首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesize that training results in a faster and greater repletion of glycogen in skeletal muscles of normal and diabetic rats. Normal male Sprague-Dawley rats (100-140 g) were divided into two groups--one to train by treadmill running for 10 wk and the other to remain sedentary. Forty-eight hours after the last training session the rats of both groups were exercised to exhaustion. One subgroup of each was fed oral glucose (3 g/kg) at exhaustion and killed 60 min later. The other was killed at exhaustion. The glycogen concentration of soleus, plantaris, and red and white gastrocnemius was determined in all rats. The trained group had higher glycogen levels after glucose feeding in all muscles (P less than 0.002) and repleted their muscle glycogen more rapidly (P less than 0.05). However, in diabetic rats (45 mg streptozotocin/kg body wt) the trained and sedentary rats have similar glycogen levels and glycogen repletion rates in all muscles. Compared with the normal trained rats, the diabetic trained rats had slower glycogen repletion rates (P less than 0.05).  相似文献   

2.
3.
The effects of 8 weeks of bicycle endurance training (5 X /week for 30 min) on maximal oxygen uptake capacity (VO2max) during arm and leg ergometry, and on the ultrastructure of an untrained arm muscle (m. deltoideus), and a trained leg muscle (m. vastus lateralis) were studied. With the training, leg-VO2max for bicycling increased by +13%, while the capillary per fiber ratio and the volume density of mitochondria in m. vastus lateralis increased by +15% and +40%, respectively. In contrast, the untrained m. deltoideus showed an unchanged capillary per fiber ratio and a decreased mitochondrial volume density (-17%). Despite this decrease of mitochondrial volume arm-VO2max increased by +9%. It seems unlikely that the observed discrepancy can be explained by cardiovascular adaptations, since arm cranking did not fully tax the cardiovascular system (arm-VO2max/leg-VO2max: 0.74 and 0.71 before and after training, respectively). Thus neither cardiovascular adaptations nor local structural changes in the untrained muscles could explain the increased arm-VO2max. However, the enhanced capacity for lactate clearance after endurance training could be sufficient to account for the larger VO2max during arm cranking. We propose that an increased net oxidation of lactate might be responsible for the increased arm-VO2max found after bicycle endurance training.  相似文献   

4.
5.
The effect of very long endurance exercise on muscle carnitine was studied. Eighteen cross-country skiers took part in a race in the Alps (average inspired partial pressure of O2 100-110 Torr) that lasted on average 13 h 26 min. Carnitine intake, evaluated for 2 wk before the event, was 50 +/- 4 (SE) mg/day. Muscle (vastus lateralis) total carnitine concentration, measured twice with a 2-yr interval on eight rested subjects, did not change with time (17 vs. 16 mumol/g dry wt, NS) but showed consistent interindividual differences (range 12-22, P = 0.001) with no correlation with intake. After exercise, total muscle carnitine was unaltered (from 17.9 +/- 1.0 at rest to 18.3 +/- 0.8 mumol/g dry wt postexercise in the 15 subjects who completed the race, NS), but muscle free carnitine decreased 20% (from 14.9 +/- 0.8 mumol/g, P = 0.01) and short-chain acylcarnitine increased 108% (from 3.5 +/- 0.4 mumol/g, P = 0.01). These results suggest that carnitine deficiency will probably not result from strenuous aerobic exercise in trained subjects who consume a moderate amount of carnitine in their food.  相似文献   

6.
The purpose of this investigation was to determine whether endurance exercise training increases the ability of human skeletal muscle to accumulate glycogen after exercise. Subjects (4 women and 2 men, 31 +/- 8 yr old) performed high-intensity stationary cycling 3 days/wk and continuous running 3 days/wk for 10 wk. Muscle glycogen concentration was measured after a glycogen-depleting exercise bout before and after endurance training. Muscle glycogen accumulation rate from 15 min to 6 h after exercise was twofold higher (P < 0.05) in the trained than in the untrained state: 10.5 +/- 0.2 and 4.5 +/- 1.3 mmol. kg wet wt(-1). h(-1), respectively. Muscle glycogen concentration was higher (P < 0.05) in the trained than in the untrained state at 15 min, 6 h, and 48 h after exercise. Muscle GLUT-4 content after exercise was twofold higher (P < 0.05) in the trained than in the untrained state (10.7 +/- 1.2 and 4.7 +/- 0.7 optical density units, respectively) and was correlated with muscle glycogen concentration 6 h after exercise (r = 0.64, P < 0.05). Total glycogen synthase activity and the percentage of glycogen synthase I were not significantly different before and after training at 15 min, 6 h, and 48 h after exercise. We conclude that endurance exercise training enhances the capacity of human skeletal muscle to accumulate glycogen after glycogen-depleting exercise.  相似文献   

