首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomal membranes from growing tissue of pea (Pisum sativum L.) epicotyls were incubated with the substrate UDP-[14C]galactose (Gal) with or without tamarind seed xyloglucan (XG) as a potential galactosyl acceptor. Added tamarind seed XG enhanced incorporation of [14C]Gal into high-molecular-weight products (eluted from columns of Sepharose CL-6B in the void volume) that were trichloroacetic acid-soluble but insoluble in 67% ethanol. These products were hydrolyzed by cellulase to fragments comparable in size to XG subunit oligosaccharides. XG-dependent galactosyltransferase activity could be solubilized, along with XG fucosyltransferase, by the detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate. When this enzyme was incubated with tamarind (Tamarindus indica L.) seed XG or nasturtium (Tropaeolum majus L.) seed XG that had been partially degalactosylated with an XG-specific beta-galactosidase, the rates of Gal transfer increased and fucose transfer decreased compared with controls with native XG. The reaction products were hydrolyzed by cellulase to 14C fragments that were analyzed by gel-filtration and high-performance liquid chromatography fractionation with pulsed amperometric detection. The major components were XG subunits, namely one of the two possible monogalactosyl octasaccharides (-XXLG-) and digalactosyl nonasaccharide (-XLLG-), whether the predominant octasaccharide in the acceptor was XXLG (as in tamarind seed XG) or XLXG (as in nasturtium seed XG). It is concluded that the first xylosylglucose from the reducing end of the subunits was the Gal acceptor locus preferred by the solubilized pea transferase. These observations are incorporated into a model for the biosynthesis of cell wall XGs.  相似文献   

2.
Fucosylation of exogenous xyloglucans by pea microsomal membranes   总被引:1,自引:0,他引:1  
Microsomal membrane preparations from growing regions of etiolated pea stems catalyzed the transfer of [14C]fucosyl units from GDP-[U-14C]-L-fucose into exogenously added xyloglucan acceptors, as well as into endogenous xyloglucan. The transfer was more effective using nonfucosylated tamarind seed xyloglucan than with pea wall xyloglucan in which almost all galactose units are already fucosylated. Hydrolysis of products by endo-1,4-beta-D-glucanase yielded in each case radioactive nonasaccharide as the main fucosylated product. UDP-galactose enhanced the fucosylation of endogenous primer but it had little effect on fucosyl transfer to exogenously added xyloglucans. Low-molecular-weight nonfucosylated oligosaccharide fragments up to the octasaccharide Glc4Xyl3Gal (obtained by endoglucanase action on tamarind seed xyloglucan) were ineffectual as fucosyl acceptors but inhibited the fucosylation of endogenous as well as of added xyloglucan. With octasaccharide, the inhibition was competitive in relation to the xyloglucan acceptor (Ki = 70 microM) and noncompetitive in relation to the donor GDP-fucose (Ki = 210 microM). It is concluded that fucosyltransferase acts independently and in a noncoordinated manner from other glycosyltransferases that are required to synthesize xyloglucan. Its active site recognizes a fragment longer than the galactosylated octasaccharide unit before transfucosylation will ensue.  相似文献   

3.
Oligosaccharide subunits were prepared from xyloglucan (XG) by partial hydrolysis with cellulase and added back at micro- to millimolar concentrations to XG in the presence of nasturtium seed xyloglucanase (XG-ase). The oligosaccharides (0.2 mM) stimulated the capacity of this XG-ase to reduce the viscosity of XG solutions by 10- to 20-fold. Purification and fractionation of seed XG-ase activity by gel permeation fast protein liquid chromatography produced a single peak that was much more active in the presence than absence of added XG oligosaccharide. [14C]Fucose-labeled XG nonasaccharide was synthesized by pea fucosyltransferase and shown to be incorporated into polymeric XG in the presence of seed XG-ase without the net production of new reducing chain ends, even while the loss of XG viscosity and XG depolymerization were enhanced. It is concluded that in vitro seed XG-ase can transfer cleavage products of XG to XG oligosaccharides via endotransglycosylation reactions, thereby reducing XG M(r) without hydrolysis. Since this is the only XG-cleaving enzyme that develops in nasturtium seeds during germination, it may be that its transglycosylase and hydrolase capacities are both necessary to account for the rapid and complete depolymerization of XG that takes place.  相似文献   

