首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During meiosis, homologous chromosome pairing and synapsis are essential for subsequent meiotic recombination (crossing-over). Discontinuous regions (gaps) and unsynapsed regions (splits) were most frequently observed in the heterochromatic regions of bivalent synaptonemal complex (SC) 9, and we have previously demonstrated that gaps and splits significantly altered the distribution of MLH1 recombination foci on SC 9. Here, immunofluorescence techniques (using antibodies against SC proteins and the crossover-associated MLH1 protein) were combined with a centromere-specific fluorescence in situ hybridization technique that allows identification of every individual chromosome. The effect of gaps/splits on meiotic recombination patterns in autosomes other than chromosome 9 during the pachytene stage of meiotic prophase was then examined in 6,026 bivalents from 262 pachytene cells from three human males. In 64 analyzed cells with a gapped SC 9, the frequency of MLH1 foci in SCs 5 and 10 and in SC arms 10q, 11p and 16q was decreased compared to 168 analyzed cells with a normally-synapsed SC 9 (controls). In 24 analyzed cells with splits in SC 9, there was a significant reduction in MLH1 focus frequency for SC 5q and the whole SC5 bivalent. The positioning of MLH1 foci on other SCs in cells with gapped/split SC 9 was not altered. These studies suggest that gaps and splits not only have a cis effect, but may also have a trans effect on meiotic recombination in humans.  相似文献   

2.
Yang Q  Zhang D  Leng M  Yang L  Zhong L  Cooke HJ  Shi Q 《PloS one》2011,6(4):e19255
The muntjacs (Muntiacus, Cervidae) have been extensively studied in terms of chromosomal and karyotypic evolution. However, little is known about their meiotic chromosomes particularly the recombination patterns of homologous chromosomes. We used immunostained surface spreads to visualise synaptonemal complexes (SCs), recombination foci and kinetochores with antibodies against marker proteins. As in other mammals pachytene was the longest stage of meiotic prophase. 39.4% of XY bivalents lacked MLH1 foci compared to less than 0.5% of autosomes. The average number of MLH1 foci per pachytene cell in M. reevesi was 29.8. The distribution of MLH1 foci differed from other mammals. On SCs with one focus, the distribution was more even in M. reevesi than in other mammals; for SCs that have two or more MLH1 foci, usually there was a larger peak in the sub-centromere region than other regions on SC in M. reevesi. Additionally, there was a lower level of interference between foci in M. reevesi than in mouse or human. These observations may suggest that the regulation of homologous recombination in M. reevesi is slightly different from other mammals and will improve our understanding of the regulation of meiotic recombination, with respect to recombination frequency and position.  相似文献   

3.
The Eurasian common shrew (Sorex araneus L.) is characterized by spectacular chromosomal variation, both autosomal variation of the Robertsonian type and an XX/XY(1)Y(2) system of sex determination. It is an important mammalian model of chromosomal and genome evolution as it is one of the few species with a complete genome sequence. Here we generate a high-precision cytological recombination map for the species, the third such map produced in mammals, following those for humans and house mice. We prepared synaptonemal complex (SC) spreads of meiotic chromosomes from 638 spermatocytes of 22 males of nine different Robertsonian karyotypes, identifying each autosome arm by differential DAPI staining. Altogether we mapped 13,983 recombination sites along 7095 individual autosomes, using immunolocalization of MLH1, a mismatch repair protein marking recombination sites. We estimated the total recombination length of the shrew genome as 1145 cM. The majority of bivalents showed a high recombination frequency near the telomeres and a low frequency near the centromeres. The distances between MLH1 foci were consistent with crossover interference both within chromosome arms and across the centromere in metacentric bivalents. The pattern of recombination along a chromosome arm was a function of its length, interference, and centromere and telomere effects. The specific DNA sequence must also be important because chromosome arms of the same length differed substantially in their recombination pattern. These features of recombination show great similarity with humans and mice and suggest generality among mammals. However, contrary to a widespread perception, the metacentric bivalent tu usually lacked an MLH1 focus on one of its chromosome arms, arguing against a minimum requirement of one chiasma per chromosome arm for correct segregation. With regard to autosomal chromosomal variation, the chromosomes showing Robertsonian polymorphism display MLH1 foci that become increasingly distal when comparing acrocentric homozygotes, heterozygotes, and metacentric homozygotes. Within the sex trivalent XY(1)Y(2), the autosomal part of the complex behaves similarly to other autosomes.  相似文献   

