首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Ghrelin is a 28-amino acid octanolyated peptide, synthesised primarily in the stomach. It stimulates growth hormone release, food intake and exhibits many other diverse effects. Our group have previously determined that ghrelin inhibited human contractility in vitro. The aim of this study therefore, was to investigate the expression of ghrelin, its receptor, the growth hormone secretagogue receptor type 1 (GHS-R1), ghrelin O-acyltransferase (GOAT) which catalyses ghrelin octanoylation, prohormone convertase 1/3 (PC1/3) responsible for pro-ghrelin processing, in human myometrium, during pregnancy prior to labour, during labour and in the non-pregnant state. Modulation of ghrelin and ghrelin receptor expression in cultured myometrial cells was also investigated.  相似文献   

2.
Production of bioactive peptides in an in vitro system   总被引:1,自引:0,他引:1  
An in vitro system for the preparation of bioactive peptides is described. This system couples three different posttranslational modification enzymes, prohormone convertases (PCs), carboxypeptidase E, and peptidyl alpha-amidating enzyme, to transform recombinant precursors into bioactive peptides. Three different precursors, mouse proopiomelanocortin (mPOMC), rat proenkephalin (rPE), and human proghrelin, were used as model systems. The conversion of mPOMC and rPE to smaller peptide products was measured by radioimmunoassay. After optimization of the system, excellent efficiency was obtained: about 85% of starting mPOMC was converted to des-acetyl alpha-melanocyte-stimulating hormone (alpha-MSH). For proenkephalin, 75 and 96% yields were obtained for the opioid peptides Met-RGL and Met-enk, respectively. Cell-based assays demonstrated that in-vitro-generated des-acetyl alpha-MSH successfully activated the melanocortin 4 receptor. Proghrelin digestion was used to screen the specificity of PC cleavage and to confirm the cleavage site by mass spectroscopy. Mature ghrelin was produced by human furin, mouse prohormone convertase 1, and human prohormone convertase 7 but not by mouse prohormone convertase 2. These results demonstrate that our in vitro system (1) can produce peptides in quantities sufficient to carry out functional analyses, (2) can be used to determine the specificity of proprotein convertases on recombinant precursors, and (3) has the potential to identify novel peptide functions on both known and orphan G-protein-coupled receptors.  相似文献   

3.
The conversion of inactive precursor proteins into bioactive neuropeptides and peptide hormones involves regulated secretory proteins such as prohormone convertases PC1 and PC2. The neuroendocrine protein 7B2 represents a specific binding protein for PC2, and the protein proSAAS, which interacts with PC1, exhibits certain structural and functional homologies with 7B2. With the intention of better understanding the physiological role of proSAAS and its derived peptides, we investigated its tissue localization using a new radioimmunoassay (RIA) to a C-terminal proSAAS-derived peptide. Immunoreactivity corresponding to this SAAS-derived peptide is mostly localized to the brain and gut. Analysis of the brain distribution of the proSAAS-derived peptides indicates that the hypothalamus and pituitary are the two richest areas, consistent with the previously described high expression of PC1 in these two areas. In order to investigate the cleavage of proSAAS by prohormone convertases, we incubated recombinant His-tagged proSAAS with recombinant mouse proPC2 or furin, separated the cleavage products using high-pressure gel permeation chromatography and analyzed the products by RIA. Our results indicate that either PC2 or furin can accomplish in vitro rapid removal and efficient internal processing of the C-terminal peptide, exposing the inhibitory hexapeptide to possible further digestion by carboxypeptidases. Finally, we also studied proSAAS processing in the brains of wild-type and PC2 null mice and found that proSAAS is efficiently processed in vivo. Whereas the C-terminal peptide is mostly internally cleaved in wild-type mouse brain, it is not processed as efficiently in the brain of PC2 null mice, suggesting that PC2 is partially responsible for this cleavage in vivo.  相似文献   

4.

