首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The herpes simplex virus virion host shutoff function.   总被引:14,自引:11,他引:3       下载免费PDF全文
The virion host shutoff (vhs) function of herpes simplex virus (HSV) limits the expression of genes in the infected cells by destabilizing both host and viral mRNAs. vhs function mutants have been isolated which are defective in their ability to degrade host mRNA. Furthermore, the half-life of viral mRNAs is significantly longer in cells infected with the vhs-1 mutant virus than in cells infected with the wild-type (wt) virus. Recent data have shown that the vhs-1 mutation resides within the open reading frame UL41. We have analyzed the shutoff of host protein synthesis in cells infected with a mixture of the wt HSV-1 (KOS) and the vhs-1 mutant virus. The results of these experiments revealed that (i) the wt virus shutoff activity requires a threshold level of input virions per cell and (ii) the mutant vhs-1 virus protein can irreversibly block the wt virus shutoff activity. These results are consistent with a stoichiometric model in which the wt vhs protein interacts with a cellular factor which controls the half-life of cell mRNA. This wt virus interaction results in the destabilization of both host and viral mRNAs. In contrast, the mutant vhs function interacts with the cellular factor irreversibly, resulting in the increased half-life of both host and viral mRNAs.  相似文献   

2.
Effects of herpes simplex virus on mRNA stability.   总被引:28,自引:24,他引:4       下载免费PDF全文
  相似文献   

3.
The virion host shutoff (vhs) protein of herpes simplex virus (HSV) triggers global shutoff of host protein synthesis and accelerated turnover of host and viral mRNAs during HSV infection. As well, it induces endoribonucleolytic cleavage of RNA substrates when produced in a rabbit reticulocyte lysate (RRL) in vitro translation system. The vhs1 point mutation (Thr 214-->Ile) eliminates vhs function during virus infection and in transiently transfected mammalian cells and was therefore previously considered to abolish vhs activity. Here we demonstrate that the vhs1 mutant protein induces readily detectable endoribonuclease activity on RNA substrates bearing the internal ribosome entry site of encephalomyocarditis virus in the RRL assay system. These data document that the vhs1 mutation does not eliminate catalytic activity and raise the possibility that the vhs-dependent endoribonuclease employs more than one mode of substrate recognition.  相似文献   

4.
Herpes simplex virus virion host shutoff function.   总被引:42,自引:33,他引:9       下载免费PDF全文
  相似文献   

5.
B D Zelus  R S Stewart    J Ross 《Journal of virology》1996,70(4):2411-2419
Shortly after tissue culture cells are infected with herpes simplex virus (HSV) type 1 or 2, the rate of host protein synthesis decreases 5- to 10-fold and most host mRNAs are degraded. mRNA destabilization is triggered by the virion host shutoff (vhs) protein, a virus encoded, 58-kDa protein located in the virion tegument. To determine whether it can function as a messenger RNase (mRNase), the capacity of vhs protein to degrade RNA in vitro in absence of host cell components was assessed. Two sources of vhs protein were used in these assays: crude extract from virions or protein translated in a reticulocyte-free system. In each case, wild-type but not mutant vhs protein degraded various RNA substrates. Preincubation with anti-vhs antibody blocked RNase activity. These studies do not prove that vhs protein on its own is an mRNase but do demonstrate that the protein, either on its own or in conjunction with another factor(s), has the biochemical property of an mRNase, consistent with its role in infected cells.  相似文献   

