首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
蒋星红  钱忠明 《动物学报》1998,44(3):308-313
用SD种系清醒大鼠,观察脑室注射高渗物质引起的饮水及c-fos在脑内的表达部位。实验结果表明,脑室内微量注射1.5mol/L、3mol/L NaCl或3mol/L蔗糖均可诱导饮水反应,并在前脑的终板血管器官、正中视前核和下丘脑视上核与室旁核中见到Fos样免疫反应阳性细胞,同样在后脑的最后区、臂旁外侧核与孤束核中也能见到Fos样免疫反应阳性细胞,同样在后脑的最后区、臂旁外侧核与孤束核中也能见到Fos  相似文献   

2.
Rats drank rapidly when 0.3 M NaCl was the only drinking fluid available after overnight water deprivation, consuming approximately 200 ml/24 h. Although such large intakes of this hypertonic solution initially elevated plasma osmolality, excretion of comparable volumes of urine more concentrated than 300 meq Na(+)/l ultimately appears to restore plasma osmolality to normal levels. Rats drank approximately 100 ml of 0.5 M NaCl after overnight water deprivation, but urine Na(+) concentration (U(Na)) did not increase sufficiently to achieve osmoregulation. When an injected salt load exacerbated the initial dehydration caused by water deprivation, rats increased U(Na) to void the injected load and did not significantly alter 24-h intake of 0.3 or 0.5 M NaCl. Rats with lesions of area postrema had much higher saline intakes and lower U(Na) than did intact control rats; nonetheless, they appeared to osmoregulate well while drinking 0.3 M NaCl but not while drinking 0.5 M NaCl. Detailed analyses of drinking behavior by intact rats suggest that individual bouts were terminated by some rapid postabsorptive consequence of the ingested NaCl load that inhibited further NaCl intake, not by a fixed intake volume or number of licks that temporarily satiated thirst.  相似文献   

3.
Cerebral osmoreceptors mediate thirst and neurohypophyseal secretion stimulated by increases in the effective osmolality of plasma (P(osmol)). The present experiments determined whether an intragastric load of hypertonic saline (ig HS; 0.5 M NaCl, 4 ml) would potentiate these responses before induced increases in P(osmol) in the general circulation could be detected by cerebral osmoreceptors. Adult rats deprived of water overnight and then given intragastric HS consumed much more water in 15-30 min than rats given either pretreatment alone, even though systemic P(osmol) had not yet increased significantly because of the gastric load. In other rats pretreated with an intravenous infusion of 1 M NaCl (2 ml/h for 2 h), plasma levels of vasopressin and oxytocin were considerably elevated 15 and 25 min after intragastric HS treatment, whereas systemic P(osmol) was not increased further. These and other findings are consistent with previous reports that hepatic portal osmoreceptors (or Na(+) receptors) stimulate thirst and neurohypophyseal hormone secretion in euhydrated rats given gastric NaCl loads and indicate that these effects are potentiated when animals are dehydrated.  相似文献   

4.
Previous studies have indicated that there is increased activation of the paraventricular nucleus (PVN) in rats with chronic heart failure (CHF); however, it is not clear if the preautonomic neurons within the PVN are specifically overactive. Also, it is not known if these neurons have altered responses to baroreceptor or osmotic challenges. Experiments were conducted in rats with CHF (6-8 wk after coronary artery ligation). Spontaneously active neurons were recorded in the PVN, of which 36% were antidromically activated from the rostral ventrolateral medulla (RVLM). The baseline discharge rate in RVLM-projecting PVN (PVN-RVLM) neurons from CHF rats was significantly greater than in sham-operated (sham) rats (6.0 ± 0.6 vs. 2.6 ± 0.3 spikes/s, P < 0.05). Picoinjection of the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid significantly decreased the basal discharge of PVN-RVLM neurons by 80% in CHF rats compared with 37% in sham rats. Fifty-two percent of spontaneously active PVN-RVLM neurons responded to changes in the mean arterial pressure (MAP). The changes in discharge rate in PVN-RVLM neurons after a reduction in MAP (+52 ± 7% vs. +184 ± 61%) or an increase in MAP (-42 ± 8% vs. -71 ± 6%) were significantly attenuated in rats with CHF compared with sham rats. Most PVN-RVLM neurons (63%), including all barosensitive PVN-RVLM neurons, were excited by an internal carotid artery injection of hypertonic NaCl (2.1 osmol/l), whereas a smaller number (7%) were inhibited. The increase in discharge rate in PVN-RVLM neurons to hypertonic stimulation was significantly enhanced in rats with CHF compared with sham rats (134 ± 15% vs. 92 ± 13%). Taken together, these data suggest that PVN-RVLM neurons are more active under basal conditions and this overactivation is mediated by an enhanced glutamatergic tone in rats with CHF. Furthermore, this enhanced activation of PVN-RVLM neurons may contribute to the altered responses to baroreceptor and osmotic challenges observed during CHF.  相似文献   