4.
Young, developing fruits of nasturtium (Tropaeolum majus L.) accumulate large deposits of nonfucosylated xyloglucan (XG) in periplasmic spaces of cotyledon cells. This “storage” XG can be fucosylated by a nasturtium transferase in vitro, but this does not happen in vivo, even as a transitory signal for secretion. The only XG that is clearly fucosylated in these fruits is the structural fraction (approximately 1% total) that is bound to cellulose in growing primary walls. The two fucosylated subunits that are formed in vitro are identical to those found in structural XG in vivo. The yield of XG-fucosyltransferase activity from membrane fractions is highest per unit fresh weight in the youngest fruits, especially in dissected cotyledons, but declines when storage XG is forming. A block appears to develop in the secretory machinery of young cotyledon cells between sites that galactosylate and those that fucosylate nascent XG. After extensive galactosylation, XG traffic is diverted to the periplasm without fucosylation. The primary walls buried beneath accretions of storage XG eventually swell and lose cohesion, probably because they continue to extend without incorporating components such as fucosylated XG that are needed to maintain wall integrity.  相似文献   

5.
GDP-fucose:xyloglucan (XG) fucosyltransferase from growing Pisum epicotyl tissue was solubilized in detergent and used to examine the capacity of intact XG from Tamarindus seeds, and its partial hydrolysis products, to act as fucose acceptors with GDP-[14C]fucose as donor. Native seed XG (Mr greater than 10(6) Da) was partially depolymerized by incubation with Trichoderma cellulase for various periods of time. Cellulase was inactivated and reaction mixtures were incubated with GDP-[14C]fucose plus solubilized pea fucosyltransferase and then fractionated on columns of Sepharose CL-6B or Bio-Gel P4. Specific activities (Bq/microgram carbohydrate) of fragments with Mr ranging from 10(6) to 10(4) Da were constant throughout the size ranges, indicating that all stretches of the XG chains were available for fucosylation. More complete cellulase hydrolysis yielded subunit oligosaccharides that chromatographed in a cluster of hepta-, octa-, and nonasaccharides, none of which acted as fucosyl acceptors when incubated with pea fucosyltransferase. However, a substantial amount (up to half of hydrolysate) of larger transient oligosaccharides was also formed with a size equivalent to three of the oligosaccharide subunits. Octasaccharide subunits in this trimer were readily fucosylated. This fucosyltransfer was inhibited by uncombined (free) subunit oligosaccharides, which implies that the latter could bind to the transferase and displace at least part of the trimer, even though they could not themselves be fucosylated. Reduction of the trimer oligosaccharide with NaB3H4, followed by further hydrolysis with cellulase, resulted in tritiated nonasaccharide and unlabeled octasaccharide in a concentration ratio of 1:2. The tamarind XG trimer which accepts fucose is therefore composed mainly of the subunit sequence: octa-octa-nonasaccharide (reducing). One of the terminal oligosaccharide subunits in this trimer, probably the nonasaccharide, appears to be required as a recognition (binding) site in fucosyltransferase in order for adjacent octasaccharide(s) to be fucosylated by the active (catalytic) enzyme site.  相似文献   

6.
A xyloglucan-specific endo-1,4-[beta]-glucanase was isolated from the apoplast fraction of auxin-treated pea (Pisum sativum) stems, in which both the rate of stem elongation and the amount of xyloglucan solubilized were high. The enzyme was purified to apparent homogeneity by sequential cation-exchange chromatographies, affinity chromatography, and gel filtration. The purified enzyme gave a single protein band on sodium dodecyi sulfate-polyacrylamide gel electrophoresis, and the molecular size was determined to be 77 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 70 kD by gel filtration. The isoelectric point was about 8.1. The enzyme specifically cleaved the 1,4-[beta]-glucosyl linkages of the xyloglucan backbone to yield mainly nona- and heptasaccharides but did not hydrolyze carboxymethylcellulose, swollen cellulose, and (1->3, 1->4)-[beta]-glucan. By hydrolysis, the average molecular size of xyloglucan was decreased from 50 to 20 kD with new reducing chain ends in the lower molecular size fractions. This suggests that the enzyme has endo-1,4-[beta]-glucanase activity against xyloglucan. In conclusion, a xyloglucan-specific endo-1,4-[beta]-glucanase with an activity that differs from the activities of cellulase and xyloglucan endotransglycosylase has been isolated from elongating pea stems.  相似文献   

