首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five peaks of cyclic AMP-binding activity could be resolved by DEAE-cellulose chromatography of bovine adrenal-cortex cytosol. Two of the binding peaks co-chromatographed with the catalytic activities of cyclic AMP-dependent protein kinases (ATP-protein phosphotransferase, EC 2.7.1.37) of type I or type II respectively. A third binding protein was eluted between the two kinases, and appeared to be the free regulatory moiety of protein kinase I. Two of the binding proteins for cyclic AMP, sedimenting at 9S in sucrose gradients, could also bind adenosine. They bound cyclic AMP with an apparent equilibrium dissociation constant (K(d)) of about 0.1mum, and showed an increased binding capacity for cyclic AMP after preincubation in the presence of K(+), Mg(2+) and ATP. The two binding proteins differed in their apparent affinities for adenosine. The isolated regulatory moiety of protein kinase I had a very high affinity for cyclic AMP (K(d)<0.1nm). At low ionic strength or in the presence of MgATP, the high-affinity binding of cyclic AMP to the regulatory subunit of protein kinase I was decreased by the catalytic subunit. At high ionic strength and in the absence of MgATP the high-affinity binding to the regulatory subunit was not affected by the presence of catalytic subunit. Under all experimental conditions tested, dissociation of protein kinase I was accompanied by an increased affinity for cyclic AMP. To gain some insight into the mechanism by which cyclic AMP activates protein kinase, the interaction between basic proteins, salt and the cyclic nucleotide in activating the kinase was studied.  相似文献   

2.
Summary The polymeric structure of the cyclic AMP-dependent protein kinase (E.C.2.7.1.37) from the dimorphic fungus Mucor rouxii was analyzed through studies of gel filtration and sucrose gradient centrifugation of the holoenzyme and its subunits and by photoaffinity labeling of the regulatory subunit. It was demonstrated that it is a tetramer composed by two regulatory subunits (R) of mol. wt. 75 000 and two catalytic subunits (C) of mol. wt. 41 000 forming a holoenzyme R2C2 of mol. wt. 242 000. Frictional coefficients of 1.55 and 1.62 for the holoenzyme and for the regulatory dimer, respectively, indicate a significant degree of dimensional asymmetry in both molecules. A procedure for the purification of the catalytic subunit of the kinase is presented. The holoenzyme could be bound to a cyclic AMP-agarose column and the catalytic subunit could be eluted by 0.5 M NaCl, well resolved from the bulk of protein. This particular behaviour of the holoenzyme in cyclic AMP-agarose chromatography allowed the inclusion of this step in the purification of the catalytic subunit and corroborated that the holoenzyme was not dissociated by cyclic AMP alone. The isolated catalytic subunit displays Michaelis-Menten behaviour towards kemptide, protamine and histone and is inhibited by sulfhydryl reagents, indicating that the molecule has at least one cysteine residue essential for enzyme activity. The catalytic activity of the isolated C subunit is inactivated by the mammalian protein kinase inhibitor, and is inhibited by the regulatory subunit from homologous and heterologous sources. In general, the properties of the catalytic subunit suggest a structural similarity between Mucor and mammalian C subunits.Abbreviations C catalytic subunit monomer of protein kinase - R regulatory subunit monomer of protein kinase - 8-N3-cyclic AMP 8-azido-cylic AMP - SDS sodium dodecyl sulfate - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) See AcknowledgementsCareer Investigators from the CONICET  相似文献   

