence or presence of ATP and MgCl. The vesicle preparations were then studied morphologically by electron microscopy and their content of noradrenaline (NA), and soluble proteins analyzed biochemically with special regard to dopamine beta-hydroxylase (DBH). Hypo-osmotic shocks released about 25 per cent of the NA and protein content and about 8 per cent of the DBH activity. This treatment induced swelling of the vesicles but their membranes remained unruptured and they still contained dense cores. Freeze-thawing released about 35 per cent of the NA, 25 per cent of the proteins and 11 per cent of the DBH. After the latter treatment some matrix material still remained in most vesicles but many were less stainable than the intact vesicles in cold control preparations. During incubation at 30 degrees C in an isotonic sucrose-phosphate medium for 30 min the vesicles released most of their NA and soluble DBH activity as well as much of their matrix density. After incubation at 37 degrees C for 30 min most vesicles appeared translucent. After incubation at 30 degrees C for 30 min in the presence of ATP and MgCl the vesicles lost most of their original NA content but retained their DBH activity and most of their matrix density. The results indicate that there is not always a correlation between NA content and retention of matrix density which suggests that DBH might be a component of a macro-molecular complex responsible for the staining reaction taking place in the maxtrix of NA depleted vesicles. This hypothesis is further supported by the finding of striking similarities between DBH isolated from chromaffin granules and the granular and fibrillar material surrounding the nerve vesicles after depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号