7.
Cross-links between cellulose microfibrils and xyloglucan (XG) molecules play a major role in defining the structural properties of plant cell walls and the regulation of growth and development of dicotyledonous plants. How these cross-links are established and how they are regulated has yet to be determined. In a previous study, preliminary data were presented which suggested that the different sidechains of XG may play a role in controlling cellulose microfibril-XG interactions. In this study, this question is addressed directly by analyzing to what extent the different sidechains of pea cell wall XG and nasturtium seed storage XG affect their binding to cellulose microfibrils. Of particular importance to this study are the chemical data indicating that pea XG possesses a trisaccharide sidechain, which is not found in nasturtium XG. To this end, conformational dynamic simulations have been used to predict whether oligosaccharides representative of pea and nasturtium XG can adopt a hypothesized cellulose-binding conformation and which of these XGs exhibits a preferential ability to bind cellulose. Extensive analysis of the conformational forms populated during 300 K and high-temperature Monte Carlo simulations established that a planar, sterically accessible, glucan backbone is essential for optimal cellulose-binding. For the trisaccharide sidechain-containing oligosaccharide as found in pea XG, sidechain orientation appeared to regulate the gradual acquisition of this hypothesized cellulose binding conformation. Thus, conformational forms were identified that included the twisted backbone (non-planar) putative solution form of XG, forms in which the trisaccharide sidechain orientation enables increased backbone planarity and steric accessibility, and finally a planar, sterically accessible, backbone. By applying these conformational requirements for cellulose binding, it has been determined that pea XG possesses a two- to threefold occurrence of the cellulose binding conformation than nasturtium XG. Based on this finding, it was predicted that pea XG would bind to cellulose at a higher rate than nasturtium XG. In vitro binding assays showed that pea XG-avicel binding does indeed occur at a twofold higher rate than nasturtium XG-avicel binding. The enhanced ability of pea cell wall XG over nasturtium seed storage XG to associate with cellulose is consistent with a structural role of the former during epicotyl growth where efficient association with cellulose is a requirement. In contrast, the relatively low ability of nasturtium XG to bind cellulose is consistent with the need to enhance the accessibility of this polymer to glycanases during germination. These findings suggest potential roles for XG sidechain substitution, enabling XG to function in a variety of different biological contexts.  相似文献   

8.
Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-[14C] fucose and UDP-[14C]xylose to xyloglucan occurred mainly in dictyosomeenriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with [3H]fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles.  相似文献   

9.
Xyloglucan endotransglycosylase (XET) catalyzes the cleavage of xyloglucan (XG) molecules by a transglycosylation mechanism involving two steps: (a) endocleavage of the beta-(1,4)-linked polyglucosyl backbone of the xyloglucan molecule with formation of a glycosyl-enzyme intermediate; (b) transfer of the glycosyl residue from the intermediate to the C-4 position of the nonreducing end glucosyl unit of another molecule of XG or an XG-derived oligosaccharide with liberation of the enzyme (Z. Sulová et al., 1998, Biochem. J. 330, 1475-1480). The formation of a relatively stable active complex of XET with XG and the tendency of xyloglucan to bind tightly via hydrogen bonds to cellulose were exploited in the present method of purification of XET. Crude extracts from nasturtium (Tropaeolum majus) cotyledons and other plant sources containing the enzyme were mixed with XG in order to form the XET:XG complex, which was applied onto cellulose. Unadsorbed proteins were removed by washing and the XET was released from the adsorbed XET:XG complex by transglycosylation of its glycosyl moiety to added XG-derived oligosaccharides. The described procedure resulted in an over 100-fold increase in specific activity of XET in a single step. Further purification of the enzyme to homogeneity was achieved by gel-permeation chromatography on Bio-Gel P30. Similar procedure could be used for purification of XET from other plant sources, such as lentil (Lens culinaris) seeds, pea (Pisum sativum) epicotyls, and supernatant of suspension-cultured Catharanthus roseus cells.  相似文献   