3.
An antiserum against the catalytic subunit C of cyclic AMP-dependent protein kinase, isolated from bovine heart type II protein kinase, was produced in rabbits. Reaction of the catalytic subunit with antiserum and separation of the immunoglobulin G fraction by Protein A-Sepharose quantitatively removed the enzyme from solutions. Comparative immunotitration of protein kinases showed that the amount of antiserum required to eliminate 50% of the enzymic activity was identical for pure catalytic subunit, and for holoenzymes type I and type II. The reactivity of the holoenzymes with the antiserum was identical in the absence or the presence of dissociating concentrations of cyclic AMP. Most of the holoenzyme (type II) remains intact when bound to the antibodies as shown by quantification of the regulatory subunit in the supernatant of the immunoprecipitate. Titration with the antibodies also revealed the presence of a cyclic AMP-independent histone kinase in bovine heart protein kinase I preparations obtained by DEAE-cellulose chromatography. Cyclic AMP-dependent protein kinase purified from the particulate fraction of bovine heart reacted with the antiserum to the same degree as the soluble enzyme, whereas two cyclic AMP-independent kinases separated from the particle fraction neither reacted with the antiserum nor influenced the reaction of the antibodies with the cyclic AMP-dependent protein kinase. Immunotitration of the protein kinase catalytic subunit C from rat liver revealed that the antibodies had rather similar reactivities towards the rat liver and the bovine heart enzyme. This points to a relatively high degree of homology of the catalytic subunit in mammalian tissues and species. Broad applicability of the antiserum to problems related to cyclic AMP-dependent protein kinases is thus indicated.  相似文献   

4.
Fluorescence intensity and anisotropy measurements using the fluorescent adenosine cyclic 3',5'-phosphate (cAMP) analogue 1,N6-ethenoadenosine cyclic 3',5'-phosphate (epsilon-cAMP) are sensitive to the dissociation of epsilon-cAMP which occurs when either the type I or the type II regulatory subunit (RI or RII) of cAMP-dependent protein kinase associates with the catalytic subunit. Studies using epsilon-cAMP show that MgATP has opposite effects on the reconstitution of both types of protein kinase: MgATP strongly stabilizes the type I holoenzyme while it slightly destabilizes the type II holoenzyme. The synthetic substrate Kemptide has a small inhibitory effect on the reconstitution of both holoenzymes when tested at 10 microM concentration. The protein kinase inhibitor has a larger effect which is especially pronounced in the reassociation of the type I enzyme. The diminished relative ability of the type I regulatory subunit to compete with the protein kinase inhibitor suggests that the combined effects of the two opposing equilibria (epsilon-cAMP and catalytic subunit binding) are different for the two types of regulatory subunits. Displacement experiments show that cAMP and epsilon-cAMP bind about equally well to the type I subunit. Slow conformational changes accompanying the binding of epsilon-cAMP by both regulatory subunits are greatly accelerated with the holoenzymes, suggesting that dissociation of the holoenzymes occurs via ternary complexes. The time courses of epsilon-cAMP binding also show the heterogeneity of binding characteristics of RII. The 37 000-dalton fragment of type II subunit retains the epsilon-cAMP binding properties of the native subunit. However, only a fraction of the fragment preparation (approximately 32% estimated from sedimentation measurements) binds the catalytic subunit well, suggesting heterogeneity of cleavage.  相似文献   

5.
1. At least two classes of high-affinity cyclic AMP-binding proteins have been identified: those derived from cyclic AMP-dependent protein kinases (regulatory subunits) and those that bind a wide range of adenine analogues (adenine analogue-binding proteins). 2. In fresh-tissue extracts, regulatory subunits could be further subdivided into 'type I or 'type II' depending on whether they were derived from 'type I' or 'type II' protein kinase [see Corbin et al. (1975) J. Biol. Chem. 250, 218-225]. 3. The adenine analogue-binding protein was detected in crude tissue supernatant fractions of bovine and rat liver. It differed from the regulatory subunit of cyclic AMP-dependent protein kinase in many of its properties. Under the conditions of assay used, the protein accounted for about 45% of the binding of cyclic AMP to bovine liver supernatants. 4. The adenine analogue-binding protein from bovine liver was partially purified by DEAE-cellulose and Sepharose 6B chromatography. It had mol.wt. 185000 and was trypsin-sensitive. As shown by competition and direct binding experiments, it bound adenosine and AMP in addition to cyclic AMP. At intracellular concentrations of adenine nucleotides, binding of cyclic AMP was essentially completely inhibited in vitro. Adenosine binding was inhibited by only 30% under similar conditions. 5. Rat tissues were examined for the presence of the adenine analogue-binding protein, and, of those examined (adipose tissue, heart, brain, testis, kidney and liver), significant amounts were only found in the liver. The possible physiological role of the adenine analogue-binding protein is discussed. 6. Because the adenine analogue-binding protein or other cyclic AMP-binding proteins in tissues may be products of partial proteolysis of the regulatory subunit of cyclic AMP-dependent protein kinase, the effects of trypsin and aging on partially purified protein kinase and its regulatory subunit from bovine liver were investigated. In all studies, the effects of trypsin and aging were similar. 7. In fresh preparations, the cyclic AMP-dependent protein kinase had mol.wt. 150000. Trypsin treatment converted it into a form of mol.wt 79500. 8. The regulatory subunit of the protein kinase had mol.wt. 87000. It would reassociate with and inhibit the catalytic subunit of the enzyme. Trypsin treatment of the regulatory subunit produced a species of mol.wt. 35500 which bound cyclic AMP but did not reassociate with the catalytic subunit. Trypsin treatment of the protein kinase and dissociation of the product by cyclic AMP produced a regulatory subunit of mol.wt. 46500 which reassociated with the catalytic subunit. 9. These results may be explained by at least two trypsin-sensitive sites on the regulatory subunit. A model for the effects of trypsin is described.  相似文献   

