首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid influx across the brush border membrane of the intact pig ileal epithelium was studied. It was examine whether in addition to system B, systems ASC and bo,+ were involved in transport of bipolar amino acids. The kinetics of interactions between lysine and leucine demonstrates that system bo,+ is present and accessible also to -glutamine. -aspartate (K1/2 0.3 mM) and -glutamate (Ki 0.5 mM) share a high affinity transporter with a maximum rate of 1.3 μmol cm−2 h−1, while only -glutamate with a K1/2 of 14.4 mM uses a low affinity transporter with a maximum rate of 2.7 μmol cm−2 h−1, system ASC, against which serine has a Ki of 1.6 mM. In the presence of 100 mM lysine, -glutamine (A), leucine (B), and methionine (C) fulfilled the criteria of the ABC test for transport by one and the same transporter. However, serine inhibits not only transport of -glutamate but also of glutamine (Ki 0.5 mM), and -glutamate inhibits part of the transport of glutamine. The test does, therefore, only indicate that the three bipolar amino acids have similar affinities for transport by systems B and ASC. Further study of the function of system B must be carried out under full inhibition by lysine and glutamate.  相似文献   

2.
The transport of lysine has been investigated in epithelial cells isolated from chicken jejunum. The kinetics of lysine transport and the pattern of interaction with zwitterionic amino acids were consistent with system b(0,+) activity, the broad-spectrum and Na(+)-independent amino acid transporter. The half-saturation constant for lysine entry (K(m)+/-S.E.) was 0.029+/-0.002 mM and the flux was not affected significantly by Na(+) replacement with choline. Lysine influx was inhibited by L-leucine both in Na(+) and choline medium with inhibition constants (K(i)+/-S.E.) 0.068+/-0.006 mM (in Na(+)) and 0.065+/-0.009 mM (in choline). Other inhibitory amino acids (K(i)+/-S.E.) were (mM): L-tyrosine (0.073+/-0.018), L-methionine (0.15+/-0.015), L-cystine (0.42+/-0.04), L-cysteine (1.1+/-0.07), L-isoleucine (1.1+/-0.09), L-glutamine (1.8+/-0.16) and L-valine (2.5+/-0.13). Lysine exit was trans-accelerated (approx. 20 fold) by 2 mM L-lysine and L-leucine. The flux was resistant to pretreatment of the cells with p-chloromercuriphenylsulfonate (0.2 mM), which is an inhibitor of system y(+)L, the broad-spectrum and cation-modulated transporter.  相似文献   

3.
L-carnitine is absorbed in the intestinal tract via the carnitine transporter OCTN2 and the amino acid transporter ATB(0,+). Loss-of-function mutations in OCTN2 may be associated with inflammatory bowel disease (IBD), suggesting a role for carnitine in intestinal/colonic health. In contrast, ATB(0,+) is upregulated in bowel inflammation. Butyrate, a bacterial fermentation product, is beneficial for prevention/treatment of ulcerative colitis. Butyryl-L-carnitine (BC), a butyrate ester of carnitine, may have potential for treatment of gut inflammation, since BC would supply both butyrate and carnitine. We examined the transport of BC via ATB(0,+) to determine if this transporter could serve as a delivery system for BC. We also examined the transport of BC via OCTN2. Studies were done with cloned ATB(0,+) and OCTN2 in heterologous expression systems. BC inhibited ATB(0,+)-mediated glycine transport in mammalian cells (IC(50), 4.6 +/- 0.7 mM). In Xenopus laevis oocytes expressing human ATB(0,+), BC induced Na(+) -dependent inward currents under voltage-clamp conditions. The currents were saturable with a K(0.5) of 1.4 +/- 0.1 mM. Na(+) activation kinetics of BC-induced currents suggested involvement of two Na(+) per transport cycle. BC also inhibited OCTN2-mediated carnitine uptake (IC(50), 1.5 +/- 0.3 microM). Transport of BC via OCTN2 is electrogenic, as evidenced from BC-induced inward currents. These currents were Na(+) dependent and saturable (K(0.5), 0.40 +/- 0.02 microM). We conclude that ATB(0,+) is a low-affinity/high-capacity transporter for BC, whereas OCTN2 is a high-affinity/low-capacity transporter. ATB(0,+) may mediate intestinal absorption of BC when OCTN2 is defective.  相似文献   