Background

The gustatory system plays a critical role in determining food preferences, food intake and energy balance. The exact mechanisms that fine tune taste sensitivity are currently poorly defined, but it is clear that numerous factors such as efferent input and specific signal transduction cascades are involved.

Methodology/Principal Findings

Using immunohistochemical analyses, we show that ghrelin, a hormone classically considered to be an appetite-regulating hormone, is present within the taste buds of the tongue. Prepro-ghrelin, prohormone convertase 1/3 (PC 1/3), ghrelin, its cognate receptor (GHSR), and ghrelin-O-acyltransferase (GOAT , the enzyme that activates ghrelin) are expressed in Type I, II, III and IV taste cells of mouse taste buds. In addition, ghrelin and GHSR co-localize in the same taste cells, suggesting that ghrelin works in an autocrine manner in taste cells. To determine a role for ghrelin in modifying taste perception, we performed taste behavioral tests using GHSR null mice. GHSR null mice exhibited significantly reduced taste responsivity to sour (citric acid) and salty (sodium chloride) tastants.

Conclusions/Significance

These findings suggest that ghrelin plays a local modulatory role in determining taste bud signaling and function and could be a novel mechanism for the modulation of salty and sour taste responsivity.  相似文献   

5.
Previous studies using selectively modified pro-ocytocin/neurophysin substrate analogues and the purified metalloprotease, pro-ocytocin/neurophysin convertase (magnolysin; EC 3.4 24.62), have shown that dibasic cleavage site processing is associated with a prohormone sequence organized in a beta-turn structure. We have used various peptide analogues of the pro-ocytocin-neurophysin processing domain, and recombinant prohormone convertase 1/3, to test the validity of this property towards this member of the family of prohormone convertases (PCs). The enzymatic cleavage analysis and kinetics showed that: (a) with methyl amide (N-Met) modification, a secondary structure beta-turn breaker, the enzyme substrate interaction was abolished; (b) cleavage was favoured when the dibasic substrate side-chains were oriented in opposite directions; (c) the amino acid present at the P'1 position is important in the enzyme-substrate interaction; (d) the flexibility of the peptide substrate is necessary for the interaction; (e) Addition of dimethylsulfoxide to the cleavage assay favoured the cleavage of the pro-ocytocin/neurophysin large substrate over that of the smaller one pGlu-Arg-Thr-Lys-Arg-methyl coumarin amide. These data allowed us to conclude that proteolytic processing of pro-ocytocin-related peptide substrates by PC1/3 as well as by the metalloenzyme, magnolysin, involves selective recognition of precise cleavage site local secondary structure by the processing enzyme. It is hypothesized that this may represent a general property of peptide precursor proteolytic processing systems.  相似文献   

6.
The neuroendocrine secretory protein chromogranin A (CgA) is a precursor for various biologically active peptides. Several single and paired basic residues are present within its primary amino acid sequence comprising cleavage sites for prohormone convertases. In this study, SH-SY5Y human neuroblastoma cells were stably transfected with the prohormone convertase PC2 to analyse the proteolytic processing of endogenous chromogranin A and, in particular, the formation of the chromogranin-A-derived peptide GE-25. Our analyses revealed a significant change in the pattern of proteolytic conversion of chromogranin A in cells expressing PC2. Mock-transfected control cells contained mainly the intact chromogranin A molecule and hardly any shorter products were found. On the other hand, PC2-transfected cells showed extensive processing of chromogranin A, resulting in significantly lower amounts of the intact precursor and especially high levels of the free peptide GE-25.  相似文献   