7.
8.
Metabolic changes following eccentric exercise in trained and untrained men   总被引:10,自引:0,他引:10  
The effects of one 45-min bout of high-intensity eccentric exercise (250 W) were studied in four male runners and five untrained men. Plasma creatine kinase (CK) activity in these runners was higher (P less than 0.001) than in the untrained men before exercise and peaked at 207 IU/ml 1 day after exercise, whereas in untrained men the maximum was 2,143 IU/ml 5 days after exercise. Plasma interleukin-1 (IL-1) in the trained men was also higher (P less than 0.001) than in the untrained men before exercise but did not significantly increase after exercise. In the untrained men, IL-1 was significantly elevated 3 h after exercise (P less than 0.001). In the untrained group only, 24-h urines were collected before and after exercise while the men consumed a meat-free diet. Urinary 3-methylhistidine/creatinine in the untrained group rose significantly from 127 mumol/g before exercise to 180 mumol/g 10 days after exercise. The results suggest that in untrained men eccentric exercise leads to a metabolic response indicative of delayed muscle damage. Regularly performed long distance running was associated with chronically elevated plasma IL-1 levels and serum CK activities without acute increases after an eccentric exercise bout.  相似文献   

9.
10.
The aim of this study was to investigate hypothalamic-pituitary-adrenal (HPAA) and -gonadal (HPGA) axis responses to post-exercise (30 min at 65% O2max) combined corticotrophin, luteinizing hormone and thyrotrophin releasing hormone challenge (0.7 μg/kg body mass) in elderly distance runners (DR; age: 68.9 ± 4.2 year) and sedentary individuals (SI; age: 69.1 ± 2.6 year). Plasma cortisol, growth hormone, prolactin, luteinizing hormone, follicle stimulating hormone and total testosterone (T) concentrations pre- and post-exercise as well as in response to stimulation did not differ between DR and SI. Plasma adrenocorticotropic hormone returned to pre-exercise level in DR 60 min and in SI 90 min post-stimulation. Free T was lower in DR at all time points. Our results do not support the notion of altered releasing hormone-stimulable HPAA and HPGA synthesis-secretion capacity in elderly males after endurance training. Accepted: 18 November 1997  相似文献   

11.
12.
We examined the effect of differences in exercise intensity on the time constant (t c) of phosphocreatine (PCr) resynthesis after exercise and the relationships betweent c and maximal oxygen uptake (VO2max) in endurance-trained runners (n = 5) and untrained controls (n = 7) (average VO2max = 66.2 and 52.0 ml · min–1 · kg–1, respectively). To measure the metabolism of the quadriceps muscle using phosphorus nuclear magnetic resonance spectroscopy, we developed a device which allowed knee extension exercise inside a magnet. All the subjects performed four types of exercise: light, moderate, severe and exhausting. The end-exercise PCr: [PCr + inorganic phosphate (Pi)] ratio decreased significantly with the increase in the exercise intensity (P < 0.01). Although there was little difference in the end-exercise pH, adenosine diphosphate concentration ([ADP]) and the lowest intracellular pH during recovery between light and moderate exercise, significant changes were found at the two higher intensities (P < 0.01). These changes for runners were smaller than those for the controls (P < 0.05). The c remained constant after light and moderate exercise and then lengthened in proportion to the increase in intensity (P < 0.05). The runners had a lowert c at the same PCr and pH than the controls, particularly at the higher intensity (P < 0.05). There was a significant correlation betweent c and [ADP] in light exercise and betweent c and both end-exercise PCr and pH in severe and exhausting exercise (P < 0.05). The threshold of changes in pH andt c was a PCr: (PCr + Pi) ratio of 0.5. There was a significant negative correlation between the VO2max andt c after all levels of exercise (P<0.05).However, in the controls a significant correlation was found in only light and moderate exercise (P < 0.05). These findings suggest the validity of the use oft c at an end-exercise PCr:(PCr + Pi) ratio of more than 0.5 as a stable index of muscle oxidative capacity and the correlation between local and general aerobic capacity. Moreover, endurance-trained runners are characterized by the faster PCr resynthesis at the same PCr and intracellular pH.  相似文献   