10.
Are Polyamines Transported in Etiolated Peas?   总被引:1,自引:0,他引:1       下载免费PDF全文
To investigate the possible transport of polyamines and their precursor amino acids, 14C-labeled putrescine, spermidine, arginine, or lysine were injected into cotyledons of 4-day etiolated pea (Pisum sativum L. cv Alaska) seedlings. After 4 hours the shoot, root, and cotyledons were homogenized and the extracted, dansylated polyamines separated by thin-layer chromatography. Little radioactivity was transported from the cotyledons when [14C]putrescine or [14C]spermidine were injected and of the radioactivity in the axis, none could be recovered as polyamines. Injection of [14C]arginine or [14C]lysine, on the other hand, led to a significant transport of radioactivity into the axis, of which a large fraction was present in the form of the diamines, putrescine or cadaverine, respectively. These results indicate that polyamines in the growing regions of etiolated pea seedlings probably arise from transport and conversion of amino acid precursors.  相似文献   

11.
GDP-fucose:xyloglucan 1,2-alpha-L-fucosyltransferase from pea (Pisum sativum) epicotyl microsomal membranes was readily solubilized by extraction with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps). When using GDP-[14C]fucose as fucosyl donor and tamarind xyloglucan (XG) as acceptor, maximum activation was observed at 0.3% (w/v) Chaps and the highest yield of solubilized activity at 0.4%. The reaction product was hydrolyzed by Trichoderma cellulase to yield labeled oligosaccharides that peaked on gel permeation chromatography at the same elution volume as pea XG nona- and decasaccharide subunits. The apparent Km for fucosyl transfer to tamarind XG by the membrane-bound or solubilized enzyme was about 80 microM GDP-fucose. This was 10 times the apparent Km for fucosyl transfer to endogenous pea nascent XG. Optimum activity was between pH 6 and 7, and the isoelectric point was close to pH 4.8. The solubilized enzyme showed no requirement for, or stimulation by, added cations or phospholipids, and was stable for several months at -70 degrees C. Solubilization and gel permeation chromatography on columns of Sepharose CL-6B enriched the specific activity of the enzyme by about 20-fold relative to microsomes. Activity fractionated on columns of CL-6B with an apparent molecular weight of 150 kDa. The solubilized fucosyltransferase was electrophoresed on nondenaturing polyacrylamide slab gels containing 0.02% (w/v) tamarind XG, and its activity located by incubation in GDP-[14C]fucose, washing, and autoradiographing the gel. A single band of labeled reaction product appeared with an apparent molecular weight of 150 kDa.  相似文献   

12.
A gene (EGL2) encoding an endo-1,4-beta-glucanase in peas has been cloned as a homologue of EGL1. EGL2 encodes a polypeptide of 506 amino acids, including a 24-mer putative signal polypeptide. The gene product contains a domain conserved in endo-1,4-beta-glucanase (family 9) showing 60% amino acid identity to EGL1. EGL2 mRNA was accumulated only in the elongating regions of pea stems, although EGL1 mRNA was abundant in both elongating and non-elongating tissues. However, the level of EGL2 mRNA was not increased by the treatment with sucrose and auxin in pea segments. These results suggest that the expression of EGL2 either requires the presence of other factors related to the auxin effect or occurs independent of auxin in the elongating pea stems.  相似文献   

13.
14.
In ripening fruits of tomato (Lycopersicon esculentum L. var 83-G-38), the amounts of cellulose and xyloglucan (XG) remained constant during tissue softening, but the relative molecular weight (Mr) of XG decreased markedly and the Mr of cellulose declined slightly. These changes could have been due to activities of non-specific endo-1,4-[beta]-glucanases and/or buffer-soluble XG endo-transglycosylase, both of which increased when tissue firmness declined most rapidly. Tomato extracts also reduced the viscosity of XG solutions, especially in the presence of added XG oligosac-charides. This depolymerizing (XGase) capacity differed from [beta]-glucanase and XG transglycosylase activity (a) by being almost entirely buffer insoluble, and (b) by declining precipitously during fruit softening. Although it disappeared from ripe fruit, XGase may have functioned in promoting wall loosening at earlier stages of fruit development when its activity was highest. By contrast, during aging of fruit in the ripening-inhibited mutant rin there was no change in Mr of XG or cellulose, and activities of [beta]-glucanases and XG transglycosylase were lower than in wild-type tomato. Nevertheless, some softening of the fruit did take place over time and XG amounts declined, possibly because high XGase activity was maintained in the mutant, unlike in wild-type fruit.  相似文献   