6.
C M Sorenson  P A Hart    J Ross 《Nucleic acids research》1991,19(16):4459-4465
Most host mRNAs are degraded soon after infection of cells with herpes simplex virus type 1 (HSV-1). This early shutoff or early destabilization response is induced by a virion component, the virion host shutoff (vhs) protein. HSV-1 mutants, vhs1 and vhs-delta Sma, which produce defective or inactive vhs protein, fail to induce early shutoff. We have used an in vitro mRNA decay system to analyze the destabilization process. Polysomes from uninfected human erythroleukemia cells, used as a source of target mRNAs, were mixed with polysomes or with post-polysomal supernatant (S130) from HSV-1- or mock-infected murine erythroleukemia cells. Normally stable gamma-globin mRNA was destabilized by approximately 15-fold with S130 from wild-type virus-infected cells but was not destabilized with S130 from mock-infected cells or from cells infected with either of the two HSV mutants. The virus-induced destabilizing activity had no significant effect on the in vitro half-lives of two normally unstable mRNAs, histone and c-myc. No destabilizing activity was detected in polysomes from infected cells. We conclude that a virus-induced destabilizer activity can function in vitro, is located in the S130 of infected cells, and accelerates the decay rates of some, but not all, polysome-associated host mRNAs.  相似文献   

7.
vhs1 is a mutant of herpes simplex virus type 1 that is defective in the virion host shutoff function responsible for the degradation of cellular mRNAs and the concomitant shutoff of host protein synthesis. In this study, the effect of the vhs1 mutation on the metabolism of viral mRNAs was examined by measuring the half-lives and patterns of accumulation of 10 different viral mRNAs representing all kinetic classes. The vhs1 mutation had the effect of dramatically lengthening the cytoplasmic half-lives of all 10 mRNAs. In wild-type virus infections, the 10 mRNAs had similar half-lives, suggesting that little, if any, target mRNA selectivity was exhibited by the vhs function. The vhs1 mutation caused overaccumulation of a number of mRNAs. The effect was most dramatic for the alpha (immediate-early) mRNA for ICP27 and the beta (early) mRNAs encoding thymidine kinase, ICP8, and DNA polymerase. Whereas in wild-type infections these mRNAs increased to peak levels and subsequently declined in abundance, in vhs1 infections they continued to accumulate until late times. A significant but less dramatic overaccumulation was observed for several beta-gamma (delayed-early) and gamma (late) mRNAs. The results suggest that the vhs protein plays an important role in determining the half-lives of viral mRNAs belonging to all kinetic classes and in so doing is important in the normal downregulation at late times of alpha and beta gene expression.  相似文献   

8.
The virion host shutoff (vhs) gene of herpes simplex virus encodes a virion polypeptide that induces degradation of host mRNAs at early times and rapid turnover of viral mRNAs throughout infection. To better investigate the vhs function, an in vitro mRNA degradation system was developed, consisting of cytoplasmic extracts from HeLa cells infected with wild-type herpes simplex virus type 1 or a mutant encoding a defective vhs polypeptide. Host and viral mRNAs were degraded rapidly in extracts from cells productively infected with wild-type herpes simplex virus type 1 but not in extracts from mock-infected cells or cells infected with the mutant vhs1. In contrast, 28S rRNA was stable in all three kinds of extract. Accelerated turnover of host mRNAs was also observed in extracts from cells infected with wild-type virus in the presence of dactinomycin, indicating that the activity was induced by a structural component of the infecting virions. The in vitro vhs activity was inactivated by heat or proteinase K digestion but was insensitive to brief treatment of the extracts with micrococcal nuclease. It was not inhibited by placental RNase inhibitor, it exhibited a strong dependence upon added Mg2+, it was active at concentrations of K+ up to 200 mM, and it did not require the components of an energy-generating system. In summary, the in vitro mRNA degradation system appears to accurately reproduce the vhs-mediated decay of host and viral mRNAs and should be useful for studies of the mechanism of vhs action.  相似文献   