4.
Glutamine is the main fuel of intestinal epithelial cells, as well as a precursor for the intense nucleotide biosynthesis which arises with the rapid turnover of enterocytes. In order to determine whether glutamine uptake may vary as a function of metabolic demand, glutamine transport across the brush-border membrane of differentiating Caco-2 cells has been investigated. The uptake of L-[(3)H]glutamine was measured between day 7 and day 21 post-seeding. Kinetic analysis with glutamine concentrations ranging from 6.25 microM to 12.8 mM revealed the involvement of high affinity Na(+)-dependent (K(t)=110 microM) and low affinity Na(+)-independent (K(t)=900 microM) transport components at day 7. Both components were partially inhibited by L-lysine in a competitive fashion, suggesting that four different systems were responsible for glutamine uptake: B(0), B(0,+), b(0,+) and L. All four systems were present during the differentiation process, with systems L and B(0) being responsible for up to 80% of glutamine uptake. Caco-2 cell differentiation was associated with a marked decrease in L-glutamine uptake, which affected both the Na(+)-dependent and the Na(+)-independent components. In contrast to glucose uptake, the development of L-glutamine uptake across the brush-border membrane of Caco-2 cells may reflect an adjustment to cell metabolic demand rather than the progressive appearance of a vectorial transport process.  相似文献   

5.
Characteristics of glutamine transport, its substrate specificity, and its pattern of competitive and non-competitive inhibition in response to amino acid analogues were determined in peripheral human lymphocytes, incubated with or without concanavalin A (Con A). Maximum capacity of transport (Vmax) at 37 degrees C and 136.9 mM Na+ was 30 pmol/10(6) cells/30 seconds, while the apparent Km was 142 microM. In cells exposed to 10 mM histidine, asparagine, serine, or leucine transport of glutamine declined to 28%, 15%, 17%, and 21%, respectively, of the rates in controls. Inhibition by histidine (Ki = 0.58 mM) and serine (Ki = 0.25 mM) was competitive, by leucine was non-competitive (Ki = 0.64), while alpha-methylamino-isobutyric acid and 2-amino carboxy-bicyclo (2.2.1)-heptane had no effect. In cells cultured for 24 hours with or without 10 micrograms/ml Con A, the apparent Km was 70 microM vs. 89 microM and Vmax 73 vs. 26 pmol/10(6) cells/30 seconds. Sodium depletion (9.0 mM NaCl) greatly diminished glutamine transport in resting and stimulated cells. Inhibition of glutamine transport by serine was sodium sensitive, while inhibition by histidine and asparagine was not. Serine had no competitive effect in sodium-depleted media. The data demonstrate what appear to be two carrier systems for glutamine, sodium sensitive and sodium insensitive. It is suggested that glutamine transport into lymphocytes occurs via processes similar to System N and System ASC described in other cells, with System ASC as the sodium-sensitive component. Con A augments the capacity rather than the affinity of glutamine transporting systems.  相似文献   

