首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphyromonas gingivalis is a periodontal pathogen whose fimbriae are classified into six genotypes based on the diversity of the fimA genes encoding each fimbria subunit. It was suggested that P. gingivalis strains with type II fimbriae were more virulent than type I strains. For the present study, we generated the mutants in which fimA was substituted with different genotypes to study virulence of type II fimbriae. Using plasmid vectors, fimA of ATCC33277 (type I strain) was substituted with type II fimA, and that of OMZ314 (type II strain) with type I fimA. The substitution of type I fimA with type II enhanced bacterial adhesion/invasion to epithelial cells, whereas substitution with type I fimA resulted in diminished efficiency. Following bacterial invasion, type II clones swiftly degraded cellular paxillin and focal adhesion kinase, and inhibited cellular migration, whereas type I clones and DeltafimA mutants did not. BIAcore analysis demonstrated that type II fimbriae possess greater adhesive abilities for their receptor alpha5beta1-integrin than those of type I. In a mouse abscess model, the type II clones significantly induced serum IL-1beta and IL-6, as well as other infectious symptoms. These results suggest that type II fimbriae are a critical determinant of P. gingivalis virulence.  相似文献   

2.
The adhesion properties of the recombinant fimbriae (r-fimbriae) recovered from a YH522 transformant of Porphyromonas gingivalis which harbors a chimeric plasmid, pYHF2, containing the fimA gene of strain 381 were compared with those of the endogenous fimA fimbriae of strain 33277. The adhesion level of the r-fimbriae to Actinomyces viscosus was clearly lower than that of the endogenous fimbriae. In addition, the r-fimbriae were shown to lack some minor components detectable in the endogenous fimbriae. The plasmid pYHF2 prepared from the YH522 transformant was then transformed into six different P. gingivalis strains and the resultant pYHF2-containing strains were examined for their fimbrial expression. In spite of the presence of a considerable diversity in the expression level of the r-fimbriae among these transformants, it was evident that the strains expressing higher levels of the r-fimbriae exhibited a greater decrease in adhesion activity to other bacteria and to oral epithelial cells, as well as in self-aggregation.  相似文献   

3.
Abstract Immunochemical specificity of lipopolysaccharide an the molecular property of the gene encoding the fimbrilin ( fimA ) of Porphyromonas gingivalis strains were examined using 'fimbriated' strains 381 and HG564 and 'non-fimbriated' strains 381FL and W50. Lipopolysaccharide from strains 381, 381FL and HG564 reacted with monoclonal antibody raised to lipopolysaccharide from strain 381 to give a fused precipitin band by the immunodiffusion test. However, silver staining and Western blotting of lipopolysaccharide clearly revealed a difference in profile of bands between strains 381 and 381FL. On the other hand, lipopolysaccharide from W50 formed another precipitin band and reacted with the antibody, but only at higher concentrations of lipopolysaccharide. The fimA genes in these strains were amplified by polymerase chain reaction and cloned. Sequencing of the fimA gene revealed thatthe fimA (W50) was almost identical to fimA (HG564), but a notable difference was observed at the start codon of the open reading frame, while the fimA (381FL) was considerably different from fimA of other strains and its open reading frame was found to be missing. These results indicate that the molecular structure of the fimA genes of these strains is not homologous, indicating that moe molecular modifications in the fimA gene should occur during in vitro passages and maintenance of strains of P. gingivalis in laboratories.  相似文献   

4.
5.
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.  相似文献   

6.
Glutamic protease distribution is limited to filamentous fungi   总被引:2,自引:0,他引:2  
Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans, which has been linked to an increased risk for atherosclerosis-related events. In this study, we examined the effect of P. gingivalis infection on human macrophages with respect to foam cell formation, the hallmark of early atherogenesis, and the potential of P. gingivalis to induce its uptake by these cells. Human monocyte-derived macrophages were incubated with low density lipoprotein and infected with P. gingivalis FDC381 or its fimbriae deficient mutant, DPG3. Consistent with a role for fimbriae in this process, strain 381 significantly increased foam cell formation as compared to DPG3. Recovery of viable P. gingivalis in antibiotic protection experiments was significantly higher for strain 381 than for DPG3. By transmission electron microscopy, the wild-type strain was shown to adhere to and enter THP-1 cells. These results suggest that properties of P. gingivalis which render it capable of adhering to/invading other cell types may also be operative in macrophages and play an important role in its atherogenic potential.  相似文献   