5.
Human erythrocytes suspended at 37 degrees C in hypertonic solution of either electrolytes or nonelectrolytes undergo hemolysis when the temperature is lowered toward 0 degrees C (Green, F.A., Jung, C.Y. 1977 J. Membrane Biol. 33:249). In the present studies this hypertonic cryohemolysis was profoundly affected by the pH of incubation, and was completely abolished at ph 5. In hypertonic NaCl, there was an apparent pH optimum at 6--6.5. In hypertonic sucrose, on the other hand, hemolysis increased progressively with increasing pH between 6 and 9. Amphotericin B inhibited hypertonic cryohemolysis in NaCl or KCl solution. No inhibiting effect of amphotericin B was observed when hypertonicity was due to sodium sulfate or sucrose. Valinomycin also inhibited hypertonic cryohemolysis in KCl, but did not affect the process in NaCl or sucrose solution. SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate) and phloretin interfered with this valinomycin effect, whereas phlorizin did not. These results indicate that dissipation of an osmotic gradient across membranes may be responsible for the inhibition of the hemolysis by these inophores. Iso-osmotic cell shrinkage induced by valinomycin in 150 mM NaCl solution did not result in cryohemolysis.  相似文献   

6.
Previous studies demonstrated the inhibitory participation of serotonergic (5-HT) and oxytocinergic (OT) neurons on sodium appetite induced by peritoneal dialysis (PD) in rats. The activity of 5-HT neurons increases after PD-induced 2% NaCl intake and decreases after sodium depletion; however, the activity of the OT neurons appears only after PD-induced 2% NaCl intake. To discriminate whether the differential activations of the 5-HT and OT neurons in this model are a consequence of the sodium satiation process or are the result of stimulation caused by the entry to the body of a hypertonic sodium solution during sodium access, we analyzed the number of Fos-5-HT- and Fos-OT-immunoreactive neurons in the dorsal raphe nucleus and the paraventricular nucleus of the hypothalamus-supraoptic nucleus, respectively, after isotonic vs. hypertonic NaCl intake induced by PD. We also studied the OT plasma levels after PD-induced isotonic or hypertonic NaCl intake. Sodium intake induced by PD significantly increased the number of Fos-5-HT cells, independently of the concentration of NaCl consumed. In contrast, the number of Fos-OT neurons increased after hypertonic NaCl intake, in both depleted and non-depleted animals. The OT plasma levels significantly increased only in the PD-induced 2% NaCl intake group in relation to others, showing a synergic effect of both factors. In summary, 5-HT neurons were activated after body sodium status was reestablished, suggesting that this system is activated under conditions of satiety. In terms of the OT system, both OT neural activity and OT plasma levels were increased by the entry of hypertonic NaCl solution during sodium consumption, suggesting that this system is involved in the processing of hyperosmotic signals.  相似文献   

7.
Water intakes in response to hypertonic, hypovolemic, and dehydrational stimuli were investigated in mice lacking angiotensin II as a result of deletion of the angiotensinogen gene (Agt-/- mice), and in C57BL6 wild-type (WT) mice. Baseline daily water intake in Agt-/- mice was approximately threefold that of WT mice because of a renal developmental disorder of the urinary concentrating mechanisms in Agt-/- mice. Intraperitoneal injection of hypertonic saline (0.4 and 0.8 mol/l NaCl) caused a similar dose-dependent increase in water intake in both Agt-/- and WT mice during the hour following injection. As well, Agt-/- mice drank appropriate volumes of water following water deprivation for 7 h. However, Agt-/- mice did not increase water or 0.3 mol/l NaCl intake in the 8 h following administration of a hypovolemic stimulus (30% polyethylene glycol sc), whereas WT mice increased intakes of both solutions during this time. Osmoregulatory regions of the brain [hypothalamic paraventricular and supraoptic nuclei, median preoptic nucleus, organum vasculosum of the lamina terminalis (OVLT), and subfornical organ] showed an increased number of neurons exhibiting Fos-immunoreactivity in response to intraperitoneal hypertonic NaCl in both Agt-/- mice and WT mice. Polyethylene glycol treatment increased Fos-immunoreactivity in the subfornical organ, OVLT, and supraoptic nuclei in WT mice but only increased Fos-immunoreactivity in the supraoptic nucleus in Agt-/- mice. These data show that brain angiotensin is not essential for the adequate functioning of neural pathways mediating osmoregulatory thirst. However, angiotensin II of either peripheral or central origin is probably necessary for thirst and salt appetite that results from hypovolemia.  相似文献   