6.
Transport systems y+, asc and ASC exhibit dual interactions with dibasic and neutral amino acids. For conventional Na(+)-dependent neutral amino acid system ASC, side chain amino and guanido groups bind to the Na+ site on the transporter. The topographically equivalent recognition site on related system asc binds harmaline (a Na(+)-site inhibitor) with the same affinity as asc (apparent Ki range 1-4 mM), but exhibits no detectable affinity for Ha. Although also classified as Na(+)-independent, dibasic amino acid transport system y+ accepts neutral amino acids when Na+ or another acceptable cation is also present. This latter observation implies that the y+ translocation site binds Na+ and suggests possible functional and structural similarities with ASC/asc. In the present series of experiments with human erythrocytes, system y(+)-mediated lysine uptake (5 microM, 20 degrees C) was found to be 3-fold higher in isotonic sucrose medium than in normal 150 mM NaCl medium. This difference was not a secondary consequence of changes in membrane potential, but resulted from Na+ functioning as a competitive inhibitor of transport. Apparent Km and Vmax values for lysine transport at 20 degrees C were 15.2 microM and 183 mumol/l cells per h, respectively, in sucrose medium and 59.4 microM and 228 mumol/l cells per h in Na+ medium. Similar results were obtained with y+ in erythrocytes of a primitive vertebrate, the Pacific hagfish (Eptatretus stouti), indicating that Na(+)-inhibition is a general property of this class of amino acid transporter. At a permeant concentration of 5 microM, the IC50 value for Na(+)-inhibition of lysine uptake by human erythrocytes was 27 mM. Other inorganic and organic cations, including K+ and guanidinium+, also inhibited transport. In parallel with its actions on ASC/asc harmaline competitively inhibited lysine uptake by human cells in sucrose medium. As predicted from mutually competitive binding to the y+ translocation site, the presence of 150 mM Na+ increased the harmaline inhibition constant (Ki) from 0.23 mM in sucrose medium to 0.75 mM in NaCl medium. We interpret these observations as further evidence that y+, asc and ASC represent a family of closely related transporters with a common evolutionary origin.  相似文献   

7.
The transport of glutamine into rat mesenteric lymphocytes   总被引:2,自引:0,他引:2  
The transport of glutamine into isolated rat mesenteric lymphocytes was studied. This transport appears to be dependent upon the Na+ gradient. The Km for glutamine transport was about 1.0 mM. A large number of amino acids were shown to inhibit the rate of transport of both serine and glutamine into lymphocytes. The transport of glutamine was competitively inhibited by serine and that for serine was similarly inhibited by glutamine. In contrast, histidine and 2-(methylamino)isobutyrate inhibited the transport of both serine and glutamine noncompetitively. It is concluded that glutamine is transported into rat mesenteric lymphocytes by a process similar to System ASC described for other cells.  相似文献   

8.
Alanine and glutamine transport have been studied during red blood cell maturation in the rat. Kinetic parameters of Na+-dependent L-alanine transport were:K m 0.43 and 1.88 mM andV max 158 and 45 nmoles/ml ICW/min for reticulocytes and erythrocytes, respectively. During red cell maturation in the rat there is a loss of capacity and affinity of the system ASC for L-alanine transport. The values for Na+-dependent L-glutamine transport in reticulocytes wereK m 0.51 mM andV max 157 nmoles/ml ICW/min. On the other hand, a total loss of L-glutamine transport mediated by both N and ASC systems is demonstrated in mature red cells. This seems to indicate that during rat red cell maturation the system N disappears. Furthermore, the system ASC specificity in mature cells changes, and glutamine enters the red cell by non-mediated diffusion processes.  相似文献   

9.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+ and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue alpha-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B degrees-like.  相似文献   

10.
The transport of L-threonine and L-glutamine into murine P388 leukemia cells has been characterized. Threonine appears to be a specific substrate for a Na+-dependent amino acid transport system similar to system ASC of the HTC hepatoma cell. Threonine transport is uninhibited by 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid and alpha-(methylamino)isobutyric acid, shows a pattern of transport similar to that seen in HTC hepatoma cells over the pH range of 5.5-7.5, and is inhibited by L-serine and L-cysteine. Approximately two-thirds of glutamine transport into P388 cells also appears to enter P388 cells via this ASC-analogous system. However, based upon (a) inhibition studies with threonine (where the K1 of threonine inhibition of glutamine transport was 7-fold the Km of threonine transport), (b) inhibition analysis of glutamine transport with various amino acids and amino acid analogues, and (c) different patterns of transport between threonine and glutamine over the pH range of 5.5-7.5, approximately one-third of glutamine transport can be attributed to a second Na+-dependent amino acid transport system. This system appears to be similar to the system N of rat hepatocytes. Glutamine and threonine do not appear to enter P388 cells via systems A or L to any significant degree. P388 cells do not appear to exhibit 'adaptive regulation' of amino acid transport. Differences in 'adaptive regulation' could therefore not be utilized for comparing threonine and glutamine transport.  相似文献   