7.
Fimbrial production by Porphyromonas gingivalis was inactivated by insertion-duplication mutagenesis, using the cloned gene for the P. gingivalis major fimbrial subunit protein, fimA. by several criteria, this insertion mutation rendered P. gingivalis unable to produce fimbrilin or an intact fimbrial structure. A nonfimbriated mutant, DPG3, hemagglutinated sheep erythrocytes normally and was unimpaired in the ability to coaggregate with Streptococcus gordonii G9B. The cell surface hydrophobicity of DPG3 was also unaffected by the loss of fimbriae. However, DPG3 was significantly less able to bind to saliva-coated hydroxyapatite than wild-type P. gingivalis 381. This suggested that P. gingivalis fimbriae are important for adherence of the organism to saliva-coated oral surfaces. Further, DPG3 was significantly less able to cause periodontal bone loss in a gnotobiotic rat model of periodontal disease. These observations are consistent with other data suggesting that P. gingivalis fimbriae play an important role in the pathogenesis of human periodontal disease.  相似文献   

8.
This study used the human monocytic cell line U937 to examine whether or not Porphyromonas gingivalis fimbriae could induce the adhesion of monocytes to endothelial cells. An in vitro adhesion assay was used to investigate the effects of the fimbriae on U937 cell adhesion to human umbilical vein endothelial cells (HUVEC). The fimbriae enhanced U937 cell adhesion to HUVEC in a dose-dependent manner. U937 cells adhered better to HUVEC pretreated with the fimbriae for a minimum of 2 hr than to untreated HUVEC. The enhanced adhesion was inhibited by a monoclonal antibody against P. gingivalis 381 fimbriae. Pretreatment of U937 cells with the fimbriae for 24 hr enhanced U937 cell adhesion to HUVEC approximately 4-fold. This phenomenon was inhibited by an anti-CD11b antibody, suggesting the involvement of CD11b. These results indicate that P. gingivalis fimbriae can induce monocyte adhesion to the endothelial cell surface. They also suggest that the fimbriae may be involved in the initial event for infiltration of monocytes into the periodontal tissues of individuals with adult periodontitis.  相似文献   

9.
We screened 63 clinical isolates of Bacteroides gingivalis from eight different laboratories for the presence of fimbriae by negative staining and by immunological methods. Techniques used were bacterial agglutination, Ouchterlony immunodiffusion and Western immunoblotting analysis using rabbit anti-fimbriae and anti-fimbrilin sera raised against fimbriae and fimbrilin (a constituent protein of B. gingivalis fimbriae) from B. gingivalis strain 381. In 49 of the 51 strains tested, fimbriae were clearly detected by negative staining, and 30 (60%) of the fimbriate strains were positive in all three of the immunological assays. A total of 37 strains (75%) were positive by immunoblotting analysis, which was the most reliable of the serological methods used in this study. The study shows that the majority of B. gingivalis strains are fimbriate, and that these fimbriae are immunologically related to the fimbriae of B. gingivalis strain 381. Molecular heterogeneity of fimbrilin was discovered by the immunoblotting analysis, when different strains were compared. With most of the strains, including strain 381, the antifimbrilin serum reacted with a protein of apparent molecular mass 43 kDa, but with 15 strains the immuno-reactive protein had an apparent molecular mass of 46 kDa.  相似文献   

10.
11.
Bacterial binding phenomena among different bacterial genera or species play an important role in bacterial colonization in a mixed microbiota such as in the human oral cavity. The coaggregation reaction between two gram-negative anaerobes, Treponema medium and Porphyromonas gingivalis, was characterized using fimbria-deficient mutants of P. gingivalis and specific antisera against purified fimbriae and bacterial whole cells. T. medium ATCC 700273 strongly coaggregated with fimbriate P. gingivalis strains ATCC 33277 and 381, but not with afimbriate strains including transposon-induced fimbria-deficient mutants and KDP98 as a fimA-disrupted mutant of P. gingivalis ATCC 33277. In the P. gingivalis-T. medium coaggregation assay, the presence of rabbit antiserum against the purified fimbriae or the whole cells of P. gingivalis ATCC 33277 produced different "aggregates" consisting predominantly of P. gingivalis cells with few spirochetes, but both preimmune serum and the antiserum against the afimbriate KDP98 cells did not inhibit the coaggregation reaction. Heated P. gingivalis cells lost their ability to bind both heated and unheated T. medium cells. This T. medium-P. gingivalis coaggregation reaction was inhibited by a cysteine proteinase inhibitor, leupeptin, and also by arginine and lysine, but not by EDTA or sugars including lactose. A binding assay on nitrocellulose membranes and immunoelectron microscopy demonstrated that a heat-stable 37 kDa surface protein on the T. medium cell attached to the P. gingivalis fimbriae.  相似文献   

