首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The mutagenic activity of five dichloroethylamino 2-nitrobenzofuran derivatives and one dichloroethylamino 2-nitronaphthofuran derivative was analysed in the Salmonella/microsome assay. We investigated the influence of the position of the dichloroethylamino and/or the methoxy groups on the mutagenic activity of these nitro arenofurans in S. typhimurium strain TA100 and its variant TA100NR, deficient in nitroreductase. Without metabolic activation 7-[bis(2-chloroethyl)amino]-2-nitronaphtho[2,1-b]furan (1), 4-[bis(2-chloroethyl)amino]-7-methoxy-2-nitrobenzofuran (2), 7-[bis(2-chloroethyl)amino]-4-methoxy-2-nitrobenzofuran (5) and 6-[bis(2-chloroethyl)amino]-2-nitrobenzofuran (6) are mutagenic in TA100, while 4-[bis(2-chloroethyl)amino]-5-methoxy-2-nitrobenzofuran (4) is weakly mutagenic and 5-[bis(2-chloroethyl)-amino]-2-nitrobenzofuran (3) toxic. In the NR deficient strain compounds 1, 3 and 6 are strong mutagens and 4 is weakly positive. The two isomers 2 and 5 are negative in that strain. The naphthofuran derivative 1 is highly mutagenic in the absence of S9 mix in both strains considered, but less than R7000 (7). A decrease in the electronic polarity of compound 1 versus compound 7 according to the hypothesis developed by Royer et al. is a possible explanation. After exogenous metabolic activation by S9 mix all the compounds tested are highly mutagenic in both Salmonella strains. The position of the dichloroethylamino group and/or the presence of a methoxyl on the alpha-nitroarenofuran derivatives seem to modify the activity of bacterial as well as exogenous nitroreductases or other activating enzymes.  相似文献   

2.
Oxidation of methyl (S,E)-4-[4,9-dihydro-4,6-dimethyl-9-oxo-1- (phenylmethyl)-1H-imidazo[1,2-alpha]purine-7-yl]-2-[(methoxycarbonyl) amino]-3-butenoate (3) with osmium tetroxide/N-methylmorpholine N-oxide provided a mixture of diastereomers 4 and 7. Hydrogenolysis of the major dihydroxy compound 4 over Pd-C gave beta-hydroxywybutine [[R-(R*,S*)]-1]. The minor isomer 7 was transformed into [S-(R*,R*)]-1 through the cyclic carbonate 8.  相似文献   

3.
Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. L-dehydroascorbic acid (DHA, 5), the oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. Identification is reported for the lysine-arginine cross-links N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(2-hydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (9), N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(1,2-dihydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (11), and N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2S)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (13). The formation pathways could be established starting from dehydroascorbic acid (5), the degradation products 1,3,4-trihydroxybutan-2-one (7, L-erythrulose), 3,4-dihydroxy-2-oxobutanal (10, L-threosone), and L-threo-pentos-2-ulose (12, L-xylosone) were proven as precursors of the lysine-arginine cross-links 9, 11, and 13. Products 9 and 11 were synthesized starting from DHA 5, compound N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2R)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (16) via the precursor D-erythro-pentos-2-ulose (15). The present study revealed that the modification of lysine and arginine side chains by DHA 5 is a complex process and could involve a number of reactive carbonyl species.  相似文献   

4.
A series of intercalator-tethered platinum(II) complexes PtLCl(2) have been prepared where L are the diamine ligands N-[2-[(aminoethyl)amino]ethyl]-9-aminoacridine-4-carboxamide, N-[3-[(2-aminoethyl)amino]propyl]-9-aminoacridine-4-carboxamide, N-[4-[(2-aminoethyl)amino]butyl]-9-aminoacridine-4-carboxamide and N-[5-[(aminoethyl)amino]pentyl]-9-aminoacridine-4-carboxamide and N-[6-[(aminoethyl)amino]hexyl]-9-aminoacridine-4-carboxamide. The activity of the complexes was assessed in the CH-1, CH-1cisR, 41M, 41McisR and SKOV-3 cell lines. The compounds with the shorter linker chain lengths are generally the most active against these cell lines and are much more toxic than Pt(en)C1(2). For example, for the n=2 compound the IC(50) values are 0.017 microM (CH-1), 1.7 microM (41M), 1.4 microM (SKOV-3) and the resistance ratios are 51 (CH-1cisR) and 1.6 (41McisR). For the untethered analogue Pt(en)C1(2) the IC(50) values are 2.5 microM (CH-1), 2.9 microM (41M), 45 microM (SKOV-3) and the resistance ratios are 2.8 (CH-1cisR) and 4.1 (41McisR). The very large differential in IC(50) values between the CH-1 and CH-1cisR pair of cell lines for the 9-aminoacridine-4-carboxamide tethered platinum complexes indicates that repair of platinum-induced DNA damage may be a major determinant of the activity of these compounds.  相似文献   