4.
Anderson LK  Reeves A  Webb LM  Ashley T 《Genetics》1999,151(4):1569-1579
We have used immunofluorescent localization to examine the distribution of MLH1 (MutL homolog) foci on synaptonemal complexes (SCs) from juvenile male mice. MLH1 is a mismatch repair protein necessary for meiotic recombination in mice, and MLH1 foci have been proposed to mark crossover sites. We present evidence that the number and distribution of MLH1 foci on SCs closely correspond to the number and distribution of chiasmata on diplotene-metaphase I chromosomes. MLH1 foci were typically excluded from SC in centromeric heterochromatin. For SCs with one MLH1 focus, most foci were located near the middle of long SCs, but near the distal end of short SCs. For SCs with two MLH1 foci, the distribution of foci was bimodal regardless of SC length, with most foci located near the proximal and distal ends. The distribution of MLH1 foci indicated interference between foci. We observed a consistent relative distance (percent of SC length in euchromatin) between two foci on SCs of different lengths, suggesting that positive interference between MLH1 foci is a function of relative SC length. The extended length of pachytene SCs, as compared to more condensed diplotene-metaphase I bivalents, makes mapping crossover events and interference distances using MLH1 foci more accurate than using chiasmata.  相似文献   

5.
Recombination nodules (RNs) are closely correlated with crossing over, and, because they are observed by electron microscopy of synaptonemal complexes (SCs) in extended pachytene chromosomes, RNs provide the highest-resolution cytological marker currently available for defining the frequency and distribution of crossovers along the length of chromosomes. Using the maize inbred line KYS, we prepared an SC karyotype in which each SC was identified by relative length and arm ratio and related to the proper linkage group using inversion heterozygotes. We mapped 4267 RNs on 2080 identified SCs to produce high-resolution maps of RN frequency and distribution on each bivalent. RN frequencies are closely correlated with both chiasma frequencies and SC length. The total length of the RN recombination map is about twofold shorter than that of most maize linkage maps, but there is good correspondence between the relative lengths of the different maps when individual bivalents are considered. Each bivalent has a unique distribution of crossing over, but all bivalents share a high frequency of distal RNs and a severe reduction of RNs at and near kinetochores. The frequency of RNs at knobs is either similar to or higher than the average frequency of RNs along the SCs. These RN maps represent an independent measure of crossing over along maize bivalents.  相似文献   

6.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

7.
Using immunolocalization of MLH1, a mismatch repair protein that marks crossover sites along synaptonemal complexes, we estimated the total length of the genetic map, the recombination rate and crossover distribution in the American mink ( Mustela vison ). We prepared spreads from 130 spermatocytes of five male minks and mapped 3320 MLH1 foci along 1820 bivalents. The total recombination length of the male mink genome, based on the mean number of MLH1 foci for all chromosomes, was 1327 cM. The overall recombination rate was estimated to be 0.48 cM/Mb. In all bivalents, we observed prominent peaks of MLH1 foci near the distal ends and a paucity of them near the centromeres. This indicates that genes located at proximal regions of the chromosomes should display much tighter genetic linkage than physically equidistant markers located near the telomeres.  相似文献   