12.
We previously reported the existence of two different kinds of fimbriae expressed by Porphyromonas gingivalis ATCC 33277. In this study, we isolated and characterized a secondary fimbrial protein from strain FPG41, a fimA-inactivated mutant of P. gingivalis 381. FPG41 was constructed by a homologous recombination technique using a mobilizable suicide vector, and failed to express the long fimbriae (41-kDa fimbriae) that were produced on the cell surface of P. gingivalis 381. However, short fimbrial structures were observed on the cell surface of FPG41 by electron microscopy. The fimbrial protein was purified from FPG41 by DEAE-Sepharose CL-6B column chromatography. The secondary fimbrial protein was eluted at 0.15 M NaCl, and the molecular mass of this protein was approximately 53 kDa as estimated by SDS-PAGE. An antibody against the 53-kDa fimbrial protein reacted with the short fimbriae of the FPG41 and the wild-type strain. However, the 41-kDa long fimbriae of the wild-type strain and the 67-kDa fimbriae of ATCC 33277 did not react with the same antibody. Moreover, the N-terminal amino acid sequence of the 53-kDa fimbrial protein showed only 2 of 15 residues that were identical to those of the 41-kDa fimbrial protein. These results show that the properties of the 53-kDa fimbriae are different from those of the 67-kDa fimbriae of ATCC 33277 as well as those of the 41-kDa fimbriae.  相似文献   

13.
Interaction between the major fimbriae of Porphyromonas gingivalis and gingival epithelial cells is important for bacterial adhesion and invasion. In this study, we identified integrins as an epithelial cell cognate receptor for P. gingivalis fimbriae. Immunoprecipitation and direct binding assays revealed a physical association between recombinant fimbrillin and beta1 integrins. In vitro adhesion and invasion assays demonstrated inhibition of binding and invasion of P. gingivalis by beta1 integrin antibodies. In contrast, invasion of a fimbriae-deficient mutant of P. gingivalis was not affected by integrin antibodies. Infection of gingival epithelial cells with wild-type P. gingivalis induced tyrosine phosphorylation of the 68 kDa focal adhesion protein paxillin, whereas the fimbriae-deficient mutant failed to evoke similar changes. Interestingly, activation of paxillin was not accompanied by an increase in the phosphorylation of focal adhesion kinase (FAK). These results provide evidence that P. gingivalis fimbriae promote adhesion to gingival epithelial cells through interaction with beta1 integrins, and this association represents a key step in the induction of the invasive process and subsequent cell responses to P. gingivalis infection.  相似文献   

14.
Coaggregation of Porphyromonas gingivalis and Prevotella intermedia.   总被引:1,自引:0,他引:1  
Porphyromonas gingivalis cells coaggregated with Prevotella intermedia cells. The coaggregation was inhibited with L-arginine, L-lysine, Nalpha-p-tosyl-L-lysine chloromethyl ketone, trypsin inhibitor, and leupeptin. Heat- and proteinase K-treated P. gingivalis cells showed no coaggregation with P. intermedia cells, whereas heat and proteinase K treatments of P. intermedia cells did not affect the coaggregation. The vesicles from P. gingivalis culture supernatant aggregated with P. intermedia cells, and this aggregation was also inhibited by addition of L-arginine or L-lysine and by heat treatment of the vesicles. The rgpA rgpB, rgpA kgp, rgpA rgpB kgp, and rgpA kgp hagA mutants of P. gingivalis did not coaggregate with P. intermedia. On the other hand, the fimA mutant lacking the FimA fimbriae showed coaggregation with P. intermedia as well as the wild type parent. These results strongly imply that a heat-labile and proteinous factor on the cell surface of P gingivalis, most likely the gingipain-adhesin complex, is involved in coaggregation of P. gingivalis and P. intermedia.  相似文献   