5.
Besides the formation of the aminotriazine N6-[4-(3-amino-1,2,4-triazin-5-yl)-2,3-dihydroxybutyl]-L-lysine, the reaction of [1-13C]D-glucose with lysine and aminoguanidine leads to the generation of 6-[2-([[amino(imino)methyl]hydrazono]methyl)pyridinium-1-yl]-L-norleucine (14-13C1). The dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine was shown to be a precursor in the formation of 14-13C1, which proceeds via the reactive carbonyl intermediate 6-(2-formylpyridinium-1-yl)-L-norleucine (13-13C1). In order to study the reactivity of 13-13C1, the model compound 1-butyl-2-formylpyridinium (18) was prepared in a two-step procedure starting from 2-pyridinemethanol. The reaction of the pyridinium-carbaldehyde 18 with L-lysine yielded the Strecker analogous degradation product 2-(aminomethyl)-1-butylpyridinium and another compound, which was shown to be as 1-butyl-2-[(2-oxopiperidin-3-ylidene)methyl]pyridinium. Reaction of 18 with the C-H acidic 4-hydroxy-5-methylfuran-3(2H)-one leads to the formation of the condensation product 1-butyl-2-[hydroxy-(4-hydroxy-5-methyl-3-oxofuran-2(3H)-ylidene)methyl]-pyridinium.  相似文献   

6.
A series of 4-([2-[alkyl(phenylsulfonyl)amino]phenoxy]methyl)benzoic acids were identified as functional PGE(2) antagonists with selectivity for the EP1 receptor subtype starting from a chemical lead 1, which was found while screening our in-house compound library. Discovery of the optimized analogs 21-23 is presented here and structure-activity relationships (SAR) are also discussed.  相似文献   

7.
A group of 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines possessing a variety of substituents (Me, CO2Et, H, N=O) attached to the 1,2,3,6-tetrahydropyridyl N(1)-nitrogen atom were synthesized and evaluated as anti-inflammatory agents. Structure-activity relationship data showed that the N-methyl-1,2,3,6-tetrahydropyridyl moiety is a suitable bioisosteric replacement for the tolyl moiety in celecoxib. The most potent compound 4-[5-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)-3-trifluoromethylpyrazol-1-yl]benzenesulfonamide (ED(50)=61.2 mg/kg po) exhibited an anti-inflammatory activity between that of the reference drugs celecoxib (ED(50)=10.8 mg/kg po) and aspirin (ED(50)=128.7 mg/kg po). The synthesis of model hybrid nitric oxide donor N-diazen-1-ium-1,2-diolate derivatives of 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines requires further investigation since the reaction of 1,2,3,6-tetrahydropyridines with nitric oxide furnished the undesired N-nitroso-1,2,3,6-tetrahydrohydropyridyl product rather than the desired N-diazen-1-ium-1,2-diolate-1,2,3,6-tetrahydropyridyl product.  相似文献   

8.
Cofactor extracts of Methanogenium tationis were screened for the presence of pterin-derivatives. Methanopterin, sarcinapterin and 7-methylpterin were absent, while 2-amino-4-hydroxy-pteridine and another blue fluorescent compound with a pterin spectrum were detected. The latter pterin was purified by ion exchange and reversed-phase column chromatography. The structure of this compound was elucidated by combining spectrophotometry, amino acid analysis and 1H-NMR spectroscopy. The pterin, which we named tatiopterin, was identified as an aspartyl derivative of sarcinapterin with a 7-proton instead of a 7-methyl group in the pterin moiety. The IUPAC name is: N-[-1'-(2'-amino-4'-hydroxy-7'-proton-6'-pteridinyl)ethyl]-4- [2',3',4',5'-tetrahydroxypent-1'-yl(5'----1')O-alpha- ribofuranosyl-5'-phosphoric acid]aniline, in which the phosphate group is esterified with alpha-hydroxyglutarylglutamylaspartic acid.  相似文献   

