首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
Depolarization ratios of Raman bands, excited at 488.0 nm, of guanosine-5′-monophosphoric 4 acid, cytidine-5′-monophosphoric acid, adenosine-5′-monophosphoric acid, thymidine-5′-monophosphoric acid, and uridine-5′-monophosphoric acid have been measured in their H2O and D2O solutions in the spectral region from 300 to 1800 cm?1. For comparison, the disodium salt of 2′-deoxyadenosine-5′-monophosphoric acid was also subjected to the depolarization measurement in its H2O solution. The results have been correlated with possible orientations of the principal axes of the Raman scattering tensors as well as with the relative magnitudes of the tensor components. Results should be useful for future polarized Raman studies of synthetic and natural DNA. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
A two-dimensionally large and thin crystal has been obtained from gp321I, a proteolytically digested product of a DNA helix-destabilizing protein coded by gene 32 in bacteriophage T4. High-resolution electron diffraction patterns (~3.7Å) are recorded from both unstained and stained protein crystals embedded in glucose. The crystal is of orthorhombic space group with a = 62.9 A? and b = 47.3 A?.  相似文献   

5.
The gene-5 protein of the fd filamentous bacterial virus binds to single-stranded DNA over a pH range of 2-10.3. Binding to fd DNA is several hundred-fold stronger than to bacteriophage R17 RNA or to DNA tetranucleotides.  相似文献   

6.
C Otto  F F de Mul  J Greve 《Biopolymers》1987,26(10):1667-1689
Raman spectra of the bacteriophage T4 denaturing protein gp32, its complex with the polynucleotides poly(rA), poly(dA), poly(dT), poly(rU), and poly(rC), and with the oligonucleotides (dA)8 and (dA)2, were recorded and interpreted. According to an analysis of the gp32 spectra with the reference intensity profiles of Alix and co-workers [M. Berjot, L. Marx, and A. J. P. Alix (1985) J. Ramanspectrosc., submitted; A. J. P. Alix, M. Berjot, and J. Marx (1985) in Spectroscopy of Biological Molecules, A. J. P. Alix, L. Bernard, and M. Manfait, Eds., pp. 149–154], 1 gp32 contains ≈ 45% helix, ≈ 40% β-sheet, and 15% undefined structure. Aggregation of gp32 at concentrations higher than 40 mg/mL leads to a coordination of the phenolic OH groups of 4–6 tyrosines and of all the sulfhydryl (SH) groups present in the protein with the COO? groups of protein. The latter coordination persists even at concentrations as low as 1 mg/mL. In polynucleotide–protein complexes the nucleotide shields the 4–6 tyrosine residues from coordination by the COO? groups even at high protein concentration. The presence of the nucleotide causes no shielding of the SH groups. With Raman difference spectroscopy it is shown that binding of the protein to a single-stranded nucleotide involves both tyrosine and trytophan residues. A change in the secondary structure of the protein upon binding is observed. In the complex, gp32 contains more β-sheet structure than when uncomplexed. A comparison of the spectra of complexed poly(rA) and poly(dA) with the spectra of their solution conformations at 15°C reveals that in both polynucleotides the phosphodiester vibration changes upon complex formation in the same way as upon a transition from a regular to a more disordered conformation. Distortion of the phosphate–sugar–base conformation occurs upon complex formation, so that the spectra of poly(rA) and poly(dA) are more alike in the complex than they are in the free polynucleotides. The decrease in intensity of the Raman bands at 1304 cm?1 in poly(rA), at 1230 cm?1 in poly(rU), and at 1240 and 1378 cm?1 of poly(dT) may be indicative of increased stacking interactions in the complex. No influence of the nucleotide chain length upon the Raman spectrum of gp322 in the complex was detected. Both the nucleotide lines and the protein lines in the spectrum of a complex are identical in poly(dA) and (dA)8.  相似文献   

7.
Raman spectroscopy is used to probe the nature of the hydrogen bonds which hold the water of hydration to DNA. The ~ 3450?cm?1 molecular O–H stretching mode shows that the first six water molecules per base pair of the primary hydration shell are very strongly bound to the DNA. The observed shift in the peak position of this mode permits a determination of the length of the hydrogen bonds for these water molecules. These hydrogen bonds appear to be about 0.3?Å shorter than the hydrogen bonds in bulk water. The linewidth of this mode shows no significant changes above water contents of about 15 water molecules per base pair. This technique of using a vibrational spectroscopy to obtain structural information about the hydration shells of DNA could be used to study the hydration shells of other biomolecules.  相似文献   

8.
The dissociation constants for GTP and GDP with tubulin were determined to be equal to 1.1 ± 0.4 × 10?7 M and 1.5 ± .6 × 10?7 (4°), respectively. A lower limit for the dissociation constant for ATP was established as equal to 6 × 10?4 M. The equivalent binding of GTP and GDP is not readily consistent with a mechanism in which the role of GTP in microtubule assembly is to bind to the protein to induce a conformation which is able to polymerize. An ATP-induced polymerization of tubulin apparently involves a transphosphorylation reaction in which GTP is formed and mediates the assembly. For this reaction to occur with desalted tubulin trace amounts of GDP are required; in the reaction of 0.1 mM ATP with 22.0 μM tubulin, 0.1 μM GDP induces about 80% as much tubule formation as is seen with 0.1 mM GTP alone.  相似文献   