7.
Al Massadi O  Tschöp MH  Tong J 《Peptides》2011,32(11):2301-2308
Since its discovery, many physiologic functions have been ascribed to ghrelin, a gut derived hormone. The presence of a median fatty acid side chain on the ghrelin peptide is required for the binding and activation of the classical ghrelin receptor, the growth hormone secretagogue receptor (GHSR)-1a. Ghrelin O-acyl transferase (GOAT) was recently discovered as the enzyme responsible for this acylation process. GOAT is expressed in all tissues that have been found to express ghrelin and has demonstrated actions on several complex endocrine organ systems such as the hypothalamus-pituitary-gonadal, insular and adrenal axis as well as the gastrointestinal (GI) tract, bone and gustatory system. Ghrelin acylation is dependent on the function of GOAT and the availability of substrates such as proghrelin and short- to medium-chain fatty acids (MCFAs). This process is governed by GOAT activity and has been shown to be modified by dietary lipids. In this review, we provided evidence that support an important role of GOAT in the regulation of energy homeostasis and glucose metabolism by modulating acyl ghrelin (AG) production. The relevance of GOAT and AG during periods of starvation remains to be defined. In addition, we summarized the recent literature on the metabolic effects of GOAT specific inhibitors and shared our view on the potential of targeting GOAT for the treatment of metabolic disorders such as obesity and type 2 diabetes.  相似文献   

8.
The neuroendocrine protein 7B2 has been implicated in activation of prohormone convertase 2 (PC2), an important neuroendocrine precursor processing endoprotease. To test this hypothesis, we created a null mutation in 7B2 employing a novel transposon-facilitated technique and compared the phenotypes of 7B2 and PC2 nulls. 7B2 null mice have no demonstrable PC2 activity, are deficient in processing islet hormones, and display hypoglycemia, hyperproinsulinemia, and hypoglucagonemia. In contrast to the PC2 null phenotype, these mice show markedly elevated circulating ACTH and corticosterone levels, with adrenocortical expansion. They die before 9 weeks of severe Cushing's syndrome arising from pituitary intermediate lobe ACTH hypersecretion. We conclude that 7B2 is indeed required for activation of PC2 in vivo but has additional important functions in regulating pituitary hormone secretion.  相似文献   

9.
Proghrelin, the precursor of the orexigenic and adipogenic peptide hormone ghrelin, is synthetized in endocrine (A-like) cells in the gastric mucosa. During its cellular processing, proghrelin gives rise to the 28-amino acid peptide desacyl ghrelin, which after octanoylation becomes active acyl ghrelin, and to the 23-amino acid peptide obestatin, claimed to be a physiological opponent of acyl ghrelin. This study examines the effects of the proghrelin products, alone and in combinations, on the secretion of insulin, glucagon, pancreatic polypeptide (PP) and somatostatin from isolated islets of mice and rats. Surprisingly, acyl ghrelin and obestatin had almost identical effects in that they stimulated the secretion of glucagon and inhibited that of PP and somatostatin from both mouse and rat islets. Obestatin inhibited insulin secretion more effectively than acyl ghrelin. In mouse islets, acyl ghrelin inhibited insulin secretion at low doses and stimulated at high. In rat islets, acyl ghrelin inhibited insulin secretion in a dose-dependent manner but the IC(50) for the acyl ghrelin-induced inhibition of insulin release was 7.5 x 10(-8) M, while the EC(50) and IC(50) values, with respect to stimulation of glucagon release and to inhibition of PP and somatostatin release, were in the 3 x 10(-12)-15 x 10(-12) M range. The corresponding EC(50) and IC(50) values for obestatin ranged from 5 x 10(-12) to 20 x 10(-12) M. Desacyl ghrelin per se did not affect islet hormone secretion. However, at a ten times higher concentration than acyl ghrelin (corresponding to the ratio of the two peptides in circulation), desacyl ghrelin abolished the effects of acyl ghrelin but not those of obestatin. Acyl ghrelin and obestatin affected the secretion of glucagon, PP and somatostatin at physiologically relevant concentrations; with obestatin this was the case also for insulin secretion. The combination of obestatin, acyl ghrelin and desacyl ghrelin in concentrations and proportions similar to those found in plasma resulted in effects that were indistinguishable from those induced by obestatin alone. From the data it seems that the effects of endogenous, circulating acyl ghrelin may be overshadowed by obestatin or blunted by desacyl ghrelin.  相似文献   