13.
The present investigation was undertaken to examine the relationship between plasma potassium (K+) and ventilation (VE) during incremental exercise. Blood lactate (La-) was also measured, and its relationship with VE was similarly examined. Eight endurance-trained triathletes (ET) and eight active but untrained men (UT) performed an incremental cycling test to volitional fatigue. Maximal oxygen uptake (VO2max) and oxygen uptake (VO2) at lactate threshold (LT) were higher (P < 0.05) in ET (VO2max 4.60 +/- 0.10 l/min, LT 2.77 +/- 0.85 l/min) than in UT (VO2max 3.79 +/- 0.11 l/min, LT 1.94 +/- 0.60 l/min). There were significant (P < 0.05) correlations between VE and K+ (UT 0.87, ET 0.77) and between VE and La- (UT 0.88, ET 0.85). In ET compared with UT, VE was lower (P < 0.05) at 330 W, K+ was lower at 300 and 330 W, and La- was lower at all work loads > 90 W. These results suggest that K+ may make an important contribution to the regulation of ventilation during incremental exercise and that endurance training attenuates the K+ response to that exercise.  相似文献   

14.
This study examined the time course of glycogen accumulation in skeletal muscle depleted by concentric work and subsequently subjected to eccentric exercise. Eight men exercised to exhaustion on a cycle ergometer [70% of maximal O2 consumption (VO2max)] and were placed on a carbohydrate-restricted diet. Approximately 12 h later they exercised one leg to subjective failure by repeated eccentric action of the knee extensors against a resistance equal to 120% of their one-repetition maximum concentric knee extension force (ECC leg). The contralateral leg was not exercised and served as a control (CON leg). During the 72-h recovery period, subjects consumed 7 g carbohydrate.kg body wt-1.day-1. Moderate soreness was experienced in the ECC leg 24-72 h after eccentric exercise. Muscle biopsies from the vastus lateralis of the ECC and CON legs revealed similar glycogen levels immediately after eccentric exercise (40.2 +/- 5.2 and 47.6 +/- 6.4 mmol/kg wet wt, respectively; P greater than 0.05). There was no difference in the glycogen content of ECC and CON legs after 6 h of recovery (77.7 +/- 7.9 and 85.1 +/- 4.9 mmol/kg wet wt, respectively; P greater than 0.05), but 18 h later, the ECC leg contained 15% less glycogen than the CON leg (90.2 +/- 8.2 vs. 105.8 +/- 8.9 mmol/kg wet wt; P less than 0.05). After 72 h of recovery, this difference had increased to 24% (115.8 +/- 8.0 vs. 153.0 +/- 12.2 mmol/kg wet wt; P less than 0.05). These data confirm that glycogen accumulation is impaired in eccentrically exercised muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Changes in the testosterone concentrations after single sessions of endurance and strength training were measured in seven well trained men, experienced in both forms of training. Both training sessions were rated as hard to very hard on the Borg scale. Blood samples for testosterone measurements were taken before, immediately after, and 2, 4 and 6 h after the training sessions as well as the next morning. The mean testosterone concentration increased 27% (P less than 0.02) and 37% (P less than 0.02) during the strength and endurance training session, respectively. Two hours after the training sessions the mean testosterone concentration had returned to the pre-training level and remained at that level for the length of the observation period. There were no significant differences in the changes in testosterone concentration after strength and endurance training but there were large differences in the testosterone response at the level of the individual. A high correlation (r = 0.98; P less than 0.001) for individuals was found between increases in testosterone concentration after strength and after endurance training. It was concluded that the changes in mean testosterone values followed the same timecourse after single sessions of strength and endurance training of the same duration and perceived exertion. The interindividual differences in testosterone response may be of importance for individual adaptation to training.  相似文献   

16.
Tissue samples were obtained from vastus lateralis and deltoid muscles of physical education students (n = 12), Greco-Roman wrestlers (n = 8), flat-water kayakers (n = 9), middle- and long-distance runners (n = 9), and olympic weight and power lifters (n = 7). Histochemical stainings for myofibrillar adenosinetriphosphatase and NADH-tetrazolium reductase were applied to assess the relative distribution of fast-twitch and slow-twitch (ST) muscle fiber types and fiber size. The %ST was not different in the vastus (mean SD 48 +/- 14) and deltoid (56 +/- 13) muscles. The %ST was higher (P less than 0.001), however, in the deltoid compared with vastus muscle of kayakers. This pattern was reversed in runners (P less than 0.001). The %ST of the vastus was higher (P less than 0.001) in runners than in any of the other groups. The %ST of the deltoid muscle was higher in kayakers than in students, runners (P less than 0.001), and lifters (P less than 0.05). The mean fiber area and the area of ST fibers were greater (P less than 0.01) in the vastus than the deltoid muscle. Our data show a difference in fiber type distribution between the trained and nontrained muscles of endurance athletes. This pattern may reflect the adaptive response to long-term endurance training.  相似文献   