9.
During lytic infection, the virion host shutoff (vhs) protein of herpes simplex virus (HSV) mediates the rapid degradation of RNA and shutoff of host protein synthesis. In mice, HSV type 1 (HSV-1) mutants lacking vhs activity are profoundly attenuated. HSV-2 has significantly higher vhs activity than HSV-1, eliciting a faster and more complete shutoff. To examine further the role of vhs activity in pathogenesis, we generated an intertypic recombinant virus (KOSV2) in which the vhs open reading frame of HSV-1 strain KOS was replaced with that of HSV-2 strain 333. KOSV2 and a marker-rescued virus, KOSV2R, were characterized in cell culture and tested in an in vivo mouse eye model of latency and pathogenesis. The RNA degradation kinetics of KOSV2 was identical to that of HSV-2 333, and both showed vhs activity significantly higher than that of KOS. This demonstrated that the fast vhs-mediated degradation phenotype of 333 had been conferred upon KOS. The growth of KOSV2 was comparable to that of KOS, 333, and KOSV2R in cell culture, murine corneas, and trigeminal ganglia and had a reactivation frequency similar to those of KOS and KOSV2R from explanted latently infected trigeminal ganglia. There was, however, significantly reduced blepharitis and viral replication within the periocular skin of KOSV2-infected mice compared to mice infected with either KOS or KOSV2R. Taken together, these data demonstrate that heightened vhs activity, in the context of HSV-1 infection, leads to increased viral clearance from the skin of mice and that the replication of virus in the skin is a determining factor for blepharitis. These data also suggest a role for vhs in modulating host responses to HSV infection.  相似文献   

10.
The virion host shutoff (vhs) protein of herpes simplex virus (HSV) has endoribonuclease activity and rapidly reduces protein synthesis in infected cells through mRNA degradation. Herpes simplex virus 1 (HSV-1) and HSV-2 vhs mutants are highly attenuated in vivo, but replication and virulence are largely restored to HSV-2 vhs mutants in the absence of a type I interferon (IFN) response. The role of vhs in pathogenesis and the hindrance of the type I IFN response have classically been examined with viruses that completely lack vhs or express a truncated vhs protein. To determine whether RNase activity is the principal mechanism of vhs-mediated type I IFN resistance and virulence, we constructed a HSV-2 point mutant that synthesizes full-length vhs protein lacking RNase activity (RNase(-) virus). Wild-type and mutant HSV-2 vhs proteins coimmunoprecipitated with VP16 and VP22. vhs protein bearing the point mutation was packaged into the virion as efficiently as the wild-type vhs protein. Like a mutant encoding truncated vhs, the RNase(-) virus showed IFN-dependent replication that was restricted compared with that of the wild-type virus. The RNase(-) virus was highly attenuated in wild-type mice infected intravaginally, with reduced mucosal replication, disease severity, and spread to the nervous system comparable to those of the vhs truncation mutant. Surprisingly, in alpha/beta interferon (IFN-alpha/beta) receptor knockout mice, the vhs RNase mutant was more attenuated than the vhs truncation mutant in terms of disease severity and virus titer in vaginal swabs and central nervous system samples, suggesting that non-enzymatically active vhs protein interferes with efficient virus replication. Our results indicate that vhs enzymatic activity plays a complex role in vhs-mediated type I IFN resistance during HSV-2 infection.  相似文献   

11.
The virion host shutoff protein (Vhs) of herpes simplex virus type 1 induces destabilization of mRNA following infection. Our study of primary neurons from CD-1 mice demonstrates that vhs is functional in neurons but that more Vhs is required to mediate RNA degradation in neurons than in other susceptible cells.  相似文献   