8.
联会复合体免疫荧光技术在全基因减数分裂遗传重组研究中具有精确和直观的优势.本研究通过免疫荧光染色方法制备小鼠精母细胞联会复合体,研究其形态组成与遗传重组特征,展示雄性小鼠遗传重组图谱并分析其重组位点(MLH1位点)的分布特征.4只小鼠共145个精母细胞在平均每个细胞的MLH1位点数为23.3±2.4;在常染色体联会复合体中,未发现有3个MLH1位点的联会复合体,具有1个MLH1位点的联会复合体较多,平均为14.2;无XY联会复合体的细胞占所有细胞的4.1%,XY联会复合体上有MLH1位点的细胞占30.2%;联会复合体上有裂缝的细胞占0.7%.通过联会复合体免疫荧光染色可以清晰地分辨出联会复合体(红色)、着丝粒(蓝色)和MLH1位点(绿色),是遗传重组分析的一种强有力工具.  相似文献   

9.
Kochakpour N  Moens PB 《Heredity》2008,100(5):489-495
Some species display intersex variation in their rate of meiotic recombination, where recombination is usually suppressed in the heterogametic sex. Although no heteromorphic sex chromosomes have been detected in zebrafish (Danio rerio), genetic analysis has indicated a lower frequency of recombination in males relative to females. Our study of the meiotic recombination pattern in female zebrafish indicates that adult females have only a few meiotic oocytes that are found in groups in the ventral zone of the ovarian surface. We used antibody staining of human mutL homolog 1 (MLH1) protein to mark the sites of putative chiasmata to seek a physical basis for the pattern of recombination and its relative frequency in both sexes. We report that MLH1 foci are found mostly in distal regions of the synaptonemal complexes (SCs) in males, but tend to be more evenly distributed in females. Our cytological analysis yields a ratio of MLH1 foci per chromosome in males versus females of 1:1.55. This lower level of recombination in males is in general agreement with previously published results from linkage map analysis. However, the similar ratio of MLH1 foci per unit length of SCs in both sexes demonstrates a correlation between SC length and the frequency of recombination rather than a mechanism that suppresses recombination in males. Thus, chiasma interference seems to provide similar expression in males and females in agreement with the situation in humans, where oocytes with longer SCs display a higher level of recombination that is not a consequence of more closely spaced crossovers along the SCs.  相似文献   

10.
11.
The aim of this work was an analysis of frequency, density and distribution of recombination sites in male meiosis of the domestic cat. The study was carried out using immunofluorescent staining of synaptonemal complex (SC) proteins, centromeric proteins and mismatch repair protein MLH1, a reliable marker of the sites of crossing over. We mapped 2633 sites of crossing over at 1098 individual autosomes. On the basis of these data the total length of the domestic cat genetic map was estimated as 2176 centimorgans. We found a typical for all mammals studied positive correlation between the length of SC and the number of recombination sites. The domestic cat demonstrated the highest among mammals density of recombination and the lowest interference.  相似文献   

12.
Chromosome IV is the smallest chromosome of Aspergillus nidulans. The centromere-proximal portion of the chromosome was mapped physically using overlapping clones of a cosmid genomic library. Two contiguous segments of a physical map, based on restriction mapping of cosmid clones, were generated, together covering more than 0.4 Mb DNA. A reverse genetic mapping approach was used to establish a correlation between physical and genetic maps; i.e., marker genes were integrated into physically mapped segments and subsequently mapped by mitotic and meiotic recombination. The resulting data, together with additional classical genetic mapping, lead to a substantial revision of the genetic map of the chromosome, including the position of the centromere. Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis. The portion of the chromosome containing the functional centromere was not mapped because repeat-rich regions hindered further chromosome walking. The size of the missing segment was estimated to be between 70 and 400 kb.  相似文献   