11.
Na(+)-dependent neutral amino acid transport into the bovine renal epithelial cell line NBL-1 is catalysed by a broad-specificity transporter originally termed System B(0). This transporter is shown to differ in specificity from the B(0) transporter cloned from JAR cells [J. Biol. Chem. 271 (1996) 18657] in that it interacts much more strongly with phenylalanine. Using probes designed to conserved transmembrane regions of the ASC/B(0) transporter family we have isolated a cDNA encoding the NBL-1 cell System B(0) transporter. When expressed in Xenopus oocytes the clone catalysed Na(+)-dependent alanine uptake which was inhibited by glutamine, leucine and phenylalanine. However, the clone did not catalyse Na(+)-dependent phenylalanine transport, again as in NBL-1 cells. The clone encoded a protein of 539 amino acids; the predicted transmembrane domains were almost identical in sequence to those of the other members of the B(0)/ASC transporter family. Comparison of the sequences of NBL-1 and JAR cell transporters showed some differences near the N-terminus, C-terminus and in the loop between helices 3 and 4. The NBL-1 B(0) transporter is not the same as the renal brush border membrane transporter since it does not transport phenylalanine. Differences in specificity in this protein family arise from relatively small differences in amino acid sequence.  相似文献   

12.
Wang HS  Wasa M  Okada A 《Life sciences》2002,71(2):127-137
Insulin-like growth factor I (IGF-I) and IGF-II stimulate cancer cell proliferation via interaction with the type I IGF receptor (IGF-IR). We put forward the hypothesis that IGF-IR mediates cancer cell growth by regulating amino acid transport, both when sufficient nutrients are present and when key nutrients such as glutamine are in limited supply. We examined the effects of alphaIR3, the monoclonal antibody recognizing IGF-IR, on cell growth and amino acid transport across the cell membrane in a human neuroblastoma cell line, SK-N-SH. In the presence of alphaIR3 (2 micro/ml), cell proliferation was significantly attenuated in both control (2 mM glutamine) and glutamine-deprived (0 mM glutamine) groups. Glutamine deprivation resulted in significantly increased glutamate (system X(AG)(-)), MeAIB (system A), and leucine (system L) transport, which was blocked by alphaIR3. Glutamine (system ASC) and MeAIB transport was significantly decreased by alphaIR3 in the control group. Addition of alphaIR3 significantly decreased DNA and protein biosynthesis in both groups. Glutamine deprivation increased the IGF-IR protein on the cell surface. Our results suggest that activation of IGF-IR promotes neuroblastoma cell proliferation by regulating trans-membrane amino acid transport.  相似文献   

13.
Neutral and basic amino acid transporter B(0,+) belongs to a Na,Cl-dependent superfamily of proteins transporting neurotransmitters, amino acids and osmolytes, known to be regulated by protein kinase C (PKC). The present study demonstrates an increased phosphorylation of B(0,+) on serine moiety after treatment of rat astrocytes with phorbol 12-myristate 13-acetate, a process correlated with an augmented activity of l-leucine transport and an enhanced presence of the transporter at the cell surface. After solubilization with Triton X-100 and sucrose gradient centrifugation, B(0,+) was detected in non-raft as well as in detergent-resistant raft fractions under control conditions, while phorbol 12-myristate 13-acetate treatment resulted in a complete disappearance of the transporter from the raft fraction. B(0,+) was observed to interact with caveolin-1 and flotillin-1 (reggie-2) proteins, the markers of detergent-resistant microdomains of plasma membrane. As verified in immunocytochemistry and immunoprecipitation experiments, modification of PKC activity did not affect these interactions. It is proposed that PKC reveals different effects on raft and non-raft subpopulations of B(0,+). Phorbol ester treatment results in trafficking of the transporter from the intracellular pool to non-raft microdomains and increased activity, while B(0,+) present in raft microdomains undergoes either internalization or is transferred laterally to non-raft domains.  相似文献   