12.
The virion host shutoff protein (vhs) of herpes simplex virus (HSV) triggers global shutoff of host protein synthesis and accelerated mRNA turnover during virus infection and induces endoribonucleolytic cleavage of exogenous RNA substrates when it is produced in a rabbit reticulocyte (RRL) in vitro translation system. Although vhs induces RNA turnover in the absence of other HSV gene products, it is not yet known whether cellular factors are required for its activity. As one approach to addressing this question, we expressed vhs in the budding yeast Saccharomyces cerevisiae. Expression of vhs inhibited colony formation, and the severity of this effect varied with the carbon source. The biological relevance of this effect was assessed by examining the activity of five mutant forms of vhs bearing previously characterized in-frame linker insertions. The results indicated a complete concordance between the growth inhibition phenotype in yeast and mammalian host cell shutoff. Despite these results, expression of vhs did not trigger global mRNA turnover in vivo, and cell extracts of yeast expressing vhs displayed little if any vhs-dependent endoribonuclease activity. However, activity was readily detected when such extracts were mixed with RRL. These data suggest that the vhs-dependent endoribonuclease requires one or more mammalian macromolecular factors for efficient activity.  相似文献   

13.
The ability of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively) to repress host cell protein synthesis early in infection has been studied extensively and found to involve the activities of the UL41 gene product, the virion-associated host shutoff (vhs) protein. To date, UL41 homologs have been identified in the genomes of three other alphaherpesviruses: equine herpesvirus 1 (EHV-1), varicella-zoster virus, and pseudorabies virus, but very little is known about the putative products of these homologous genes. Our earlier observations that no rapid early host protein shutoff occurred in EHV-1-infected cells led us to test EHV-1 vhs activity more thoroughly and to examine the expression and function of the EHV-1 UL41 homolog, ORF19. In the present study, the effects of EHV-1 and HSV-1 infections on cellular protein synthesis and mRNA degradation were compared at various multiplicities of infection in several cell types under an actinomycin D block. No virion-associated inhibition of cellular protein synthesis or vhs-induced cellular mRNA degradation was detected in cells infected with any of three EHV-1 strains (Ab4, KyA, and KyD) at multiplicities of infection at which HSV-1 strain F exhibited maximal vhs activity. However, further analyses revealed that (i) the EHV-1 vhs homolog gene, ORF19, was transcribed and translated into a 58-kDa protein in infected cells; (ii) the ORF19 protein was packaged into viral particles in amounts detectable in Western blots (immunoblots) with monoclonal antibodies; (iii) in cotransfection vhs activity assays, transiently-expressed ORF19 protein had intrinsic vhs activity comparable to that of wild-type HSV-1 vhs; and (iv) this intrinsic vhs activity was ablated by in vitro site-directed mutations in which either the functionally inactive HSV-1 vhs1 UL41 mutation (Thr at position 214 replaced by Ile [Thr-214-->Ile]) was recreated within ORF19 or two conserved residues within the putative poly(A) binding region of the ORF19 sequence were altered (Tyr-190, 192-->Phe). From these results we conclude that EHV-1's low vhs activity in infected cells is not a reflection of the ORF19 protein's intrinsic vhs activity but may be due instead to the amount of ORF19 protein associated with viral particles or to modulation of ORF19 protein's intrinsic activity by another viral component(s).  相似文献   

14.
15.
16.
vhs1 is a herpes simplex virus type 1 mutant defective in the shutoff of both host and alpha polypeptide synthesis. In cycloheximide reversal experiments, alpha mRNAs were significantly more stable in vhs1-infected cells than in cells infected with wild-type virus, whether assayed by in vitro translation or Northern blotting.  相似文献   

17.
18.
Varicella-zoster virus (VZV) open reading frame 17 (ORF17) is homologous to herpes simplex virus (HSV) UL41, which encodes the viral host shutoff protein (vhs). HSV vhs induces degradation of mRNA and rapid shutoff of host protein synthesis. An antibody to ORF17 protein detected a 46-kDa protein in VZV-infected cells. While HSV vhs is located in virions, VZV ORF17 protein was not detectable in virions. ORF17 protein induced RNA cleavage, but to a substantially lesser extent than HSV-1 vhs. Expression of ORF17 protein did not inhibit expression from a beta-galactosidase reporter plasmid, while HSV type 1 vhs abolished reporter expression. Two VZV ORF17 deletion mutants were constructed to examine the role of ORF17 in virus replication. While the ORF17 VZV mutants grew to peak titers that were similar to those of the parental virus at 33 degrees C, the ORF17 mutants grew to 20- to 35-fold-lower titers than parental virus at 37 degrees C. ORF62 protein was distributed in a different pattern in the nuclei and cytoplasm of cells infected with an ORF17 deletion mutant at 37 degrees C compared to 33 degrees C. Inoculation of cotton rats with the ORF17 deletion mutant resulted in a level of latent infection similar to that produced by inoculation with the parental virus. The importance of ORF17 protein for viral replication at 37 degrees C but not at 33 degrees C suggests that this protein may facilitate the growth of virus in certain tissues in vivo.  相似文献   