10.
Tagen MB  Beinfeld MC 《Peptides》2005,26(12):2530-2535
Purified recombinant prohormone convertase 1 and 2 (PC1 and PC2) cleave a peptide containing cholecystokinin (CCK) 8 Gly Arg Arg and the carboxyl-terminal peptide liberating CCK 8 Gly Arg Arg. PC1 and PC2 also cleave purified pro CCK, liberating the amino terminal pro-peptide while no carboxyl-terminal cleavage was detected. Under the conditions of the in vitro cleavage assay, it appears that the carboxyl-terminal cleavage site of pro CCK is not accessible to the enzymes while this site is readily cleaved in a synthetic peptide. Additional cellular proteins that unfold the prohormone may be required to expose the carboxyl-terminal site for cleavage.  相似文献   

11.
Neurotensin (NT) and neuromedin N (NN) are generated by endoproteolytic cleavage of a common precursor molecule, pro-NT/NN. To gain insight into the role of prohormone convertases PC1, PC2, and PC7 in this process, we investigated the maturation of pro-NT/NN in the brain of PC7 (PC7-/-), PC2 (PC2-/-), and/or PC1 (PC1+/- and PC2-/-; PC1+/-) knock down mice. Inactivation of the PC7 gene was without effect, suggesting that this convertase is not involved in the processing of pro-NT/NN. By contrast, there was a 15% decrease in NT and a 50% decrease in NN levels, as measured by radioimmunoassay, in whole brain extracts from PC2 null as compared with wild type mice. Using immunohistochemistry, we found that this decrease in pro-NT/NN maturation products was uneven and that it was most pronounced in the medial preoptic area, lateral hypothalamus, and paraventricular hypothalamic nuclei. These results suggest that PC2 plays a critical role in the processing of pro-NT/NN in mouse brain and that its deficiency may be compensated to a regionally variable extent by other convertases. Previous data have suggested that PC1 might be subserving this role. However, there was no change in the maturation of pro-NT/NN in the brain of mice in which the PC1 gene had been partially inactivated, implying that complete PC1 knock down may be required for loss of function.  相似文献   

12.
The calcium-dependent serine endoproteases prohormone convertase 1/3 (PC1/3) and prohormone convertase 2 (PC2) play important roles in the homeostatic regulation of blood glucose levels, hence implicated in diabetes mellitus. Specifically, the absence of PC2 has been associated with chronic hypoglycemia. Since there is a reasonably good conservation of the catalytic domain between species translation of inhibitory effects is likely. In fact, similar results have been found using both mouse and human recombinant enzymes. Here, we employed computational structure-based approaches to screen 14,400 compounds from the Maybridge small molecule library towards mouse PC2. Our most remarkable finding was the identification of a potent and selective PC2 inhibitor. Kinetic data showed the compound to be an allosteric inhibitor. The compound identified is one of the few reported selective, small-molecule inhibitors of PC2. In addition, this new PC2 inhibitor is structurally different and of smaller size than those reported previously. This is advantageous for future studies where structural analogues can be built upon.  相似文献   

13.
B Mentrup  W Weidemann 《Gene》1999,237(1):29-33
Prohormone or proprotein convertases are members of the subtilisin family of serine proteases. They are involved in the activation of precursor molecules by endoproteolytic cleavage at basic amino acid residues. Among the different members of this prohormone convertase family, the prohormone convertase 2 (PC2) is almost exclusively expressed in endocrine and neuroendocrine tissues and plays an important role in the endoproteolytic processing of prohormones. Here we describe the exon-intron organization of the PC2 gene from the insect Lucilia cuprina by characterization of PCR-amplified genomic DNA fragments. The insect PC2 gene contains 12 exons with an estimated size of over 14.5 kb. The exon sizes range from 38 bp to > 448 bp. All identified intron-exon boundaries are consistent with the GT-AG-rule. A comparison of the genomic structures of the thus far known prohormone convertase genes with that of the insect PC2 gene revealed a conservation of the positions of most introns interrupting the exons coding for the amino-terminal and catalytic domains. This conservation is consistent with the suggestion of a common evolutionary origin for the prohormone convertase gene family.  相似文献   