6.
Cyclic nucleotide-dependent protein kinases of the rat pancreas   总被引:2,自引:0,他引:2  
A cyclic GMP-dependent protein kinase, which catalyzes the phosphorylation of histones and protamine by ATP, was present together with a cyclic AMP-dependent protein kinase and a readily active protein kinase in the rat pancreas. These three protein kinases were separated by chromatography on DEAE-cellulose. The cyclic GMP-dependent protein kinase was relatively cationic and fragile. Upon activation by cyclic GMP, this kinase dissociated into a light catalytic subunit and a somewhat heavier cyclic GMP binding subunit. A crude 27,000 × g pancreas supernatant had two apparent Ka values for cyclic GMP of 2.10?8 M and 3.10?7 M. The possible relationships between protein kinases and enzyme secretion are discussed.  相似文献   

7.
A cAMP-dependent protein kinase from mycelia of Saccobolus platensis was characterized. The holoenzyme seems to be a dimer (i.e., regulatory subunit--catalytic subunit) of 78,000 Da, slightly activated by cAMP but susceptible to dissociation into its subunits by cAMP, or by kemptide and protamine, the best substrates for Saccobolus protein kinase. The regulatory subunit was purified to homogeneity by affinity chromatography. It is highly specific for cAMP and has two types of binding sites but failed to inhibit the phosphotransferase activity of the homologous or the heterologous (bovine heart) catalytic components. The activity of the catalytic subunit was completely abolished by the regulatory component of the bovine heart protein kinase as well as by a synthetic peptide corresponding to the active site of the mammalian protein kinase inhibitor. The data suggest that interaction between the subunits of the S. platensis protein kinase is different than that found in cAMP-dependent protein kinases from other sources. Similarities and differences between the Saccobolus protein kinase and enzymes from low eucaryotes and mammalian tissues are discussed.  相似文献   

8.
A cyclic AMP dependent protein kinase (EC 2.7.1.37) from sea urchin sperm as purified to near homogeneity and characterized. A 68-fold purification of the enzyme was obtained. This preparation had a specific activity of 389 000 units/mg protein with protamine as the substrate. On the basis of the purification required, it may be calculated that the protein kinase constitutes as much as 1.5% of the soluble protein in sperm. There appeared to be a single form of the enzyme in sea urchin sperm, based on the behavior of the enzyme during DEAE-cellulose and Sephadex G-200 column chromatography. Magnesium ion was required for enzyme activity. The rate of phosphorylation of protamine was stimulated 2.5-fold by an optimal concentration of 0.9 M NaCl. The Km for ATP (minus cyclic AMP) was 0.119 +/- 0.013 (S.D.) and 0.055 mM +/- 0.009 (S.D.) in the presence of cyclic AMP. The specificity of the enzyme toward protein acceptors, in decreasing order of phosphorylation, was found to be histone f1 protamine, histone f2b, histone f3 and histone f2a; casein and phosvitin were not phosphorylated. The holoenzyme was found to have an apparent molecular weight of 230 000 by Sephadex G-200 chromatography. In the presence of 5 - 10(-6) M cyclic AMP, the holoenzyme was dissociated on Sephadex G-200 to a regulatory subunit of molecular weight 165 000 and a catalytic subunit of Mr 73 000. The dissociation could also be demonstrated by disc gel electrophoresis in the presence and absence of cyclic AMP.  相似文献   