19.
Herpes simplex virus (HSV) virions contain one or more factors that trigger rapid shutoff of host protein synthesis and accelerated decay of cellular and viral mRNAs in infected cells. HSV isolates bearing mutations at the virion host shutoff (vhs) locus (gene UL41) are defective for both processes, indicating that the vhs protein is required; however, it is not clear whether the role of vhs in shutoff is direct or indirect and if other virion components are also necessary. We therefore used a transient-cotransfection assay to determine if the vhs protein displays activity in the absence of other viral gene products. We found that a vhs expression vector strongly suppressed expression of a cotransfected lacZ reporter gene and that this effect was eliminated by the vhs1 point mutation that abolishes virion-induced host shutoff during HSV infection. Further evidence for the biological relevance of the transfection assay came from the demonstration that five vhs in-frame linker insertion mutations yielded concordant results when assayed in cotransfected cells and following transfer into the viral genome: three mutations eliminated activity in both assays, while two had no effect. On the basis of these results, we conclude that the vhs protein can trigger host shutoff in the absence of other HSV proteins. The cotransfection assay was used to rapidly assess the activities of a panel of linker insertion mutants spanning the vhs polypeptide. All mutations that mapped to regions conserved among the vhs homologs of alphaherpesvirus inactivated function; in contrast, four of five mutations that mapped to regions that are absent from several vhs homologs had no effect. These results further support the biological relevance of the transfection assay and begin to delineate functional domains of the vhs polypeptide.  相似文献   

20.
Immunization of mice with herpes simplex virus type 1 (HSV-1) mutant viruses containing deletions in the gene for virion host shutoff (vhs) protein diminishes primary and recurrent corneal infection with wild-type HSV-1. vhs mutant viruses are severely attenuated in vivo but establish latent infections in sensory neurons. A safer HSV-1 mutant vaccine strain, Delta41Delta29, has combined vhs and replication (ICP8-) deficits and protects BALB/c mice against primary corneal infection equivalent to a vhs- strain (BGS41). Here, we tested the hypothesis that Delta41Delta29 can protect as well as BGS41 in a therapeutic setting. Because immune response induction varies with the mouse and virus strains studied, we first determined the effect of prophylactic Delta41Delta29 vaccination on primary ocular infection of NIH inbred mice with HSV-1 McKrae, a model system used to evaluate therapeutic vaccines. In a dose-dependent fashion, prophylactic Delta41Delta29 vaccination decreased postchallenge tear film virus titers and ocular disease incidence and severity while eliciting high levels of HSV-specific antibodies. Adoptive transfer studies demonstrated a dominant role for immune serum and a lesser role for immune cells in mediating prophylactic protection. Therapeutically, vaccination with Delta41Delta29 effectively reduced the incidence of UV-B-induced recurrent virus shedding in latently infected mice. Therapeutic Delta41Delta29 and BGS41 vaccination decreased corneal opacity and delayed-type hypersensitivity responses while elevating antibody titers, compared to controls. These data indicate that replication is not a prerequisite for generation of therapeutic immunity by live HSV mutant virus vaccines and raise the possibility that genetically tailored replication-defective viruses may make effective and safe therapeutic vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号