首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
The mitotic exit network (MEN) governs Cdk inactivation. In budding yeast, MEN consists of the protein phosphatase Cdc14, the ras-like GTPase Tem1, protein kinases Cdc15, Cdc5, Dbf2 and Dbf2-binding protein Mob1. Tem1, Dbf2, Cdc5 and Cdc15 have been reported to be localized at the spindle pole body (SPB). Here we report changes of the localization of Dbf2 and Mob1 during cell division. Dbf2 and Mob1 localize to the SPBs in anaphase and then moves to the bud neck, just prior to actin ring assembly, consistent with their role in cytokinesis. The neck localization, but not SPB localization, of Dbf2 was inhibited by the Bub2 spindle checkpoint. Cdc14 is the downstream target of Dbf2 in Cdk inactivation, but we found that the neck localization of DbP2 and Mob1 was dependent on the Cdc14 activity, suggesting that Dbf2 and Mob1 function in cytokinesis at the end of the mitotic signaling cascade.  相似文献   

2.
The inactivation of mitotic cyclin-dependent kinases (CDKs) during anaphase is a prerequisite for the completion of nuclear division and the onset of cytokinesis [1, 2]. In the budding yeast Saccharomyces cerevisiae, the essential protein kinase Cdc15 [3] together with other proteins of the mitotic exit network (Tem1, Lte1, Cdc5, and Dbf2/Dbf20 [4-7]) activates Cdc14 phosphatase, which triggers cyclin degradation and the accumulation of the CDK inhibitor Sic1 [8]. However, it is still unclear how CDK inactivation promotes cytokinesis. Here, we analyze the properties of Cdc15 kinase during mitotic exit. We found that Cdc15 localized to the spindle pole body (SPB) in a unique pattern. Cdc15 was present at the SPB of the mother cell until late mitosis, when it also associated with the daughter pole. High CDK activity inhibited this association, while dephosphorylation of Cdc15 by Cdc14 phosphatase enabled it. The analysis of Cdc15 derivatives indicated that SPB localization was specifically required for cytokinesis but not for mitotic exit. These results show that Cdc15 has two separate functions during the cell cycle. First, it is required for the activation of Cdc14. CD14, in turn, promotes CDK inactivation and also dephosphorylates of Cdc15. As a consequence, Cdc15 binds to the daughter pole and triggers cytokinesis. Thus, Cdc15 helps to coordinate mitotic exit and cytokinesis.  相似文献   

3.
The Dbf2 protein kinase functions as part of the mitotic-exit network (MEN), which controls the inactivation of the Cdc28-Clb2 kinase in late mitosis [1]. The MEN includes the Tem1 GTP binding protein; the kinases Cdc15 and Cdc5; Mob1, a protein of unknown function; and the phosphatase Cdc14 [2]. Here we have used Dbf2 kinase activity to investigate the regulation and order of function of the MEN. We find that Tem1 acts at the top of the pathway, upstream of Cdc15, which in turn functions upstream of Mob1 and Dbf2. The Cdc5 Polo-like kinase impinges at least twice on the MEN since it negatively regulates the network, probably upstream of Tem1, and is also required again for Dbf2 kinase activation. Furthermore, we find that regulation of Dbf2 kinase activity and actin ring formation at the bud neck are causally linked. In metaphase-arrested cells, the MEN inhibitor Bub2 restrains both Dbf2 kinase activity [3] and actin ring formation [4]. We find that the MEN proteins that are required for Dbf2 kinase activity are also required for actin ring formation. Thus, the MEN is crucial for the regulation of cytokinesis, as well as mitotic exit.  相似文献   

4.
Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint.  相似文献   

5.
6.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

7.
The septation initiation network (SIN) triggers the onset of cytokinesis in the fission yeast Schizosaccharomyces pombe by promoting contraction of the medially placed F-actin ring. SIN signaling is regulated by the polo-like kinase plo1p and by cdc2p, the initiator of mitosis, and its activation is co-ordinated with other events in mitosis to ensure that cytokinesis does not begin until chromosomes have been separated. Though the SIN controls the contractile ring, the signal originates from the poles of the mitotic spindle. Recent studies suggest that the spindle pole body may act as a dynamic assembly site for active SIN signaling complexes. In the budding yeast Saccharomyces cerevisiae the counterpart of the SIN, called the MEN, mediates both mitotic exit and cytokinesis, in part through regulating activation of the phosphoprotein phosphatase Cdc14p. Flp1p, the S. pombe ortholog of Cdc14p, is not essential for mitotic exit, but may contribute to an orderly mitosis-G1 transition by regulating the destruction of the mitotic inducer cdc25p.  相似文献   