8.
It is well known that hyperosmolality suppresses thermoregulatory responses and that plasma osmolality (P(osmol)) increases with exercise intensity. We examined whether the decreased esophageal temperature thresholds for cutaneous vasodilation (TH(FVC)) and sweating (TH(SR)) after 10-day endurance training (ET) are caused by either attenuated increase in P(osmol) at a given exercise intensity or blunted sensitivity of hyperosmotic suppression. Nine young male volunteers exercised on a cycle ergometer at 60% peak oxygen consumption rate (V(O2 peak)) for 1 h/day for 10 days at 30 degrees C. Before and after ET, thermoregulatory responses were measured during 20-min exercise at pretraining 70% V(O2 peak) in the same environment as during ET under isoosmotic or hyperosmotic conditions. Hyperosmolality by approximately 10 mosmol/kgH2O was attained by acute hypertonic saline infusion. After ET, V(O2 peak) and blood volume (BV) both increased by approximately 4% (P < 0.05), followed by a decrease in TH(FVC) (P < 0.05) but not by that in TH(SR). Although there was no significant decrease in P(osmol) at the thresholds after ET, the sensitivity of increase in TH(FVC) at a given increase in P(osmol) [deltaTH(FVC)/deltaP(osmol), degrees C x (mosmol/kgH2O)(-1)], determined by hypertonic infusion, was reduced to 0.021 +/- 0.005 from 0.039 +/- 0.004 before ET (P < 0.05). The individual reductions in deltaTH(FVC)/deltaP(osmol) after ET were highly correlated with their increases in BV around TH(FVC) (r = -0.89, P < 0.005). In contrast, there was no alteration in the sensitivity of the hyperosmotic suppression of sweating after ET. Thus the downward shift of TH(FVC) after ET was partially explained by the blunted sensitivity to hyperosmolality, which occurred in proportion to the increase in BV.  相似文献   

9.
The Japanese quail drinks water vigorously after water deprivation, haemorrhage and administration of hypertonic saline solution. Most avian species responded to angiotensin II (AII) by drinking, but carnivorous birds and those originating in arid regions were insensitive. The receptive sites for AII were the subfornical organ (SFO) and the preoptic area (POA) in the Japanese quail. Catecholaminergic fibers proceed from the POA to the SFO. Dipsogenic information generated by AII at the POA is transferred to the SFO through the catecholaminergic nerve fibres. Plasma AII increased following dehydration and haemorrhage and returned to a normal level immediately after rehydration. Following dehydration, arginine vasotocin, aldosterone and corticosterone increased in plasma as well as AII. A single intraperitoneal injection of AII induced increases of arginine vasotocin, aldosterone and corticosterone in plasma. It seems that AII functions as a trigger for release of these other hormones during dehydration.  相似文献   

10.
Dehydrated dogs are known to inhibit secretion of vasopressin (VP) within minutes after drinking water, before plasma osmolality (P(osmol)) diminishes. The present studies determined whether water ingestion causes a similar rapid inhibition of neurohypophyseal hormone secretion in rats. Adult rats were infused with 1 M NaCl (2 ml/h iv) for 240 min to stimulate VP and oxytocin (OT) secretion. After 220 min of infusion, rats were given water to drink for 5 min, and blood samples were taken 5 and 15 min later for RIA. Plasma VP (pVP) was much lower when rats ingested water than when they drank nothing even though P(osmol) was not significantly altered. Plasma OT (pOT) was affected similarly. In contrast, no effects on pVP or pOT occurred when rats drank isotonic NaCl solution for 5 min in amounts comparable to the water intakes (approximately 5.5 ml). These results suggest that neurohypophyseal secretion of VP and OT in rats is inhibited rapidly by water drinking, and that this inhibition is mediated by a visceral signal of osmotic dilution rather than by the act of drinking per se.  相似文献   