14.
The proprotein convertases (PCs) are calcium-dependent proteases responsible for processing precursor proteins into their active forms in eukariotes. The PC1/3 is a pivotal enzyme of this family that participates in the proteolytic maturation of prohormones and neuropeptides inside the regulated secretory pathway. In this paper we demonstrate that mouse proprotein convertase 1/3 (mPC1/3) has a lag phase of activation by substrates that can be interpreted as a hysteretic behavior of the enzyme for their hydrolysis. This is an unprecedented observation in peptidases, but is frequent in regulatory enzymes with physiological relevance. The lag phase of mPC1/3 is dependent on substrate, calcium concentration and pH. This hysteretic behavior may have implications in the physiological processes in which PC1/3 participates and could be considered an additional control step in the peptide hormone maturation processes as for instance in the transformation of proinsulin to insulin.  相似文献   

15.
Lin T  Meng Q  Sui D  Peng D  Li Y  Liu X  Xie L  Li N 《Biochemical genetics》2011,49(9-10):576-586
The peptide hormone ghrelin is secreted in the stomach, with unique N-octanoylation at serine 3, which is a requirement for its functionality. These functions include growth hormone release, appetite stimulation, gastrointestinal motility, glucose regulation, and cell proliferation. The enzyme responsible for ghrelin acylation was recently identified as ghrelin O-acyltransferase (GOAT). In this study, porcine GOAT was cloned and characterized. A full-length cDNA of GOAT of 2013 bp was obtained, which included a 70-bp 5' UTR, a 635-bp 3' UTR, and a 1308-bp open reading frame encoding a protein of 415 amino acids. The GOAT and ghrelin mRNAs are co-expressed in stomach, pancreas, and duodenum at high levels. GOAT was also detected in liver, lung, brain, testis, spleen, kidney, heart, muscle, lipid, and ovary. Our results provide an important basis for further research on GOAT function and the relationship between ghrelin and GOAT.  相似文献   

16.
We used the fluorometric substrate, pGlu-Arg-Thr-Lys-Arg-MCA and the C-terminal peptide of human 7B2155–185, a specific inhibitor of prohormone convertase 2 (PC2), to specifically measure the enzymatic activity of the prohormone convertases, PC2. Using lysates from the pancreatic cell line, TC1-6 cells, which contain moderate levels of PC2 enzymatic activity, we determined that the PC2 assay was linear with respect to time of incubation and protein added and had a pH optimum of 5.5 and a calcium optimum of 2.5 mM. Rat pituitary contained high levels of PC2 enzymatic activity, while the hypothalamus and other brain regions contained moderate levels. This enzyme assay was used to document that both mice null for PC2 as well as mice null for the PC2 cofactor, 7B2, had only trace levels of PC2 activity in various brain regions, while mice heterozygous for these alleles had approximately half of the PC2 activity in most brain regions. PC2 enzymatic activity and PC2 mRNA levels were somewhat discordant suggesting that PC2 mRNA levels do not always reflect PC2 enzymatic activity.  相似文献   