8.
Background: In Saccharomyces cerevisiae the mitotic-exit network (MEN) functions in anaphase to promote the release of the Cdc14p phosphatase from the nucleolus. This release causes mitotic exit via inactivation of the cyclin-dependent kinase (Cdk). Cdc14p-like proteins are highly conserved; however, it is unclear if these proteins regulate mitotic exit as in S. cerevisiae. In Schizosaccharomyces pombe a signaling pathway homologous to the MEN and termed the septation initiation network (SIN) is required not for mitotic exit, but for initiation of cytokinesis and for a cytokinesis checkpoint that inhibits further cell cycle progression until cytokinesis is complete.Results: We have identified the S. pombe Cdc14p homolog, Clp1p, and show that it is not required for mitotic exit but rather functions together with the SIN in coordinating cytokinesis with the nuclear-division cycle. As cells enter mitosis, Clp1p relocalizes from the nucleolus to the spindle and site of cell division. Clp1p exit from the nucleolus does not depend on the SIN, but the SIN is required for keeping Clp1p out of the nucleolus until completion of cytokinesis. Clp1p, in turn, may promote the activation of the SIN by antagonizing Cdk activity until cytokinesis is complete and thus ensuring that cytokinesis is completed prior to the initiation of the next cell cycle. In addition to its roles in anaphase, Clp1p regulates the G2/M transition since cells deleted for clp1 enter mitosis precociously and cells overexpressing Clp1p delay mitotic entry. Unlike Cdc14p, Clp1p appears to antagonize Cdk activity by preventing dephosphorylation of Cdc2p on tyrosine.Conclusions: S. pombe Clp1p affects cell cycle progression in a markedly different manner than its S. cerevisiae homolog, Cdc14p. This finding raises the possibility that related phosphatases in animal cells will prove to have important roles in coordinating the onset of cytokinesis with the events of mitosis.  相似文献   

9.
Cytokinesis, which leads to the physical separation of two dividing cells, is normally restrained until after nuclear division. In Saccharomyces cerevisiae, chitin synthase 2 (Chs2), which lays down the primary septum at the mother-daughter neck, also ensures proper actomyosin ring constriction during cytokinesis. During the metaphase-to-anaphase transition, phosphorylation of Chs2 by the mitotic cyclin-dependent kinase (Cdk1) retains Chs2 at the endoplasmic reticulum (ER), thereby preventing its translocation to the neck. Upon Cdk1 inactivation at the end of mitosis, Chs2 is exported from the ER and targeted to the neck. The mechanism for triggering Chs2 ER export thus far is unknown. We show here that Chs2 ER export requires the direct reversal of the inhibitory Cdk1 phosphorylation sites by Cdc14 phosphatase, the ultimate effector of the mitotic exit network (MEN). We further show that only Cdc14 liberated by the MEN after completion of chromosome segregation, and not Cdc14 released in early anaphase by the Cdc fourteen early anaphase release pathway, triggers Chs2 ER exit. Presumably, the reduced Cdk1 activity in late mitosis further favors dephosphorylation of Chs2 by Cdc14. Thus, by requiring declining Cdk1 activity and Cdc14 nuclear release for Chs2 ER export, cells ensure that septum formation is contingent upon chromosome separation and exit from mitosis.  相似文献   

10.
In budding yeast, the release of the protein phosphatase Cdc14 from its inhibitor Cfi1/Net1 in the nucleolus during anaphase triggers the inactivation of Clb CDKs that leads to exit from mitosis. The mitotic exit pathway controls the association between Cdc14 and Cfi1/Net1. It is comprised of the RAS-like GTP binding protein Tem1, the exchange factor Lte1, the GTPase activating protein complex Bub2-Bfa1/Byr4, and several protein kinases including Cdc15 and Dbf2. Here we investigate the regulation of the protein kinases Dbf2 and Cdc15. We find that Cdc15 is recruited to both spindle pole bodies (SPBs) during anaphase. This recruitment depends on TEM1 but not DBF2 or CDC14 and is inhibited by BUB2. Dbf2 also localizes to SPBs during anaphase, which coincides with activation of Dbf2 kinase activity. Both events depend on the mitotic exit pathway components TEM1 and CDC15. In cells lacking BUB2, Dbf2 localized to SPBs in cell cycle stages other than anaphase and telophase and Dbf2 kinase was prematurely active during metaphase. Our results suggest an order of function of mitotic exit pathway components with respect to SPB localization of Cdc15 and Dbf2 and activation of Dbf2 kinase. BUB2 negatively regulates all 3 events. Loading of Cdc15 on SPBs depends on TEM1, whereas loading of Dbf2 on SPBs and activation of Dbf2 kinase depend on TEM1 and CDC15.  相似文献   