11.
Upon exposure of human red blood cells to hypertonic sucrose, the fluorescence of the potentiometric indicator 3,3'- dipropylthiadicarbocyanine iodide, denoted diS-C3(5), displays a biphasic time course indicating the rapid development of an inside- positive transmembrane voltage, followed by a slow DIDS (4,4'- diisothiocyano-2,2'-disulfonic acid stilbene)-sensitive decline of the voltage. In addition to monitoring membrane potential, proton (or hydroxide) fluxes were measured by a pH stat method, cell volume was monitored by light scattering, and cell electrolytes were measured directly when red cells were shrunken either with hypertonic NaCl or sucrose. Shrinkage by sucrose induced an initial proton efflux (or OH- influx) of 5.5 mu eq/g Hb.min and a Cl shift of 21-31 mu eq/g Hb in 15 min. Upon shrinkage with hypertonic NaCl, the cells are initially close to Donnan equilibrium and exhibit no detectable shift of Cl or protons. Experiments with the carbonic anhydrase inhibitor ethoxzolamide demonstrate that for red cell suspensions exposed to air and shrunken with sucrose, proton fluxes mediated by the Jacobs-Stewart cycle contribute to dissipation of the increased outward Cl concentration gradient. With maximally inhibitory concentrations of ethoxzolamide, a residual proton efflux of 2 mu eq/g Hb.min is insensitive to manipulation of the membrane potential with valinomycin, but is completely inhibited by DIDS. The ethoxzolamide-insensitive apparent proton efflux may be driven against the electrochemical gradient, and is thus consistent with HCl cotransport (or Cl/OH exchange). The data are consistent with predictions of equations describing nonideal osmotic and ionic equilibria of human red blood cells. Thus osmotic equilibration after shrinkage of human red blood cells by hypertonic sucrose occurs in two time-resolved steps: rapid equilibration of water followed by slower equilibration of chloride and protons (or hydroxide). Under our experimental conditions, about two-thirds of the osmotically induced apparent proton efflux is mediated by the Jacobs- Stewart cycle, with the remainder being consistent with mediation via DIDS-sensitive HCl cotransport (or Cl/OH exchange).  相似文献   

12.
The hypothesis that natriuresis can be induced by stimulation of gastrointestinal osmoreceptors was tested in eight supine subjects on constant sodium intake (150 mmol NaCl/day). A sodium load equivalent to the amount contained in 10% of measured extracellular volume was administered by a nasogastric tube as isotonic or hypertonic saline (850 mM). In additional experiments, salt loading was replaced by oral water loading (3.5% of total body water). Plasma sodium concentration increased after hypertonic saline (+3.1 +/- 0.7 mM), decreased after water loading (-3.8 +/- 0.8 mM), and remained unchanged after isotonic saline. Oncotic pressure decreased by 9.4 +/- 1.2, 3.7 +/- 1.2, and 10.7 +/- 1.3%, respectively. Isotonic saline induced an increase in renal sodium excretion (104 +/- 15 to 406 +/- 39 micromol/min) that was larger than seen with hypertonic saline (85 +/- 15 to 325 +/- 39 micromol/min) and water loading (88 +/- 11 to 304 +/- 28 micromol/min). Plasma ANG II decreased to 22 +/- 6, 35 +/- 6, and 47 +/- 5% of baseline after isotonic saline, hypertonic saline, and water loading, respectively. Plasma atrial natriuretic peptide (ANP) concentrations and urinary excretion rates of endothelin-1 were unchanged. In conclusion, stimulation of osmoreceptors by intragastric infusion of hypertonic saline is not an important natriuretic stimulus in sodium-replete subjects. The natriuresis after intragastric salt loading was independent of ANP but can be explained by inhibition of the renin-angiotensin system.  相似文献   