14.
The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 microM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was isolated and purified. The protein binds L-glutamate (apparent Kd of 1.3 microM) and L-glutamine (Ki of 15 microM) with high affinity. The expression level of this binding protein is maximal at limiting concentrations of glutamine in the growth medium. The glutamate-binding protein restores the uptake of L-glutamate in spheroplasts. L-Aspartate is a strong competitive inhibitor of L-glutamate uptake (Ki of 3 microM) but competes only poorly with L-glutamate for binding to the binding protein (Ki of > 200 microM). The uptake of L-aspartate in R. sphaeroides also involves a binding protein which is distinct from the L-glutamate-binding protein. These data suggest that in R. sphaeroides, the L-glutamate- and L-aspartate-binding proteins interact with the same membrane transporter.  相似文献   

15.
Cationic amino acid transport in primary cultured rat pneumocytes exhibiting characteristics of alveolar epithelial type I-like cells are described. Asymmetry and activator ion dependency of (3)H-L-arginine uptake were characterized from the apical or basolateral fluid of pneumocytes grown on permeable support. Substrate specificity of transport was evaluated as a function of (3)H-L-arginine uptake inhibition in the presence of other amino acids. Transepithelial transport studies estimated (3)H-L-arginine flux in the apical-to-basolateral and basolateral-to-apical directions. Full length cDNA of rat amino acid transporter B(0,+) (rATB(0,+)) was cloned and its relative expression level studied. Results indicate that uptake of (3)H-L-arginine from apical fluid is dependent on Na(+) and Cl(-). Zwitterionic and cationic amino acids (excluding L-proline and anionic amino acids) inhibited uptake of (3)H-L-arginine from apical, but not basolateral incubation fluid. Apical-to-basolateral transepithelial flux of (3)H-L-arginine was 20x higher than basolateral-to-apical transport. Kinetic studies of (3)H-L-arginine uptake from apical fluid revealed maximal velocity (V(max)) and Michaelis-Menten constants (K(t)) of 33.32 +/- 2.12 pmol/mg protein/15 min and 0.50 +/- 0.11 mM, respectively, in a cooperative process having a coupling ratio of 1.18 +/- 0.16 with Na(+) and 1.11 +/- 0.13 with Cl(-). Expression of rATB(0,+) mRNA was identified by RT-PCR and Northern analysis. Corresponding cloned 3.2 kb rATB(0,+) cDNA sequence exhibits pronounced homology in deduced amino acid sequence to mouse (95% identity and 97% similarity) and human (89% identity and 95% similarity) ATB(0,+) homologues. We conclude that rat pneumocytes express ATB(0,+), which may partly contribute towards recovering cationic and neutral amino acids from alveolar luminal fluid.  相似文献   

16.
Porphyromonas gingivalis is an asaccharolytic, gram-negative bacterium that relies on the fermentation of amino acids for metabolic energy. When grown in continuous culture in complex medium containing 4 mM (each) free serine, threonine, and arginine, P. gingivalis assimilated mainly glutamate/glutamine, serine, threonine, aspartate/asparagine, and leucine in free and/or peptide form. Serine and threonine were assimilated in approximately equal amounts in free and peptide form. We characterized serine transport in this bacterium by measuring uptake of the radiolabeled amino acid in washed cells of P. gingivalis energized with a tetrapeptide not containing serine. Serine was transported by a single system with an affinity constant for transport (K(t)) of 24 microM that was competitively inhibited by threonine. Serine transport was dependent on sodium ion concentration in the suspending buffer, and the addition of the ionophore gramicidin caused the inhibition of serine uptake. Together these data indicate that serine transport was sodium ion-motive force driven. A P. gingivalis gene potentially encoding a serine transporter was identified by sequence similarity to an Escherichia coli serine transporter (SstT). This P. gingivalis gene, designated sstT, was inactivated by insertion of a Bacteroides tetQ gene, producing the mutant W50ST. The mutant was unable to transport serine, confirming the presence of a single serine transporter in this bacterium under these growth conditions. The transport of serine by P. gingivalis was dependent on the presence of free cysteine in the suspension buffer. Other reducing agents were unable to stimulate serine uptake. These data show that P. gingivalis assimilates free serine and threonine from culture media via a cysteine-activated, sodium ion-motive force-driven serine/threonine transporter.  相似文献   