15.
Porphyromonas gingivalis is considered an important pathogen in periodontal disease. While this organism expresses a number of virulence factors, no study combining different virulence polymorphisms has, so far, been conducted. The occurrence of combined virulence (Cv) genotypes in 62 isolates of P. gingivalis was investigated from subjects displaying either chronic periodontitis or periodontal abscess. The Cv genotypes, based on gene variation of fimbriae (fimA), Lys-specific cystein proteinase (kgp) and Arg-specific cystein proteinase (prpR1/rgpA), were evaluated by PCR. The isolates were also subjected to capsular polysaccharide K-serotyping. A total of 18 Cv genotype variants based on fimA: kgp: rgpA were identified, of which II:I:A and II:II:A Cv genotypes (53.3%) were the two most frequently detected combinations. Moreover, 36% of the isolates were K-typeable, with the K6 serotype being the most prevalent (23%). Two isolates had the same genotype as the virulent strain W83. The results indicate that chronic periodontitis is not associated with a particularly virulent clonal type. A highly virulent genotype (e.g. strain W83) of P. gingivalis can be found in certain periodontitis patients.  相似文献   

16.
17.
18.
Porphyromonas gingivalis , a Gram-negative anaerobe, is known to be involved in the pathogenesis of periodontitis. P. gingivalis fimbriae, which are proteinaceous appendages extending from the cell surface, may contribute to the adherence of the organism to the host cell surface. We previously suggested that arginine-specific protease produced by P. gingivalis enhanced the adherence of purified fimbriae to fibroblasts or matrix proteins. In this study, we have revealed the mechanism of the enhanced binding of fimbriae by the protease in more detail. Arg-specific protease and fimbriae were obtained from P. gingivalis 381 cells and purified. We then analysed the interaction of fimbriae and immobilized fibronectins (intact or partially degraded fibronectin by the purified protease) by using the real-time biomolecular interaction analysis (BIAcore) system with an optical biosensor based on the principles of surface plasmon resonance. BIAcore profiles demonstrated an enhanced interaction between fimbriae and protease-degraded fibronectin. We also showed specific binding of fimbriae to the degraded fibronectin by means of BIAcore analysis. The binding of biotinylated fimbriae to immobilized fibronectin was examined by enzyme-linked biotin–avidin assay. The purified protease enhanced the fimbrial binding to the immobilized fibronectin. The enhancement was inhibited by the addition of l -Arg, or oligopeptides containing the Arg residue at the C-terminus in the fimbrial binding reaction, suggesting that the P. gingivalis fimbriae may potentially have an ability to bind tightly to the Arg residue at C-terminus. Taken together, these studies indicate that P. gingivalis arginine-specific protease can expose a cryptitope in the matrix protein molecules, i.e. the C-terminal Arg residue of the host matrix proteins, so that the organism can adhere to the surface layer in the oral cavity through fimbriae–Arg interaction (a novel host–parasite relationship).  相似文献   

19.
The association between periodontal and cardiovascular diseases could be mediated by direct interaction of periodontal pathogens with cardiac tissue. In order to explore this possibility, the effect of the periodontal pathogen Porphyromonas gingivalis on monocyte chemoattractant protein-1 (MCP-1) production by endothelial cells was investigated. When incubated with live P. gingivalis 381, MCP-1 production by human umbilical vein endothelial cells (HUVEC) was potently increased. Compared to the type strain 381, non-adhesive/invasive strains (W50 and DPG3) did not increase MCP-1 production, which was also demonstrated at the mRNA level. Killed P. gingivalis 381 was much less effective than live bacteria for MCP-1 induction. Treatment of HUVEC with cytochalasin D, an inhibitor of endocytosis, prevented MCP-1 mRNA up-regulation by P. gingivalis 381, suggesting that internalization of P. gingivalis is necessary for MCP-1 induction. In conclusion, the secretion of high levels of MCP-1 resulting from interactions of P. gingivalis with endothelial cells could enhance atherosclerosis progression by contributing to the recruitment of monocytes.  相似文献   

20.
Takada K  Hirasawa M 《Anaerobe》1998,4(5):233-240
During isolation of Porphyromonas gingivalis from periodontal pockets of patients, the appearance of an unusual rough colony form, designated NUM 114, was observed. The NUM 114 strain grew in aggregated cell form in a liquid culture and formed a light-beige rough colony on blood agar medium. The identifications and DNA studies confirmed that the NUM 114 strain was P. gingivalis. The enzymatic activities and fatty acid end products were in lower levels than found in P. gingivalis 381, a representative strain. The NUM 114 strain had enhanced hydrophobicity, hemagglutination of human erythrocytes and adherence to human buccal epithelial cells. The NUM 114 cells were phagocytized at a two-fold higher rate compared with the 381 strain. NUM 114 cells were also more susceptible to killing by phagocytosis than the 381 cells. The carbohydrates of the outer membrane and crude lipopolysaccharide preparation from the NUM 114 strain were in larger amounts than those of 381 strain. LPS from NUM 114 were observed to be smooth-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号