15.
Rapid mobilisation of storage products, including xyloglucan, in cotyledons of germinating nasturtium (Tropaeolum majus L.) normally starts about 7–8 d after imbibition and growth of the seedling at 20–25° C. Levels of activity of endo-1,4--glucanase (EC 3.2.1.4) in cotyledons, as assayed viscometrically with xyloglucan as substrate, varied in parallel with the rate of breakdown of xyloglucan. When cotyledons were excised from the seedling axis and incubated on moist filter paper at any point before 7 d, the catabolic reactions which normally occurred in the intact seedling were suspended. If, however, cotyledons excised at 8 d were incubated in 10–6 M 2,4-dichlorophenoxyacetic acid, a rise in endo-1,4--glucanase (xyloglucanase) activity was observed and a sharp decrease in fresh and dry weight as well as xyloglucan levels ensued at rates comparable to those observed in cotyledons attached to the seedling. Neither gibberellin nor kinetin treatments promoted xyloglucan breakdown or enhanced xyloglucanase activity. Addition of auxin to excised cotyledons before 7 d did not evoke premature breakdown, indicating that the tissue became receptive to auxin only at this time. The triggering process took place in darkness and was unaffected by various light-dark cycles. It is concluded that the sudden degradation of xyloglucan which occurs in nasturtium seeds about a week after germination begins is the result of enhanced activity of a depolymerizing xyloglucanase, this activity being evoked by auxin originating in the emerging seedling axis.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,3-D 2,3-dichlorophenoxyacetic acid - GA3 gibberellic acid - kDa kilodalton The authors are pleased to acknowledge the technical assistance of Alexander Marcus and valuable discussions with Dr. Vladimir Farkas. This study was supported by a scholarship to A.H. from the Deutsche Forschungsgemeinschaft (FRG) and a grant to G.M. from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

16.
During the storage phase, cotyledons of developing pea seeds are nourished by nutrients released to the seed apoplasm by their maternal seed coats. Sucrose is transported into pea cotyledons by sucrose/H+ symport mediated by PsSUT1 and possibly other sucrose symporters. PsSUT1 is principally localised to plasma membranes of cotyledon epidermal and subepidermal transfer cells abutting the seed coat. We tested the hypothesis that endogenous sucrose/H+ symporter(s) regulate sucrose import into developing pea cotyledons. This was done by supplementing their transport activity with a potato sucrose symporter (StSUT1), selectively expressed in cotyledon storage parenchyma cells under control of a vicilin promoter. In segregating transgenic lines, enhanced [(14)C]sucrose influx into cotyledons above wild-type levels was found to be dependent on StSUT1 expression. The transgene significantly increased (approximately 2-fold) transport activity of cotyledon storage parenchyma tissues where it was selectively expressed. In contrast, sucrose influx into whole cotyledons through the endogenous epidermal transfer cell pathway was increased by only 23% in cotyledons expressing the transgene. A similar response was found for rates of biomass gain by intact cotyledons and by excised cotyledons cultured on a sucrose medium. These observations demonstrate that transport activities of sucrose symporters influence cotyledon growth rates. The attenuated effect of StSUT1 overexpression on sucrose and dry matter fluxes by whole cotyledons is consistent with a large proportion of sucrose being taken up at the cotyledonary surface. This indicates that the cellular location of sucrose transporter activity plays a key role in determining rates of sucrose import into cotyledons.  相似文献   

17.
【目的】在毕赤酵母中表达特异腐质霉Humicola insolens的中性内切葡聚糖酶Ⅱ,并对其性质加以研究。【方法】利用RT-PCR的方法,以特异腐质霉(Humicola insolens)NC3总RNA为模板,克隆到中性内切葡聚糖酶Ⅱ基因(egⅡ)的cDNA。将其插入表达载体pPIC9K,重组质粒经线性化后电击转化毕赤酵母(Pichia pastoris)菌株GS115。【结果】SDS-PAGE和酶活的检测结果均表明:egⅡ基因在毕赤酵母中成功表达。重组酶的部分酶学性质研究表明,该酶的最适反应温度为70°C,且在65°C以下具有较好的热稳定性。最适反应pH为6.5,在pH 6.0?7.0之间有较好的稳定性。【结论】用重组毕赤酵母可高效表达外源中性内切葡聚糖酶,为其今后在工业应用奠定了基础。  相似文献   