9.
Type I and type II cyclic AMP-dependent protein kinases, present in the cytosol from each of five rat and two bovine tissues, were separated from one another by DEAE-cellulose column chromatography in order to study their possible autophosphorylation. In each of the tissues studied, autophosphorylation of the regulatory subunit of the cyclic AMP-dependent protein kinase by the catalytic subunit could be demonstrated with the type II enzyme but not with the type I enzyme.  相似文献   

10.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

11.
The catalytic subunit of cyclic AMP-dependent protein kinase stimulates the inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase. The stimulated inactivation of carboxylase is due to activation of carboxylase kinase by the catalytic subunit. Activation of carboxylase kinase activity is accompanied by the incorporation of 0.6 mol of phosphate per mole of carboxylase kinase. Addition of the regulatory subunit of cyclic AMP-dependent protein kinase prevents the activation of carboxylase kinase. Phosphorylation and activation of carboxylase kinase has no effect on the Km for ATP, but decreases the Km for acetyl-CoA carboxylase from 93 to 45 nm. Inactivation of carboxylase by the carboxylase kinase requires the presence of coenzyme A even when the activated carboxylase kinase is used. Acetyl-CoA carboxylase is not phosphorylated or inactivated by the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

12.
Diaphragm extracts were subjected to electrophoresis on polyacrylamide gels to separate the different molecular species of th cyclic AMP-dependent protein kinase. Using cyclic [3H]AMP, three peaks of binding activity were observed. The peak closest to the origin (peak I) was associated with cyclic AMP-dependent protein kinase activity and was abolished by incubation of the extracts with cyclic AMP prior to electrophoresis. The peak farthest from the origin (peak III) was devoid of kinase activity and was increased by incubation of extracts with cyclic AMP before electrophoresis; furthermore, when extracts were incubated with cyclic [3H]AMP before electrophoresis, essentially all the radioactivity appeared in peak III. Peak II, in an intermediate position, was also abolished by preincubation of the extracts with cyclic AMP and both its binding capacity and cyclic AMP-dependent protein kinase activity were lower than in Peak I. A peak of cyclic AMP-independent protein kinase (peak 0) that migrated more slowly than peak II was also detected. From these and other data it is concluded that peaks I and II are cyclic AMP-dependent protein kinase and that peak III is the dissociated regulatory subunit, respectively. Peak 0 is cyclic AMP-independent protein kinase together with free catalytic subunits from cyclic AMP-dependent protein kinase. Incubation of rat diaphragms with epinephrine resulted in dose- and time-dependent decrease in peak I and increase in peak III. These changes correlated with the decrease of cyclic AMP-dependent protein kinase associated with peak I. No changes in Peak II were observed with epinephrine, but an increased peak 0 was noted. Changes in peak I and peak III correlated with the modification of glycogen synthase and glycogen phosphorylase activities. No regulatory subunits (peak III) were detected as phosphorylated forms in diaphragms previously equilibrated with 32P. Treatment with epinephrine produce no noticeable phosphorylation of these regulatory subunits.  相似文献   

13.
A single cyclic AMP-dependent protein kinase (EC 2.7.1.37) has been isolated from human platelets by using DEAE-cellulose ion-exchange chromatography and Sephadex G-150 gel filtration. The molecular weight of the protein kinase was estimated to be 86 490. In the presence of cyclic AMP, the protein kinase could be dissociated into a catalytic subunit of molecular weight 50 000, and either one regulatory subunit of molecular weight 110 000 or two regulatory subunits of molecular weights 110 000 and 38 100, depending on the pH used. Recombination of either of the regulatory subunits with the catalytic subunit restored cyclic AMP-dependency in the catalytic subunit. The apparent Km for ATP in the presence of 10 muM Mg2+ was 4 muM (plus cyclic AMP) and 4.3 muM (minus cyclic AMP). The concentration of cyclic AMP needed for half-maximal stimulation of the protein kinase was 0.172 muM and apparent dissociation constants of 3.7 nM (absence of MgATP) and 0.18 muM (presence of MgATP) were exhibited by the "protein kinase-cyclic AMP complex". The enzyme required Mg2+ for maximum activity and showed a pH optimum of 6.2 with histone as substrate. In addition to four major endogenous platelet protein acceptors of apparent molecular weights 45 000, 28000, 18 500, and 11 100, the platelet protein kinase also phosphorylated the exogenous acceptor proteins thrombin, collagen and histone, all capable of inducing platelet aggregation. Prothrombin, a nonaggregating agent, was not phosphorylated.  相似文献   

