首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Considerable interest in the D-xylose catabolic pathway of Pachysolen tannophilus has arisen from the discovery that this yeast is capable of fermenting D-xylose to ethanol. In this organism D-xylose appears to be catabolized through xylitol to D-xylulose. NADPH-linked D-xylose reductase is primarily responsible for the conversion of D-xylose to xylitol, while NAD-linked xylitol dehydrogenase is primarily responsible for the subsequent conversion of xylitol to D-xylulose. Both enzyme activities are readily detectable in cell-free extracts of P. tannophilus grown in medium containing D-xylose, L-arabinose, or D-galactose and appear to be inducible since extracts prepared from cells growth in media containing other carbon sources have only negligible activities, if any. Like D-xylose, L-arabinose and D-galactose were found to serve as substrates for NADPH-linked reactions in extracts of cells grown in medium containing D-xylose, L-arabinose, or D-galactose. These L-arabinose and D-galactose NADPH-linked activities also appear to be inducible, since only minor activity with L-arabinose and no activity with D-galactose is detected in extracts of cells grown in D-glucose medium. The NADPH-linked activities obtained with these three sugars may result from the actions of distinctly different enzymes or from a single aldose reductase acting on different substrates. High-performance liquid chromatography and gas-liquid chromatography of in vitro D-xylose, L-arabinose, and D-galactose NADPH-linked reactions confirmed xylitol, L-arabitol, and galactitol as the respective conversion products of these sugars. Unlike xylitol, however, neither L-arabitol nor galactitol would support comparable NAD-linked reaction(s) in cellfree extracts of induced P. tannophilus. Thus, the metabolic pathway of D-xylose diverges from those of L-arabinose or D-galactose following formation of the pentitol.  相似文献   

6.
7.
Summary Recombinant Klebsiella oxytoca strain P2 carrying genes for pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis was evaluated for its ability to ferment arabinose, xylose and glucose alone and in mixtures in pH-controlled batch fermentations. This organism produced 0.34–0.43 g ethanol/g sugar at pH 6.0 and 30°C on 8% sugar substrate and demonstrated a preference for glucose. Sugar utilization was glucose > arabinose > xylose and ethanol production was xylose > glucose > arabinose.  相似文献   

8.
9.
Particulate cytochromes of mung bean seedlings   总被引:1,自引:1,他引:1       下载免费PDF全文
Efforts have been made to solubilize cytochrome components from particulate fractions of etiolated mung bean seedlings. Low temperature spectrophotometry reveals that the cytochrome composition of mitochondria isolated from whole seedlings is the same as that reported by Bonner for mung bean hypocotyls. On the basis of the identity in position of the α-bands in low temperature difference spectra for mitochondria, for a partially purified haemoprotein from mitochondria, and for purified cytochrome b-555, it is suggested that cytochrome b-555 is an intrinsic component of mung bean mitochondria. Difference spectra show that both the mitochondrial and microsomal fractions contain at least 2 b-type cytochromes. Cytochrome b-555 is almost certainly present in the microsomes, since the low temperature difference spectrum for the cytochrome is identical with the spectrum for this particulate fraction.

By freezing and thawing mung bean mitochondria in 4% cholate and centrifuging, cytochrome oxidase activity can be concentrated in the supernatant fraction, although it is not completely solubilized. The oxidase is inhibited by high concentrations of cytochrome c. A particle-bound cytochrome c can be obtained from mitochondria by digestion with snake venom. However, the autoxidizability of the preparation indicates that the cytochrome has been solubilized in a modified form. A CO-binding pigment can be obtained from mung bean microsomes by digestion with snake venom.

  相似文献   

10.
11.
Purification and properties of glucosidase I from mung bean seedlings   总被引:3,自引:0,他引:3  
The microsomal enzyme fraction from mung bean seedlings was found to contain glucosidase activity capable of releasing [3H]glucose from the glucose-labeled Glc3Man9GlcNAc. The enzymatic activity could be released in a soluble form by treating the microsomal particles with 1.5% Triton X-100. When the solubilized enzyme fraction was chromatographed on DE-52, it was possible to resolve glucosidase I activity (measured by the release of [3H]glucose from Glc3Man9GlcNAc) from glucosidase II (measured by release of [3H]glucose from Glc2Man9GlcNAc). The glucosidase I was purified about 200-fold by chromatography on hydroxylapatite, Sephadex G-200, dextran-Sepharose, and concanavalin A-Sepharose. The purified enzyme was free of glucosidase II and aryl-glucosidase activities. Only a single glucose residue could be released from the Glc3Man9GlcNAc by this purified enzyme and the other product was the Glc2Man9GlcNAc. Furthermore, this enzyme was inhibited in a dose-dependent manner by kojibiose, an alpha-1,2-linked glucose disaccharide, but not by other alpha-linked glucose disaccharides. These data indicate that this glucosidase is a specific alpha-1,2-glucosidase. The pH optimum for the glucosidase I was about 6.3 to 6.5, and no requirements for divalent cations were observed. The enzyme was inhibited strongly by the glucosidase processing inhibitors, castanospermine and deoxynojirimycin, and less strongly by the plant pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine. However, the enzyme was not inhibited by the mannosidase processing inhibitors, swainsonine, deoxymannojirimycin or 1,4-dideoxy-1,4-imino-D-mannitol. The stability of the enzyme under various conditions and other properties of the enzyme were determined.  相似文献   