17.
The expression of the activity of cystine/glutamate exchange transporter, designated system x(c)(-), requires two components, xCT and 4F2 heavy chain (4F2hc) in Xenopus oocytes. rBAT (related to b(0,+) amino acid transporter) has a significant homology to 4F2hc and is known to be located in the apical membrane of epithelial cells. To determine whether xCT can associate with rBAT and express the activity of system x(c)(-), xCT, and rBAT were co-expressed in Xenopus oocytes and in mammalian cultured cells. In the oocytes injected with rBAT cRNA alone, the activities of cystine and arginine transport were induced, indicating that the system b(0,+)-like transporter was expressed by associating the exogenous rBAT with an endogenous b(0,+)AT-like factor as reported previously. In the oocytes injected with xCT and rBAT cRNAs, the activity of cystine transport was further induced. This induced activity of cystine transport was partially inhibited by glutamate or arginine and completely inhibited by adding both amino acids. In these oocytes, the activity of glutamate transport was also induced and it was strongly inhibited by cystine. In NIH3T3 cells transfected with xCT cDNA alone, the activity of cystine transport was significantly increased, and in the cells transfected with both xCT and rBAT cDNAs, the activity of cystine transport was further enhanced. The enhanced activity was Na(+)-independent and was inhibited by glutamate and homocysteate. These results indicate that rBAT can replace 4F2hc in the expression of the activity of system x(c)(-) and suggest that system x(c)(-) activity could be expressed in the apical membrane of epithelial cells.  相似文献   

18.
Human L-glutamine: D-fructose-6-phosphate amidotransferase (Gfat1), a recognized target in type 2 diabetes complications, was expressed in Sf9 insect cells with an internal His(6)-tag and purified to homogenity. Two different microplate assays that quantify, respectively D-glucosamine-6-phosphate and L-glutamate were used to analyze the enzyme kinetic properties. The recombinant human L-glutamine: D-fructose-6-phosphate amidotransferase isoform 1 exhibits Michaelis parameters K(m)(Fru-6P)=0.98 mM and K(m)(Gln)=0.84 mM which are similar to the values reported for the same enzyme from different sources. The stimulation of hydrolysis of the alternate substrate L-glutamine para-nitroanilide by D-fructose-6P (Fru-6P) afforded a K(d) of 5 microM for Fru-6P.  相似文献   

19.
Abstract: Uptake of L-glutamine (2 mM) by rat brain cortex slices against a concentration gradient is markedly inhibited (40%) by branched-chain Lamino acids (1 mM), L-phenylalanine (1 mM), or L-methionine (1 mM); that of L-asparagine (2 mM) is much less affected by these amino acids. Other amino acids investigated have little or no effect on cerebral L-glutamine uptake. The suppressions of L-glutamine uptake by the inhibitory amino acids are apparently blocked by high [K+], which itself has little or no effect on glutamine uptake. This abolition of suppression is partly explained by high [K+] retention of endogenous glutamine; in the absence of Ca2+ such retention disappears. The inhibitory amino acids (1 mM) also enhance the release of endogenous glutamine, exogenous glutamine with which slices have been loaded, or glutamine synthesized in the slices from exogenous glutamate. The enhanced release of endogenous glutamine is diminished by high [K+]. The suppression of glutamine uptake by the branched-chain amino acids is independent of the concentration of glutamine at low concentrations (0.25–0.5 mM), indicating non-competition, but is reduced with high concentration of glutamine. The inhibition by L-phenylalanine is noncompetitive. L-Glutamine (2 mM) exerts no inhibition of the cerebral uptakes of the branched-chain L-amino acids or Lphenylalanine (0.25–2 mM). The inhibitory amino acids are as active in suppressing L-glutamine uptake with immature rat brain slices as with adult, although the uptake, against a gradient, of L-glutamine in the infant rat brain is about one-half that in the adult. They are also just as inhibitory on the concentrative uptake of L-glutamine by a crude synaptosomal preparation derived from rat brain cortex. Such a nerve ending preparation takes up L-glutamine (0.25 mM), against a gradient, at about ninefold the rate at which it is taken up by cortex slices (for equal amounts of protein), and the uptake process is markedly suppressed by high [K+] in contrast to the effects of high [K+] with slices. The possible physiological and pathological consequences of the suppression of glutamine uptake are discussed.  相似文献   