14.
Although guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase (protein kinase G) which was partially purified from silkworm pupae was not dissociated by cyclic GMP into catalytic and regulatory subunits as described for adenosine 3':5'-monophosphate-dependent protein kinase (protein kinase A) (Takai, Y., Nakaya, S., Inoue, M., Kishimoto, A., Nishiyama, K., Yamamura, H., and Nishizuka, Y. (1976) J. Biol. Chem. 251, 1481-1487), limited proteolysis with trypsin resulted in the formation of catalytic and cyclic GMP-binding fragments which showed molecular weights of approximately 3.4 X 10(4) and 3.6 X 10(4), respectively (the molecular weight of native protein kinase G was 1.4 X 10(5)). The catalytic fragment did not bind cyclic GMP and was fully active in the absence of the cyclic nucleotide. The fragment did not show an absolute requirement for a sulfhydryl compound and high concentrations of Mg2+ (50 to 100 mM), both of which were necessary for the maximal activation of native protein kinase G. The catalytic fragment was not inhibited by the cyclic GMP-binding fragment nor by the regulatory subunit of protein kinase A. Inversely, the cyclic GMP-binding fragment was unable to inhibit the catalytic subunit of protein kinase A. Protein inhibitor, which was described for protein kinase A, was inert for the catalytic fragment.  相似文献   

15.
A phosphoprotein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) from calf thymus nuclei was purified by DEAE-cellulose chromatography, hydroxyapatite, and Sepharose 6B gel filtration. The enzyme is a cyclic AMP-independent protein kinase by the following criteria: (a) the protein kinase did not bind cyclic AMP; (b) no inhibition of activity was obtained with the heat-stable protein kinase inhibitor from rabbit skeletal muscle; (c) the regulatory subunit of cyclic AMP-dependent protein kinase had no effect on activity; and (d) no inhibition was obtained with antibody to cyclic AMP-dependent protein kinase. The nuclear cyclic AMP-independent protein kinase readily phosphorylated protamine on serine and to a lesser extent on threonine. Homologous nucleoplasmic RNA polymerase (EC 2.7.7.6) is a better substrate than arginine-rich histone, phosvitin or casein. Physical characteristics of the enzyme are described.  相似文献   

16.
Previous kinetic studies have demonstrated that the activation of cyclic AMP-dependent protein kinase by cyclic AMP involves the formation of a ternary complex of cyclic AMP, the regulatory subunit (R) and the catalytic subunit (C). It is suggested that only this ternary complex breaks down to liberate the enzymically active catalytic subunit. We have performed cross-linking experiments with the holoenzyme and its dissimilar subunits in the presence of MgATP and various concentrations of cyclic AMP. Results from these cross-linking studies indicate that regulatory subunits exist as dimers in the native form. Moreover, dissociation of the holoenzyme or the reconstituted enzyme is promoted by cyclic AMP, and the effect of MgATP is to stabilize the enzyme in the tetrameric form. The success in cross-linking the regulatory and the catalytic subunits of protein kinase with the lysine-specific bifunctional cross-linking reagent dimethyl suberimidate may be attributed to the presence of a large number of lysine residues in the enzyme.  相似文献   

17.
R Kumar  K C Yuh  M Tao 《Enzyme》1978,23(2):73-83
Two adenosine 3',5'-cyclic monophosphate (cyclic-AMP)-binding protein factors (molecular weight 230,000) have been partially purified from human erythrocytes. One of these proteins seems to be different from the cyclic-AMP-binding component of the cyclic-AMP-dependent protein kinases. These protein factors are also capable of binding adenosine. We present data also on two forms of cyclic-AMP-dependent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) partially purified from the cytosol of normal human erythrocytes. Kinase I has been classified as type I enzyme on the basis of its activation when preincubated with protamine, histone or NaCl. The substrate specificities of the two kinases and many of their kinetic parameters are rather similar. Their subunit structure is reminiscent of that of kinases obtained from other sources. The catalytic subunit of both enzymes reversibly cross-react with the regulatory subunit of kinase I from the rabbit red blood cell.  相似文献   