12.
13.
14.
15.
16.
17.
The tonoplast ATPase from etiolated seedlings of Vigna radiata L. (mung bean) was isolated using a two-step detergent solubilization modified from Mandala and Taiz (S Mandala, L Taiz [1985] Plant Physiol 78: 327-333). After ultracentrifugation on 10 to 28% sucrose gradient, the ATPase showed a 31.6-fold purification over the initial specific activity of the starting tonoplast-enriched membranes. The purified ATPase used Mg2+-ATP as the preferred substrate. The tonoplast ATPase was isolated in a form with characteristics similar to that on its native membrane environment. Analysis by SDS-PAGE revealed two prominent bands with molecular weights of 78,000 (α subunit) and 64,000 (β subunit). The intensity of Coomassie blue staining showed a 1:1 stoichiometry for α and β subunits. The amino acid composition of α and β subunits also confirmed the suggested stoichiometry of the subunit composition of the tonoplast ATPase. Moreover, radiation inactivation analysis yielded a functional size of 414 ± 24 and 405 ± 25 kilodaltons for soluble and membrane bound tonoplast ATPases, respectively. It is possible that the functioning tonoplast ATPase may be in a form of αβ-heteromultimer.  相似文献   

18.
3-Dehydroshikimic acid is a hydroaromatic precursor to chemicals ranging from L-phenylalanine to adipic acid. The concentration and yield of 3-dehydroshikimic acid microbially synthesized from various carbon sources has been examined under fed-batch fermentor conditions. Examined carbon sources included D-xylose, L-arabinose, and D-glucose. A mixture consisting of a 3:3:2 molar ratio of glucose/xylose/arabinose was also evaluated as a carbon source to model the composition of pentose streams potentially resulting from the hydrolysis of corn fiber. Escherichia coli KL3/pKL4.79B, which overexpresses feedback-insensitive DAHP synthase, synthesizes higher concentrations and yields of 3-dehydroshikimic acid when either xylose, arabinose, or the glucose/xylose/arabinose mixture is used as a carbon source relative to when glucose alone is used as a carbon source. E. coli KL3/pKL4.124A, which overexpresses transketolase and feedback-insensitive DAHP synthase, synthesizes higher concentrations and yields of 3-dehydroshikimic acid when the glucose/xylose/arabinose mixture is used as the carbon source relative to when either xylose or glucose is used as a carbon source. Observed high-titer, high-yielding synthesis of 3-dehydroshikimic acid from the glucose/xylose/arabinose mixture carries significant ramifications relevant to the employment of corn fiber in the microbial synthesis of value-added chemicals.  相似文献   

19.
Two arylmannosidases (signified as A and B) were purified tohomogeneity from soluble and microsomal fractions of mung beanseedlings. Arylmannosidase A from the microsomes appeared thesame on native gels and on SDS gels as soluble arylmannosidaseA, the same was true for arylmannosidase B. Sedimentation velocitystudies indicated that both enzymes were homogeneous, and thatarylmannosidase A had a molecular mass of 237 kd while B hada molecular mass of 243 kd. Arylmannosidase A showed two majorprotein bands on SDS gels with molecular masses of 60 and 55kd, and minor bands of 79, 39 and 35 kd. All of these bandswere N-linked since they were susceptible to digestion by endo-glucosaminidaseH. In addition, at least the major bands could be detected byWestern blots with antibody raised against the xylose moietyof N-linked plant oligosaccharides, and they could also be labeledin soybean suspension cells with [2–3H]mannose. ArylmannosidaseB showed three major bands with molecular masses of 72, 55 and45 kd, and minor bands of 42 and 39 kd. With the possible exceptionof the 45 and 42 kd bands, all of these bands are glycoproteins.Arylmannosidases A and B showed somewhat different kineticsin terms of mannose release from high-mannose oligosaccharides,but they were equally susceptible to inhibition by swainsonineand mannostatin A. Polyclonal antibody raised against the arylmannosidaseB cross-reacted equally well with arylmannosidase A from mungbean seedlings and with arylmannosidase from soybean cells.However, monoclonal antibody against mung bean arylmannosidaseA was much less effective against arylmannosidase B. Antibodywas used to examine the biosynthesis and structure of the carbohydratechains of arylmannosidase in soybean cells grown in [2–3H]mannose.Treatment of the purified enzyme with Endo H released 50% ofthe radioactivity, and these labeled oligosaccharides were ofthe high-mannose type, i.e. mostly Man9GlcNAc. The precipitatedprotein isolated from the Endo H treatment still contained 50%of the radioactivity, and this was present in modified structuresthat probably contain xylose residues. Mung beans mannosidases glycoproteins -soybean--mannosidases xylose-containing N-linked glycoproteins  相似文献   

20.
Electrochemical cells with a sodium ion selectivity electrode (Na-ISE) versus a chloride ion selectivity electrode (Cl-ISE) as a reference electrode were used to determine the activity coefficients for NaCl-monosaccharide (D-glucose, D-galactose, D-xylose, and D-arabinose) systems in water at 298.15 K. A comparison of the results thus obtained was made with those determined by another electromotive force (emf) method. It is shown that agreement is excellent. The Gibbs free energy parameters of the interactions between these sugars and NaCl in water were evaluated together with the parameter C1(CHOH, exo), indicating the interaction of the exocyclic CHOH group of saccharide molecules and NaCl. The results suggested that the interactions of these monosaccharides with NaCl are controlled mostly by the dominant conformer of their molecules in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号