13.
The effects of osmotic stress on human platelets   总被引:1,自引:0,他引:1  
The effect of osmotic stress on human platelets was investigated at 0, 25, and 37 degrees C. The osmolality of the suspending plasma was decreased by adding water or increased by adding sodium chloride or sucrose. After 5 min, isotonicity was restored by dilution with an excess of isotonic phosphate-buffered saline. After centrifugation, the platelets were resuspended in autologous plasma and then incubated for 1 hr at 37 degrees C before assaying the active transport of 5-hydroxytryptamine (5-HT) and the hypotonic stress response. Anisosmotic conditions had a greater effect on the extent of volume reversal in the hypotonic stress test than on 5-HT uptake. At 25 degrees C, only moderate degrees of hypotonicity (0.25 osmol/kg) or hypertonicity (0.59 osmol/kg) were sufficient to depress the hypotonic stress response. In general, platelets tolerated departures from isotonic conditions better at 0 degree C than at the higher temperatures. Furthermore, at 0 and 25 degrees C approximately equiosmolal concentrations of sucrose and sodium chloride depressed the hypotonic stress response to similar extents, but at 37 degrees C high osmolalities (greater than 2 osmol/kg) were tolerated better when the additive was sucrose than when it was sodium chloride. Platelets shrank when subjected to hyperosmotic conditions, but their discoid shape and the peripheral band of microtubules were maintained.  相似文献   

14.
Although exogenous angiotensin is recognized as a potent dipsogen, the participation of endogenous angiotensin in thirst has not been well established. To investigate this question, we produced thirst in rats by relative cellular dehydration (hypertonic NaCl injection), or hypovolemia (hyperoncotic polyethylene glycol injection). An angiotensin receptor antagonists (sar(1)-ala(8)- angiotensin II, P-113), or a converting enzyme inhibitor (SQ, 20, 881, SQ) given to thirsty rats by intracerebroventricular (IVT) or peripheral routes. P-113 infused i.v. (10 μg/kg/min) or injected IVT (10 μg) did not alter the drinking response to either thirst stimulus. The latter treatment reduced the drinking response to 50 ng of IVT angiotensin II (p < 0.005). SQ given i.m. (2 mg/kg), IVT (2 × 50 μg), or both routes did not alter relative cellular dehydration thirst. Injection of SQ IVT did not alter hypovolemic thirst, whereas a significantly (p < 0.005) enhanced response occured after i.m. SQ. The enhanced response was not observed when animals were given both IVT and i.m. SQ. The IVT treatment with SQ markedly reduced (P < 0.005) drinking after 50 ng IVT angiotensin I. The data demonstrate that inhibition of angiotensin receptors or converting enzyme does not prevent appropriate drinking responses to primary thirst stimuli. Thus, if angiotensin participates in these endogenous thirst drives, its role is not an absolute requirement.  相似文献   

15.
Neurohumoral responses have been implicated in the pathogenesis of ischemia-evoked cerebral edema. In a well-characterized animal model of ischemic stroke, the present study was undertaken to 1) study the profile of plasma arginine-vasopressin (AVP), and 2) determine whether osmotherapy with mannitol and various concentrations of hypertonic saline (HS) solutions influence plasma AVP levels. Halothane-anesthetized adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion with the intraluminal filament technique. Plasma AVP levels (means +/- SD) were significantly elevated at 24 h (42 +/- 21 pg/ml), 48 h (50 +/- 28 pg/ml), and 72 h (110 +/- 47 pg/ml), and returned to baseline at 96 h (22 +/- 15 pg/ml) following middle cerebral artery occlusion compared with sham-operated controls (14 +/- 7 pg/ml). Plasma AVP levels at 72 h were significantly attenuated with 7.5% HS (37 +/- 8 pg/ml; 360 +/- 11 osmol/l) compared with 0.9% saline (73 +/- 6; 292 +/- 6 osmol/l), 3% HS (66 +/- 8 pg/ml; 303 +/- 12 osmol/l), or mannitol (74 +/- 9 pg/ml; 313 +/- 14 osmol/l) treatment. HS (7.5%) significantly attenuated water content in the ipsilateral and contralateral hemispheres compared with surgical shams, 0.9% saline, 3% HS, and mannitol treatments. Peak plasma AVP levels were not associated with direct histopathological injury to the anterior hypothalamus. Attenuation of brain water content with 7.5% HS treatment coincides with attenuated serum AVP levels, and we speculate that this may represent one additional mechanism by which osmotherapy attenuates edema associated with ischemic stroke.  相似文献   