18.
Summary Ustilago maydis was surveyed for cyclic AMP-dependent protein kinase activity. Using a combination of ion-exchange and molecular filtration techniques, we demonstrate that there is only one form of cyclic AMP-dependent protein kinase in the cytosolic fraction of the fungus. The kinase activity is specifically activated by cyclic AMP and utilizes protamine and kemptide as substrates. Most, if not all, of the cyclic AMP binding detected in the soluble fraction is associated with the protein kinase activity. Cyclic AMP-dependent protein kinase is completely dissociated by cyclic AMP into catalytic and regulatory subunits having an apparent molecular weight of 35 000 daltons as judged by sucrose gradient centrifugation.Post graduate fellow from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).Career investigator from CONICET.  相似文献   

19.
The regulatory subunit of cyclic AMP-dependent protein kinase I was purified to homogeneity from porcine skeletal muscle by two different procedures, one relying on affinity chromatography with cyclic AMP-Sepharose and the other relying exclusively on ion-exchange and molecular seive chromatography. Both procedures were adapted so that catalytic subunit also could be purified from the same enzyme preparation. In its native form the regulatory subunit was a dimer having a molecular weight of 92,500. Polyacrylamide gels run under denaturing conditions indicated that the dimer was composed of two identical subunits having a molecular weight 45,500. In addition to the dimeric regulatory subunit, a second, smaller cyclic AMP-binding protein frequently was observed. This protein having a molecular weight of 34,500 also was purified to homogeneity and appeared to be a proteolytic fragment derived from the regulatory subunit. Limited proteolysis with trypsin converted the regulatory subunit into a protein having a molecular weight of 34,500 and a polypeptide fragment having a molecular weight of approximately 11,000. Although the 34,500 molecular weight protein retained its capacity to bind cyclic AMP, it was monomeric apparently having lost its ability to aggregate to a dimer.  相似文献   

20.
We have characterized a cyclic AMP-resistant Chinese hamster ovary (CHO) cell mutant in which one of two major species of type I regulatory subunit (RI) of cyclic AMP-dependent protein kinase is altered. Wild-type CHO cell extracts contain two cyclic AMP-dependent protein kinase activities. As shown by DEAE-cellulose chromatography, there is a peak of type I protein kinase activity in mutant extracts, but the type II protein kinase activity is considerably reduced even though free type II regulatory subunit (RII) is present. The type I kinase from the mutant has an altered RI (RI*) whose KD for the binding of 8-N3[32P] cAMP (KD = 1.3 X 10(-5) M) is increased by more than 200-fold compared to RI from the wild-type enzyme (KD = 5.5 X 10(-8) M). No differences were found between the catalytic subunits from the wild-type and mutant type I kinases. A large portion of RI in mutant and wild-type extracts is present in the free form. The RI* derived from mutant type I protein kinase shows altered labeling by 8-N3[32P]cAMP (KD = 1.3 X 10(-5) M) whereas the free RI from the mutant is labeled normally by the photoaffinity label (KD = 7.2 X 10(-8) M), suggesting that the RI* which binds to the catalytic subunit is functionally different from the free form of RI. The decreased amount of type II kinase activity in the mutant appears to be due to competition of RI* with RII for binding to the catalytic subunit. Translation of mRNA from wild-type CHO cells results in the synthesis of two different charge forms of RI, providing biochemical confirmation of two different species of RI in CHO cells. Additional biochemical evidence based on isoelectric focusing behavior of 8-N3[32P]cAMP-labeled RI species and [35S]methionine-labeled RI from mutant and wild-type extracts confirms the charge heterogeneity of RI species in CHO cells. These genetic and biochemical data taken together are consistent with the conclusion that there are at least two different species of RI present in CHO cells and that one of these species is altered in the mutant analyzed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号