18.
A gene (EGL2) encoding an endo-1,4-β-glucanase in peas has been cloned as a homologue of EGL1. EGL2 encodes a polypeptide of 506 amino acids, including a 24-mer putative signal polypeptide. The gene product contains a domain conserved in endo-1,4-β-glucanase (family 9) showing 60% amino acid identity to EGL1. EGL2 mRNA was accumulated only in the elongating regions of pea stems, although EGL1 mRNA was abundant in both elongating and non-elongating tissues. However, the level of EGL2 mRNA was not increased by the treatment with sucrose and auxin in pea segments. These results suggest that the expression of EGL2 either requires the presence of other factors related to the auxin effect or occurs independent of auxin in the elongating pea stems.  相似文献   

19.
Geshi N  Jørgensen B  Scheller HV  Ulvskov P 《Planta》2000,210(4):622-629
 The biosynthesis of galactan was investigated using microsomal membranes isolated from suspension-cultured cells of potato (Solanum tuberosum L. var. AZY). Incubation of the microsomal membranes in the presence of UDP-[14C]galactose resulted in a radioactive product insoluble in 70% methanol. The product released only [14C]galactose upon acid hydrolysis. Treatment of the product with Aspergillus niger endo-1,4-β-galactanase released 65–70% of the radioactivity to a 70%-methanol-soluble fraction. To a minor extent, [14C]galactose was also incorporated into proteins, however these galactoproteins were not a substrate for Aspergillus niger endo-1,4-β-galactanase. Thus, the majority of the 14C-labelled product was 1,4-β-galactan. Compounds released by the endo-1,4-β-galactanase treatment were mainly [14C]galactose and [14C]galactobiose, indicating that the synthesized 1,4-β-galactan was longer than a trimer. In vitro synthesis of 1,4-β-galactan was most active with 6-d-old cells, which are in the middle of the linear growth phase. The optimal synthesis occurred at pH 6.0 in the presence of 7.5 mM Mn2+. Aspergillus aculeatus rhamnogalacturonase A digested at least 50% of the labelled product to smaller fragments of approx. 14 kDa, suggesting that the synthesized [14C]galactan was attached to the endogenous rhamnogalacturonan I. When rhamnogalacturonase A digests of the labelled product were subsequently treated with endo-1,4-β-galactanase, radioactivity was not only found as [14C]galactose or [14C]galactobiose but also as larger fragments. The larger fragments were likely the [14C]galactose or [14C]galactobiose still attached to the rhamnogalacturonan backbone since treatment with β-galactosidase together with endo-1,4-β-galactanase digested all radioactivity to the fraction eluting as [14C]galactose. The data indicate that the majority of the [14C]galactan was attached directly to the rhamnose residues in rhamnogalacturonan I. Thus, isolated microsomal membranes contain enzyme activities to both initiate and elongate 1,4-β-galactan sidechains in the endogenous pectic rhamnogalacturonan I. Received: 24 June 1999 / Accepted: 30 August 1999  相似文献   

20.
In this study, we investigated seed and auxin regulation of gibberellin (GA) biosynthesis in pea (Pisum sativum L.) pericarp tissue in situ, specifically the conversion of [14C]GA19 to [14C]GA20. [14C]GA19 metabolism was monitored in pericarp with seeds, deseeded pericarp, and deseeded pericarp treated with 4-chloroindole-3-acetic acid (4-CI-IAA). Pericarp with seeds and deseeded pericarp treated with 4-CI-IAA continued to convert [14C]GA19 to [14C]GA20 throughout the incubation period (2-24 h). However, seed removal resulted in minimal or no accumulation of [14C]GA20 in pericarp tissue. [14C]GA29 was also identified as a product of [14C]GA19 metabolism in pea pericarp. The ratio of [14C]GA29 to [14C]GA20 was significantly higher in deseeded pericarp (with or without exogenous 4-CI-IAA) than in pericarp with seeds. Therefore, conversion of [14C]GA20 to [14C]GA29 may also be seed regulated in pea fruit. These data support the hypothesis that the conversion of GA19 to GA20 in pea pericarp is seed regulated and that the auxin 4-CI-IAA can substitute for the seeds in the stimulation of pericarp growth and the conversion of GA19 to GA20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号