11.
The mitotic exit network (MEN) is a signal transduction cascade that controls exit from mitosis in budding yeast by triggering the nucleolar release and hence activation of the Cdc14 phosphatase. Activation of the MEN is tightly coordinated with spindle position in such a way that Cdc14 is only fully released upon spindle pole body (SPB) migration into the daughter cell. This temporal regulation of the MEN has been proposed to rely in part on the spatial separation of the G-protein Tem1 at the SPB and its nucleotide exchange factor Lte1 confined to the daughter cell cortex. However, the dispensability of LTE1 for survival has raised questions regarding this model. Here using real-time microscopy we show that lte1? mutants not only delay exit from mitosis but also uncouple the normal coordination between spindle disassembly and contraction of the actomyosin ring at cell division. These mitotic defects can be suppressed by a bub2? mutation or by Cdc14 over-expression suggesting that they are caused by compromised MEN activity. Thus Lte1 function is important to fine-tune the timing of mitotic exit and to couple this event with cytokinesis in budding yeast.  相似文献   

12.
The Cdc5 protein of budding yeast is a polo-like kinase that has multiple roles in mitosis including control of the mitotic exit network (MEN). MEN activity brings about loss of mitotic kinase activity so that the mitotic spindle is disassembled and cytokinesis can proceed. Activity of the MEN is regulated by a small GTPase, Tem1, which in turn is controlled by a two-component GTPase-activating protein (GAP) formed by Bfa1 and Bub2. Bfa1 has been identified as a regulatory target of Cdc5 but there are conflicting deductions from indirect in vivo assays as to whether phosphorylation inhibits or stimulates Bfa1 activity. To resolve this question, we have used direct in vitro assays to observe the effects of phosphorylation on Bfa1 activity. We show that when Bfa1 is phosphorylated by Cdc5, its GAP activity with Bub2 is inhibited although its ability to interact with Tem1 is unaffected. Thus, in vivo inactivation of Bfa1-Bub2 by Cdc5 would have a positive regulatory effect by increasing levels of Tem1-GTP so stimulating exit from mitosis.  相似文献   

13.
Cellular events must be executed in a certain sequence during the cell division in order to maintain genome integrity and hence ensure a cell's survival. In M phase, for instance, chromosome segregation always precedes mitotic exit (characterized by mitotic kinase inactivation via cyclin destruction); this is then followed by cytokinesis. How do cells impose this strict order? Recent findings in budding yeast have suggested a mechanism whereby partitioning of chromosomes into the daughter cell is a prerequisite for the activation of mitotic exit network (MEN). So far, however, a regulatory scheme that would temporally link the initiation of cytokinesis to the execution of mitotic exit has not been determined. We propose that the requirement of MEN components for cytokinesis, their translocation to the mother–daughter neck and triggering of this translocation by inactivation of the mitotic kinase may be the three crucial elements that render initiation of cytokinesis dependent on mitotic exit. BioEssays 24: 659–666, 2002. © 2002 Wiley Periodicals, Inc.  相似文献   

14.
The mitotic exit network (MEN), a Ras-like signaling cascade, promotes the release of the protein phosphatase Cdc14 from the nucleolus and is essential for cells to exit from mitosis in Saccharomyces cerevisiae. We have characterized the functional domains of one of the MEN components, the protein kinase Cdc15, and investigated the role of these domains in mitotic exit. We show that a region adjacent to Cdc15's kinase domain is required for self-association and for binding to spindle pole bodies and that this domain is essential for CDC15 function. Furthermore, we find that overexpression of CDC15 lacking the C-terminal 224 amino acids results in hyperactivation of MEN and premature release of Cdc14 from the nucleolus, suggesting that this domain within Cdc15 functions to inhibit MEN signaling. Our findings indicate that multiple modes of MEN regulation occur through the protein kinase Cdc15.  相似文献   