17.
The effects of carbohydrate and fat intake on exercise-induced fatigue was investigated in 30 untrained--(VO2max of 40.6 +/- 2.7 ml X kg-1 X min-1) and 24 trained-subjects (VO2max of 52.3 +/- 2.7 ml X kg-1 X min-1) performing a 34 km march with a 25 kg backpack. Marching time was 8 1/2 h and 6 1/3 h in the untrained and trained-subjects respectively. The subjects were divided into 3 dietary groups. One group had free access to sugar cubes, the second group was offered almonds and the third one served as a control. Triglyceride levels decreased by 65 mg X dl-1 in untrained, and by 115 mg X dl-1 in trained subjects, while blood glucose remained at normal levels. In the untrained subjects, ingestion of almonds delayed the subjective sensation of exhaustion, while 50% of the controls and the sugar consuming subjects complained of exhaustion. The data suggest that ingestion of food containing fat delays exercise induced exhaustion or fatigue to a greater extent than does carbohydrate ingestion.  相似文献   

18.
The kinetics underlying plasma epinephrine concentrations were studied. Six athletes (T) and six sedentary males (C) were given intravenous infusions of 3H-labeled epinephrine, after which arterial blood was drawn. They rested sitting and bicycled continuously to exhaustion (60 min at 125 W, 60 min at 160 W, 40 min at 200 W, and 240 W to the end). Work time was 154 +/- 13 (SE) (T) and 75 +/- 6 (C) min. At rest, epinephrine clearance was identical [28.4 +/- 1.3 (T) vs. 29.2 +/- 1.8 (C) ml . kg-1 . min-1], but plasma concentration [1.42 +/- 0.27 (T) vs. 0.71 +/- 0.16 (C) nmol . l-1] and, accordingly, secretion [2.9 +/- 0.7 vs. 1.5 +/- 0.4 nmol . min-1] were higher (P less than 0.05) in T than C subjects. Epinephrine clearance was closely related to relative work load, decreasing from 15% above the basal level at 30% of maximal O2 uptake (VO2 max) to 22% below at 76% of VO2 max. Epinephrine concentrations increased much more with work intensity than could be accounted for by changes in clearance and were, at exhaustion, higher (P less than 0.05) in T (7.2 +/- 1.6) than in C (2.5 +/- 0.7 nmol . l-1) subjects despite similar glucose, heart rate, and hematocrit values. At a given load, epinephrine clearance rapidly became constant, whereas concentration increased continuously. Forearm extraction of epinephrine invalidated use of blood from a cubital vein or a hand vein arterialized by hot water in turnover measurements. During exercise, changes in epinephrine concentrations reflect changes in secretion rather than in clearance. Training may increase adrenal medullary secretory capacity.  相似文献   

19.
20.
This cross-sectional study compared hormonal responses to resistance exercise between trained and untrained men to investigate the adaptations of the endocrine system to long-term strength training in middle-aged men. Twenty-one middle-aged men were recruited for this study and matched into a strength-trained group (SG) (n = 10) and an untrained group (UG) (n = 11). In the SG, the individuals had practiced strength training for hypertrophy for at least 3 years. Upper- and lower-body muscle strength was measured with a 1 repetition maximum (1RM) test. Blood samples were collected at rest and after multiple sets of a superset strength training protocol (SSTP), with an intensity of 75% of 1RM values. With these blood samples, the levels of total testosterone (TT), free testosterone (FT), dehydroepiandrosterone (DHEA), cortisol, and sex hormone-binding globulin (SHBG) were determined. In addition, the TT-to-cortisol ratio and TT-to-SHBG ratio were calculated. There was no difference at rest between groups in hormonal values for TT, FT, DHEA, cortisol, the TT-to-SHBG ratio, and the TT-to-cortisol ratio. There were increases after SSTP in the levels of TT, FT, DHEA, and cortisol and the TT-to-SHBG ratio in the UG, but only FT increased in the SG. The SG demonstrated lower values in the TT-to-SHBG ratio after the training session. These results suggest the presence of alterations in anabolic and catabolic hormonal responses to resistance exercise in long-term trained middle-aged men, with the trained subjects demonstrating lower responsiveness in the hormone values. Long-term trained men seem to require a higher volume of training, at least similar to their daily workout, to stimulate greater hormone responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号