16.
Summary The variation over time of the volume of Corynebacterium glutamicum following osmotic upshocks produced by the addition of increasing NaCl quantities was measured by a light-scattering method. During the first seconds the cell volume rapidly decreased. The extent of volume reduction varied between 30 % at 1.5 osmol/kg and 65 % at 3.3 osmo/kg. In a second phase the cell volume increased again over a time period lasting 10 minutes or more depending on the magnitude of the saline upshock.  相似文献   

17.
Both systemically administered furosemide and isoproterenol produce water intake (i.e., thirst). Curiously, however, in light of the endocrine and hemodynamic effects produced by these treatments, they are remarkably ineffective in eliciting intake of hypertonic saline solutions (i.e., operationally defined as sodium appetite). Recent work indicates that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nuclei (LPBN) markedly enhance a preexisting sodium appetite. The present studies establish that a de novo sodium appetite can be induced with LPBN-methysergide treatment under experimental conditions in which only water is typically ingested. The effects of bilateral LPBN injections of methysergide were studied on the intake of water and 0. 3 M NaCl following acute (beginning 1 h after treatment) diuretic (furosemide)-induced sodium and water depletion and following subcutaneous isoproterenol treatment. With vehicle injected into the LPBN, furosemide treatment and isoproterenol injection both caused water drinking but essentially no intake of hypertonic saline. In contrast, bilateral treatment of the LPBN with methysergide induced the intake of 0.3 M NaCl after subcutaneous furosemide and isoproterenol. Water intake induced by subcutaneous furosemide or isoproterenol was not changed by LPBN-methysergide injections. The results indicate that blockade of LPBN-serotonin receptors produces a marked intake of hypertonic NaCl (i.e., a de novo sodium appetite) after furosemide treatment as well as subcutaneous isoproterenol.  相似文献   

18.
In DOCA-salt rats, the time course of the synergistic interaction between osmolality and DOCA to produce hypertension is unknown. Therefore, in rats 2 wk after implantation of subcutaneous silicone pellets containing DOCA (65 mg) or no drug (sham), we determined blood pressure (BP) and heart rate (HR) responses, using telemetric pressure transducers, during 2 wk of excess salt ingestion (1% NaCl in drinking water). BP was unaltered in sham rats after increased salt, but in DOCA rats BP increased within 4 h. The initial hypertension of 30-35 mmHg stabilized within 2 days, followed approximately 5 days later by a further increment of approximately 30 mmHg. HR first decreased during the dark phase; the second phase was linked to an abrupt increase in HR and BP variability and decreased HR variability. Pressor responses to acute intravenous hypertonic saline infusion were doubled in DOCA-treated rats via vasopressin and nonvasopressin mechanisms. Only in DOCA-treated rats, portal vein hypertonic saline infusion increased BP, which was prevented by V(1) vasopressin blockade. After 2 wk of DOCA-salt, oral ingestion of water rapidly decreased BP. Intraportal infusion of water did not lower BP in DOCA-salt rats, suggesting that hepatic osmoreceptors were not involved. In summary, the hypertension of DOCA-treated rats consuming excess salt exhibits multiple phases and can be rapidly reversed. Hypertonicity-induced vasopressin and nonvasopressin pressor mechanisms that are augmented by DOCA, and hepatic osmoreceptors may contribute to the initial developmental phase. With time, combined DOCA-salt induces marked changes in the regulation of the autonomic nervous system, which may favor hypertension development.  相似文献   

19.
Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.  相似文献   

20.
G J Morris  J Farrant 《Cryobiology》1973,10(2):119-125
The increase in thermal shock hemolysis in hypertonic sodium chloride with increasing cooling rate was confirmed. Thermal shock damage was also induced by hypertonic solutions of sucrose but it decreased with increasing cooling rate. The effect of cooling rate on thermal shock hemolysis appears to be due to the time that the cells are in the hypertonic solutions. The extent of the stress of the temperature reduction was independent of the cooling rate. In hypertonic sodium chloride susceptibility to thermal shock damage increased with increasing time of exposure at +25 °C (0–5 min) before decreasing with time (5–50 min). In contrast, with hypertonic sucrose, thermal shock damage increased gradually with time of exposure. The protective effects of sucrose on thermal shock hemolysis at a given osmolality can be explained by the different solution properties (e.g., ionic strength) of hypertonic sodium chloride and sucrose. These results suggest that the role of thermal shock damage during slow freezing should be reexamined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号