15.
The mitotic exit network (MEN) is a spindle pole body (SPB)–associated, GTPase-driven signaling cascade that controls mitotic exit. The inhibitory Bfa1–Bub2 GTPase-activating protein (GAP) only associates with the daughter SPB (dSPB), raising the question as to how the MEN is regulated on the mother SPB (mSPB). Here, we show mutual regulation of cyclin-dependent kinase 1 (Cdk1) and the MEN. In early anaphase Cdk1 becomes recruited to the mSPB depending on the activity of the MEN kinase Cdc15. Conversely, Cdk1 negatively regulates binding of Cdc15 to the mSPB. In addition, Cdk1 phosphorylates the Mob1 protein to inhibit the activity of Dbf2–Mob1 kinase that regulates Cdc14 phosphatase. Our data revise the understanding of the spatial regulation of the MEN. Although MEN activity in the daughter cells is controlled by Bfa1–Bub2, Cdk1 inhibits MEN activity at the mSPB. Consistent with this model, only triple mutants that lack BUB2 and the Cdk1 phosphorylation sites in Mob1 and Cdc15 show mitotic exit defects.  相似文献   

16.
For many polarized cells, it is critical that the mitotic spindle becomes positioned relative to the polarity axis. This is especially important in yeast, where the site of cytokinesis is predetermined. The spindle position checkpoint (SPOC) therefore delays mitotic exit of cells with a mispositioned spindle. One component of the SPOC is the Bub2-Bfa1 complex, an inhibitor of the mitotic exit network (MEN). Here, we show that the Kin4 kinase is a component of the SPOC and as such is essential to delay cell cycle progression of cells with a misaligned spindle. When spindles are correctly oriented, Kin4 and Bub2-Bfa1 are asymmetrically localized to opposite spindle pole bodies (SPBs). Bub2-Bfa1 then becomes inhibited by Cdc5 polo kinase with anaphase onset, a prerequisite for mitotic exit. In response to spindle misalignment, Kin4 and Bub2-Bfa1 are brought together at both SPBs. Kin4 now maintains Bub2-Bfa1 activity by counteracting Cdc5, thereby inhibiting mitotic exit.  相似文献   

17.
Mitotic exit integrates the reversal of the phosphorylation events initiated by mitotic kinases with a controlled cytokinesis event that cleaves the cell in two. The mitotic exit network (MEN) of budding yeast regulates both processes, whereas the fission yeast equivalent, the septum initiation network (SIN), controls only the execution of cytokinesis. The components and architecture of the SIN and MEN are highly conserved. At present, it is assumed that the functions of the core SIN-MEN components are restricted to their characterized roles at the end of mitosis. We now show that the NDR (nuclear Dbf2-related) kinase component of the fission yeast SIN, Sid2-Mob1, acts independently of the other known SIN components in G2 phase of the cell cycle to control the timing of mitotic commitment. Sid2-Mob1 promotes mitotic commitment by directly activating the NIMA (Never In Mitosis)-related kinase Fin1. Fin1's activation promotes its own destruction, thereby making Fin1 activation a transient feature of G2 phase. This spike of Fin1 activation modulates the activity of the Pom1/Cdr1/Cdr2 geometry network towards?Wee1.  相似文献   

18.
In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.  相似文献   

19.
20.
Cdc15p is an essential protein kinase and functions with a group of late mitotic proteins that includes Lte1p, Tem1p, Cdc14p and Dbf2p/Dbf20p to inactivate Cdc28p-Clb2p at the end of mitosis in budding yeast [1] [2]. Cdc14p is activated and released from the nucleolus at late anaphase/telophase to dephosphorylate important regulators of Cdc28p-Clb2p such as Hct1p/Cdh1p, Sic1p and Swi5p in a CDC15-dependent manner [3] [4] [5] [6] [7]. How Cdc15p itself is regulated is not known. Here, we report that both the phosphorylation and localization of Cdc15p are cell cycle regulated. The extent of phosphorylation of Cdc15p gradually increases during cell-cycle progression until some point during late anaphase/telophase when it is rapidly dephosphorylated. We provide evidence suggesting that Cdc14p is the phosphatase responsible for the dephosphorylation of Cdc15p. Using a Cdc15p fusion protein coupled at its carboxyl terminus to green fluorescent protein (GFP), we found that Cdc15p, like its homologue Cdc7p [8] in fission yeast, localizes to the spindle pole bodies (SPBs) during mitosis. At the end of telophase, a portion of Cdc15p is located at the mother-bud neck, suggesting a possible role for Cdc15p in cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号