9.
We report the preparation of a novel glutamine derivative, (2S,4S)-2,5-diamino-4-(4-(2-fluoroethoxy)benzyl)-5-oxopentanoic acid, (2S, 4S)4-[18F]FEBGln ([18F]4), through efficient organic and radiosyntheses. In vitro assays of [18F]4 using MCF-7 cells showed that it entered cells via multiple amino acid transporter systems including system L and ASC2 transporters but not through the system A transporter. [18F]4 showed promising properties for tumor imaging and may serve as a lead compound for further optimizing and targeting the system L transporter associated with enhanced glutamine metabolism in cancer cells.  相似文献   

10.
A series of lipophilic diaromatic derivatives of the glia-selective GABA uptake inhibitor (R)-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol [(R)-exo-THPO, 4] were synthesized via reductive amination of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-one (9) or via N-alkylation of O-alkylatedracemic 4. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation or primary cultures of mouse cortical neurons and glia cells (astrocytes), as well as HEK cells transfected with cloned mouse GABA transporter subtypes (GAT1-4). The activity against isoniazid-induced convulsions in mice after subcutaneous administration of the compounds was determined. All of the compounds were potent inhibitors of synaptosomal uptake the most potent compound being (RS)-4-[N-(1,1-diphenylbut-1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (17a, IC50 = 0.14 microM). The majority of the compounds showed a weak preference for glial, as compared to neuronal, GABA uptake. The highest degree of selectivity was 10-fold corresponding to the glia selectivity of (R)-N-methyl-exo-THPO (5). All derivatives showed a preference for the GAT1 transporter, as compared with GAT2-4, with the exception of (RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (28d), which quite surprisingly turned out to be more potent than GABA at both GAT1 and GAT2 subtypes. The GAT1 activity was shown to reside in (R)-28d whereas (R)-28d and (S)-28d contributed equally to GAT2 activity. This makes (S)-28d a GAT2 selective compound, and (R)-28d equally effective in inhibition of GAT1 and GAT2 mediated GABA transport. All compounds tested were effective as anticonvulsant reflecting that these compounds have blood-brain barrier permeating ability.  相似文献   

11.
Polymer-assisted solution-phase (PASP) parallel library synthesis was used to discover a piperazinyl-glutamate-pyridine as a P2Y12 antagonist. Exploitation of this lead provided compounds with excellent inhibition of platelet aggregation as measured in a human platelet rich plasma (PRP) assay. Pharmacokinetic and physiochemical properties were optimized leading to compound (4S)-4-[({4-[4-(methoxymethyl)piperidin-1-yl]-6-phenylpyridin-2-yl}carbonyl)amino]-5-oxo-5-{4-[(pentyloxy)carbonyl]piperazin-1-yl}pentanoic acid 22J with good human PRP potency, selectivity, in vivo efficacy and oral bioavailability.  相似文献   

12.
Clinical efficacy of alkylating anticancer drugs, such as chlorambucil (4-[p-[bis [2-chloroethyl] amino] phenyl]-butanoic acid; CHB), is often limited by the emergence of drug resistant tumor cells. Increased glutathione (gamma-glutamylcysteinylglycine; GSH) conjugation (inactivation) of alkylating anticancer drugs due to overexpression of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance to alkylating agents. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) to CHB remains uncertain. In our experiments, a combination of lipid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between CHB and GSH. The spontaneous reaction of 1mM CHB with 5 mM GSH at 37 degrees C in aqueous phosphate buffer for 1 h gave primarily the monoglutathionyl derivative, 4-[p-[N-2-chloroethyl, N-2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG) and the diglutathionyl derivative, 4-[p-[2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG2) with small amounts of the hydroxy-derivative, 4-[p-[N-2-S-glutathionylethyl, N-2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBSGOH), 4-[p-[bis[2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBOH2), 4-[p-[N-2-chloroethyl, N-2-S-hydroxyethyl]amino]phenyl]-butanoic acid (CHBOH). We demonstrated that rat liver microsomal GST presented a strong catalytic effect on these reactions as determined by the increase of CHBSG2, CHBSGOH and CHBSG and the decrease of CHB. We showed that microsomal GST was activated by CHB in a concentration and time dependent manner. Microsomal GST which was stimulated approximately two-fold with CHB had a stronger catalytic effect. Thus, microsomal GST may play a potential role in the metabolism of CHB in biological membranes, and in the development of ADR.  相似文献   