17.
The physiological maturation of the beta-amyloid precursor protein (betaAPP) leads to the secretion of a fragment termed APPalpha, after cleavage by a proteolytic enzyme called-secretase. In Alzheimer's disease, betaAPP undergoes exacerbated proteolytic attacks by beta- and gamma-secretases, which liberate a readily aggregatable 40-42-amino acid peptide called AP. We show here that overexpression of the prohormone convertase PC7 triggers increased secretion of APPalpha and lowers both Abeta40 and Abeta42 recoveries. Overexpression of alpha1-antitrypsin Portland (alpha1-PDX), which blocks mammalian precursor convertases of the constitutive secretory pathway, reverses the PC7-induced APPalpha increase as well as the decrease of Abeta40/42 in HEK293 cells. It is interesting that alpha1-PDX also lowers the level of APPalpha endogenously produced by mock-transfected HEK293 cells. Finally, a Jurkat clone stably expressing alpha1-PDX produces noticeably lower amounts of APPalpha. Therefore, this serpin affects endogenous a-secretase activity/pathway in distinct cell types. By contrast, alpha1-PDX does not alter the processing of presenilin 1 or its mutated congeners linked to some familial forms of Alzheimer's disease. Altogether, we demonstrate that a prohormone convertase participates in the alpha-secretase pathway of betaAPP maturation in human cells and concomitantly contributes to slowing the pathogenic route leading to the formation of Abeta. Our data strongly suggest that PC7 could fulfill such a role.  相似文献   

18.
Pan H  Nanno D  Che FY  Zhu X  Salton SR  Steiner DF  Fricker LD  Devi LA 《Biochemistry》2005,44(12):4939-4948
Prohormone convertase 1 (PC1; also known as PC3) is believed to be responsible for the processing of many neuropeptide precursors. To look at the role PC1 plays in neuropeptide processing in brain and pituitary, we used radioimmunoassays (RIA) as well as quantitative peptidomic methods and examined changes in the levels of multiple neuropeptide products in PC1 knockout (KO) mice. The processing of proenkephalin was impaired in PC1 KO mouse brains with a decrease in the level of Met-Enkephalin immunoreactivity (ir-Met-Enk) and an accumulation of higher molecular weight processing intermediates containing ir-Met-Enk. Processing of the neuropeptide precursor VGF was also affected in PC1 KO mouse brains with a decrease in the level of an endogenous 3 kDa C-terminal peptide. In contrast, the processing of proSAAS into PEN was not altered in PC1 KO mouse brains. Quantitative mass spectrometry was used to analyze a number of peptides derived from proopiomelanocortin (POMC), provasopressin, prooxytocin, chromogranin A, chromogranin B, and secretogranin II. Among them, the levels of oxytocin and peptides derived from chromogranin A and B dramatically decreased in the PC1 KO mouse pituitaries, while the levels of peptides derived from proopiomelanocortin and provasopressin did not show substantial changes. In conclusion, these results support the notion that PC1 plays a key role in the processing of multiple neuroendocrine peptide precursors and also reveal the presence of a redundant system in the processing of a number of physiologically important bioactive peptides.  相似文献   

19.
20.
The prohormone convertases, PC1/3 and PC2 are thought to be responsible for the activation of many prohormones through processing including the endogenous opioid peptides. We propose that maintenance of hormonal homeostasis can be achieved, in part, via alterations in levels of these enzymes that control the ratio of active hormone to prohormone. In order to test the hypothesis that exogenous opioids regulate the endogenous opioid system and the enzymes responsible for their biosynthesis, we studied the effect of short-term morphine or naltrexone treatment on pituitary PC1/3 and PC2 as well as on the level of pro-opiomelanocortin (POMC), the precursor gene for the biosynthesis of the endogenous opioid peptide, β-endorphin. Using ribonuclease protection assays, we observed that morphine down-regulated and naltrexone up-regulated rat pituitary PC1/3 and PC2 mRNA. Immunofluorescence and Western blot analysis confirmed that the protein levels changed in parallel with the changes in mRNA levels and were accompanied by changes in the levels of phosphorylated cyclic-AMP response element binding protein. We propose that the alterations of the prohormone processing system may be a compensatory mechanism in response to an exogenous opioid ligand whereby the organism tries to restore its homeostatic hormonal milieu following exposure to the opioid, possibly by regulating the levels of multiple endogenous opioid peptides and other neuropeptides in concert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号