20.
We have investigated the dependence of the rate of lactic acid production on the rate of Na(+) entry in cultured transformed rat Müller cells and in normal and dystrophic (RCS) rat retinas that lack photoreceptors. To modulate the rate of Na(+) entry, two approaches were employed: (i) the addition of L-glutamate (D-aspartate) to stimulate coupled uptake of Na(+) and the amino acid; and (ii) the addition of monensin to enhance Na(+) exchange. Müller cells produced lactate aerobically and anaerobically at high rates. Incubation of the cells for 2-4 h with 0.1-1 mM L-glutamate or D-aspartate did not alter the rate of production of lactate. ATP content in the cells at the end of the incubation period was unchanged by addition of L-glutamate or D-aspartate to the incubation media. Na(+)-dependent L-glutamate uptake was observed in the Müller cells, but the rate of uptake was very low relative to the rate of lactic acid production. Ouabain (1 mM) decreased the rate of lactic acid production by 30-35% in Müller cells, indicating that energy demand is enhanced by the activity of the Na(+)-K(+) pump or depressed by its inhibition. Incubation of Müller cells with 0.01 mM monensin, a Na(+) ionophore, caused a twofold increase in aerobic lactic acid production, but monensin did not alter the rate of anaerobic lactic acid production. Aerobic ATP content in cells incubated with monensin was not different from that found in control cells, but anaerobic ATP content decreased by 40%. These results show that Na(+)-dependent L-glutamate/D-aspartate uptake by cultured retinal Müller cells causes negligible changes in lactic acid production, apparently because the rates of uptake are low relative to the basal rates of lactic acid production. In contrast, the marked stimulation of aerobic lactic acid production caused by monensin opening Na(+) channels shows that glycolysis is an effective source of ATP production for the Na(+)-K(+) ATPase. A previous report suggests that coupled Na(+)-L-glutamate transport stimulates glycolysis in freshly dissociated salamander Müller cells by activation of glutamine synthetase. The Müller cell line used in this study does not express glutamine synthetase; consequently these cells could only be used to examine the linkage between Na(+) entry and the Na(+) pump. As normal and RCS retinas express glutamine synthetase, the role of this enzyme was examined by coapplication of L-glutamate and NH(4) (+) in the presence and absence of methionine sulfoximine, an inhibitor of glutamine synthetase. In normal retinas, neither the addition of L-glutamate alone or together with NH(4) (+) caused a significant change in the glycolytic rate, an effect linked to the low rate of uptake of this amino acid relative to the basal rate of retinal glycolysis. However, incubation of the RCS retinas in media containing L-glutamate and NH(4)(+) did produce a small (15%) increase in the rate of glycolysis above the rate found with L-glutamate alone and controls. It is unlikely that this increase was the result of conversion of L-glutamate to L-glutamine, as it was not suppressed by inhibition of glutamine synthetase with 5 mm methionine sulfoximine. It appears that the magnitude of Müller cell glycolysis required to sustain the coupled transport of Na(+) and L-glutamate and synthesis of L-glutamine is small relative to the basal glycolytic activity in a rat retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号