13.
Calix[4]arene C-97 (code is shown) is the macrocyclic compound which has lipophilic intramolecular higly-structured cavity formed by four aromatic cycles, one of which on the upper rim is modified by methylene bisphosphonic group. It was shown that calix[4]arene C-97 (100 microM) efficiently inhibits ATPase activity of myosin subfragment-1 from pig myometrium, the inhibition coefficient I(0.5) being 83 +/- 7 microM. At the same time, this compound at 100 microM concentration significantly increases the effective hydrodynamic diameter of myosin subfragment-1, that may be indicative of intermolecular complexation between the calix[4]arene and myosin head. Computer simulation methods (docking, molecular dynamics, involving the Grid) have been used to clarify structural basis of the intermolecular interaction of calix[4]arene C-97 with myosin subfragment-1 of the myometrium; participation of hydrophobic, electrostatic and pi-pi (stacking) interactions between calix[4]arene C-97 and amino acid residues of myosin subfragment-1, some of them being located near the active site of the ATPase has been found out.  相似文献   

14.
Structure–activity relationship studies directed toward improving the metabolic stability of compound 1 resulted in the identification of 3-[5-(3,5-difluorophenyl)-3-({[(1S,3R)-3-fluorocyclopentyl]amino}methyl)-4-methyl-1H-pyrazol-1-yl]propanenitrile 39 (MK-1925) as a selective, orally available and brain-penetrable opioid receptor-like 1 (ORL1) antagonist. The compound also showed in vivo efficacy after oral dosing. Therefore, compound 39 was selected to undergo further studies as a clinical candidate.  相似文献   

15.
Inhibition of rabbit lung angiotensin I-converting enzyme was studied with two inhibitors that combined tricyclic mimics of a substrate C-terminal dipeptide recognition unit with a 4-phenylbutanoic acid fragment. The overall inhibition constant for [4S-[4 alpha, 7 alpha(R*),12b beta]]-7-[S-(1-carboxy-3-phenylpropyl) amino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a] [2] benzazepine-4-carboxylic acid (MDL 27,088) was approximately 4 pM, whereas that for [4R-[4 alpha, 7 alpha(S*), 12b beta]]-7-[S-(1-carboxy-3-phenylpropyl)amino]-3,4,6,7,8, 12b-hexahydro-6-oxo-1H-[1,4]thiazino[3,4-a] [2]benzazepine-4-carboxylic acid (MDL 27,788) was estimated to be 46 pM. The formation of an initial complex of target enzyme and MDL 27,088 and its slower isomerization to a second complex were characterized kinetically. Both compounds appear to be among the most potent inhibitors known for this enzyme.  相似文献   

16.
Lipoprotein[a] (Lp[a]) is assembled by a two-step process involving an initial lysine-dependent binding between apolipoprotein B-100 (apoB-100) and apolipoprotein[a] (apo[a]) that facilitates the formation of a disulphide bond between apoB-100Cys4,326 and apo[a]Cys4,057. Previous studies of transgenic mice expressing apoB-95 (4,330 amino acids) and apoB-97 (4,397 amino acids) have shown that apoB-100 amino acids 4,330-4,397 are important for the initial binding to apo[a]. Furthermore, a lysine-rich peptide spanning apoB-100 amino acids 4,372-4,392 has recently been shown to bind apo[a] and inhibit Lp[a] assembly in vitro. This suggests that a putative apo[a] binding site exists in the apoB-4,372-4,392 region. The aim of our study was to establish whether the apoB-4,372-4,392 sequence was important for Lp[a] assembly in the context of the full-length apoB-100. Transgenic mice were created that expressed a mutant human apoB-100, apoB-100K4-->S4, in which all four lysine residues in the 4,372-4,392 sequence were mutated to serines. The apoB-100K4-->S4 mutant showed a reduced capacity to form Lp[a] in vitro compared with wild-type human apoB-100. Double transgenic mice expressing both apoB-100K4-->S4 and apo[a] contained significant amounts of free apo[a] in the plasma, indicating a less-efficient assembly of Lp[a] in vivo. Taken together, these results clearly show that the apoB-4,372-4,392 sequence plays a role in Lp[a] assembly.  相似文献   