9.
The irreversible dissociation kinetics of complexes of M13-encoded gene-5 protein with the polynucleotides poly(dA) and M13 DNA was studied by means of stopped-flow experiments. A linear decay was found for all gene-5-protein.poly(dA) complexes and for the gene-5-protein.M13 DNA complexes for which the DNA lattice was completely saturated at the beginning of the dissociation experiments. Only at the end of the dissociation curve was a deviation from linearity observed. A single-exponential decay was found for the dissociation of gene-5-protein.M13 DNA complexes when the DNA was not completely saturated initially. These results could be interpreted by assuming that dissociation of bound protein is only possible from isolated binding sites, while during the dissociation, rearrangement of bound protein clusters takes place continuously, including the formation of newly isolated bound protein. This redistribution results from a translocation of the protein along the lattice, which, for the poly(dA) complex, is fast with respect to the dissociation step, but which is slow for the M13 DNA complex. During this process the equilibrium cluster distribution predicted by the theory of McGhee and Von Hippel is not maintained. The binding of gene-5 protein to poly(dA) or poly(dT) does not result in a broadening of the nucleotide resonances in the NMR spectra of these polynucleotides, as had been observed for E. coli DNA-binding protein and interpreted as an indication for a high rate of translocation of the protein on the polynucleotide. The absence of line broadening for gene-5-protein.polynucleotide complexes is caused by the high binding cooperativity. As a consequence the majority of the protein molecules are bound in a cluster which makes the concentration of isolated bound protein very low. This results in a decrease of the signal/noise ratio at higher degrees of binding, but does not lead to line broadening while fast translocation still occurs.  相似文献   

10.
11.
Raman spectroscopy was used to study the low-frequency (?200?cm?1) vibrations in crystalline samples of six naturally occurring nucleosides: deoxythymidine (dT), deoxycytidine (dC), deoxyadenosine (dA), uridine (rU), cytidine (rC), and adenosine (rA). Such low-frequency vibrations are important for biological processes in which the conformation of a nucleic acid molecule changes. These experiments also provide a test for the low-frequency vibrational modes of dT, dC, and dA predicted by Shishkin et al.  相似文献   

12.
13.
14.
The gene 5 protein, coded for by the bacteriophage fd, forms a complex with single stranded fd-DNA such that one gene 5 protein monomer interacts with four bases. Exposure of this complex to ultraviolet light results in the formation of covalent bonds between 25-30% of the gene 5 protein monomers which are bound to the DNA. In contrast, when the intact fd virion, which is a complex of coat protein and DNA, was exposed to ultraviolet irradiation, no detectable protein DNA cross-links were found.  相似文献   

15.
X-ray small angle scattering experiments, using a pin hole SAXS camera with Synchrotron radiation source, have been performed to study the conformational changes of lyophilized samples of Apo-, Mono-, and Diferric- human transferrin. We report the experimental evidence that the analysis of the scattered intensity through the fractal theory may give information on the particle size and its variation upon iron binding.  相似文献   

16.
Surface-enhanced Raman spectroscopy and UV-vis absorption spectroscopy were employed to study the interaction between the red dye alizarin and ovalbumin (OA), to check the effect of binding media usually employed when applying this pigment in painting practices based on egg tempera. The protein/alizarin interaction is rather weak and takes place through the alizarin neutral form, which interacts with exposed hydrophobic moieties of OA. This effect is of great interest from an artistic point of view because the dye color can be modified. Furthermore, the interaction with alizarin could induce a change in the protein structure, leading to a denaturation and subsequent aggregation.  相似文献   

17.
Since protons that are buried and hydrogen-bonded within nucleic acid double helices exchange readily with solvent protons, it is evident that the native double helix must participate in some kind of reversible opening process. In hydrogen-exchange studies of a number of adenine-containing double helices, the chemical exchange pathways were worked out, and equilibrium and kinetic parameters of the dominant opening reactions were derived. These lead to a picture of the open state that may have implications for DNA recognition processes.  相似文献   

18.
19.
Conformations of arabino nucleosides and nucleotides have been analyzed by semiempirical energy calculations. It is found that the change in the configuration of the O(2')-hydroxyl group in arabinoses compared to riboses exerts significant influence on the conformational priorities of the glycosyl and the exocyclic C(4')-C(5') bond torsions. While the anti conformations for the bases are preferred, the anti in equilibrium or formed from syn interconversion is considerably hampered compared to ribosides due to large energy barrier. Further the preferred anti glycosyl torsions are shifted to higher values for C(3')-endo puckers and in ribosides. While the gauche+ conformation around the C(4')-C(5') bond is favored for C(3')-endo arabinosides, it is strongly stabilized for C(2')-endo arabinosides only in the presence of the intrasugar hydrogen bond O(2')-H ... O(5'). The net attractive electrostatic interactions between the phosphate and the base stabilizes the preferred conformations of 5'-arabinonucleotides also.  相似文献   

20.
Raman spectra of ATP at various pH values are affected by addition of equimolar solution of divalent metal ions such as Ca2+, Mg2+, Co2+, Cu2+, and Hg2+. The changes in frequency and intensity have been used to construct models describing the nature of metal-adenine and metal-triphosphate interactions under different conditions. The metal ions are found to co-ordinate the triphosphate group in the entire pH range studies (pH to 12). Calcium (II) and magnesium (II) interact strongly with the phosphate moiety at neutral pH, although a weak interaction with the ring occur at low pH values. Around neutrality, several Raman spectral changes are observed to implicate the interaction of cobalt (II) ion with the five-membered ring of the adenine. The changes in Raman frequency are too small to suggest a direct Co(II)-N7 binding. At least six different Cu(II)-ATP species are identified between pH 3 and 12. At pH approximately 7.0 Raman data are explained better by Cu(II) interacting with N7 simultaneously with the amino group of the adenine ring. However, a Cu(II) binding to N3 at pH 10 to 11 is indicated by the enhancement of the 760 and 1360 cm-1 vibrations. At neutral pH, mercury (II) ion shows a direct coordination at N1 while at low pH with N1 blocked by protonation, mercury (II) does not interact with the adenine moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号