17.
The (R)- and (S)-enantiomers of 2-amino-3-[1-(2-[18F]fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid (4) were synthesized and evaluated in the rat 9L gliosarcoma brain tumor model using cell uptake assays, biodistribution studies, and micro-positron emission tomography (microPET). The (R)- and (S)-enantiomers of [18F]4 were radiolabeled separately using the click reaction in 57% and 51% decay-corrected yields, respectively. (S)-[18F]4 was a substrate for cationic amino acid transport and, to a lesser extent, system L transport in vitro. In vivo biodistribution studies demonstrated that (S)-[18F]4 provided higher tumor uptake and higher tumor to brain ratios (15:1 at the 30- and 60-minute time points) compared to the (R)-enantiomer (7:1 at the 30- and 60-minute time points). MicroPET studies with (S)-[18F]4 confirmed that this tracer provides good target to background ratios for both subcutaneous and intracranial 9L gliosarcoma tumors. Based on these results, the 1H-[1,2,3]triazole-substituted amino acid (S)-[18F]4 has promising PET properties for brain tumors and represents a novel class of radiolabeled amino acids for tumor imaging.  相似文献   

18.
A novel structural analogue of kynurenine, 2-amino-4-[3'-hydroxyphenyl]-4-hydroxybutanoic acid 6, was synthesised as an inhibitor of kynureninase. The compound had a significant inhibitory effect on kynureninase from both rat and human, giving a K(i) of 100 nM. It was thus found that removal of the aryl amino group coupled with a reduction of the carbonyl group at position 7 of the alanine side chain greatly enhanced potency of the inhibitor.  相似文献   

19.
Condensation of methyl 16-aminomethyllambertianate with N-Boc-omega-amino acids leads smoothly to 16-(N-Boc-aminononan)- and 16-(N-Boc-aminoundecan)amidomethyllabdanoids. The amide of bicyclo[2.2.1]heptan-1,2-dicarbocylic acid with a labdanoid substituent was obtained under the reaction of methyl aminomethyllambertianate with bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride. Intereaction of methyl 16-aminomethyllambertianate with chloroacetyl chloride leads to methyl 16-(chloroacetylaminomethyl)lambertianate; condensation of this compound with amino acid methyl ethers the corresponding amides of methyl lambertianate was obtained. The resulting compounds are more (compared with lambertianic acid) cytotoxicity in the cell lines CEM-13, MT-4 and U-937 with an CCID50 concentration of 3.9-9.9 microM.  相似文献   

20.
Janus kinases (JAKs) are critical regulators of cytokine pathways and attractive targets of therapeutic value in both inflammatory and myeloproliferative diseases. Although the crystal structures of active JAK1 and JAK2 kinase domains have been reported recently with the clinical compound CP-690550, the structures of both TYK2 and JAK3 with CP-690550 have remained outstanding. Here, we report the crystal structures of TYK2, a first in class structure, and JAK3 in complex with PAN-JAK inhibitors CP-690550 ((3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile) and CMP-6 (tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one), both of which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to that observed in crystal structures of JAK1 and JAK2. Additionally, a complete thermodynamic characterization of JAK/CP-690550 complex formation was completed by isothermal titration calorimetry, indicating the critical role of the nitrile group from the CP-690550 compound. Finally, computational analysis using WaterMap further highlights the critical positioning of the CP-690550 nitrile group in the displacement of an unfavorable water molecule beneath the glycine-rich loop. Taken together, the data emphasize the outstanding properties of the kinome-selective JAK inhibitor CP-690550, as well as the challenges in obtaining JAK isozyme-selective inhibitors due to the overall structural and sequence similarities between the TYK2, JAK1, JAK2 and JAK3 isozymes. Nevertheless, subtle amino acid variations of residues lining the ligand-binding cavity of the JAK enzymes, as well as the global positioning of the glycine-rich loop, might provide the initial clues to obtaining JAK-isozyme selective inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号