13.
Meiotic chromosomes in human oocytes are packaged differently than in spermatocytes at the pachytene stage of meiosis I, when crossing-over takes place. Thus the meiosis-specific pairing structure, the synaptonemal complex (SC), is considerably longer in oocytes in comparison to spermatocytes. The aim of the present study was to examine the influence of this length factor on meiotic recombination in male and female human germ cells. The positions of crossovers were identified by the DNA mismatch repair protein MLH1. Spermatocytes have approximately 50 crossovers per cell in comparison to more than 70 in oocytes. Analyses of inter-crossover distances (and presumptively crossover interference) along SCs suggested that while there might be inter-individual variation, there was no consistent difference between sexes. Thus the higher rate of recombination in human oocytes is not a consequence of more closely spaced crossovers along the SCs. The rate of recombination per unit length of SC is higher in spermatocytes than oocytes. However, when the so-called obligate chiasma is excluded from the analysis, then the rates of recombination per unit length of SC are essentially identical in the two sexes. Our analyses indicate that the inter-sex difference in recombination is largely a consequence of the difference in meiotic chromosome architecture in the two sexes. We propose that SC length per se, and therefore the size of the physical platform for crossing-over (and not the DNA content) is the principal factor determining the difference in rate of recombination in male and female germ cells. A preliminary investigation of SC loop size by fluorescence in situ hybridization (FISH) indicated loops may be shorter in oocytes than in spermatocytes.  相似文献   

14.
During meiotic prophase I, homologous chromosomes synapse and recombine. Both events are of vital importance for the success of meiosis. When homologous chromosomes synapse, a proteinaceous structure called synaptonemal complex (SC) appears along the pairing axis and meiotic recombination takes place. The existence of immunolabeling techniques for SC proteins (SCP1, SCP2 and SCP3) and for DNA mismatch repair proteins present in late recombination nodules (MLH1) allow analyses of both synapsis and meiotic recombination in the gametocyte I. In situ hybridization methods can be applied afterwards because chromatin is preserved during cell fixation for immunoanalysis. The combination of both methodologies allows the analysis of synapsis and the creation of recombination maps for each bivalent. In this work we apply the seven-fluorochrome subtelomere-specific multiplex FISH assay (stM-FISH) to human male meiotic cells previously labeled by immunofluorescence (SCP1, SCP3, MLH1, CENP) to assess its utility for human SC karyotyping. This FISH method consists of microdissected subtelomeric probes labeled combinatorially with seven different fluorochromes. Results prove its usefulness for the identification of all human SCs. Furthermore, by labeling subtelomeric regions this one-single-step method enables the characterization of interstitial and terminal SC fragments and SC delineation even if superposition is present in pachytene spreads.  相似文献   

15.
Peterson DG  Lapitan NL  Stack SM 《Genetics》1999,152(1):427-439
Fluorescence in situ hybridization (FISH) is a powerful means by which single- and low-copy DNA sequences can be localized on chromosomes. Compared to the mitotic metaphase chromosomes that are normally used in FISH, synaptonemal complex (SC) spreads (hypotonically spread pachytene chromosomes) have several advantages. SC spreads (1) are comparatively free of debris that can interfere with probe penetration, (2) have relatively decondensed chromatin that is highly accessible to probes, and (3) are about ten times longer than their metaphase counterparts, which permits FISH mapping at higher resolution. To investigate the use of plant SC spreads as substrates for single-copy FISH, we probed spreads of tomato SCs with two single-copy sequences and one low-copy sequence (ca. 14 kb each) that are associated with restriction fragment length polymorphism (RFLP) markers on SC 11. Individual SCs were identified on the basis of relative length, arm ratio, and differential staining patterns after combined propidium iodide (PI) and 4', 6-diamidino-2-phenylindole (DAPI) staining. In this first report of single-copy FISH to SC spreads, the probe sequences were unambiguously mapped on the long arm of tomato SC 11. Coupled with data from earlier studies, we determined the distance in micrometers, the number of base pairs, and the rates of crossing over between these three FISH markers. We also observed that the order of two of the FISH markers is reversed in relation to their order on the molecular linkage map. SC-FISH mapping permits superimposition of markers from molecular linkage maps directly on pachytene chromosomes and thereby contributes to our understanding of the relationship between chromosome structure, gene activity, and recombination.  相似文献   

16.
The paper presents the analysis of the frequency, density, and distribution of recombination sites in the male meiosis of the domestic cat (Felis silvestris catus). The study was carried out using immunofluorescent staining of synaptonemal complex (SC) proteins, centromeric proteins and mismatch repair protein MLH1, a reliable marker of crossingover sites. We mapped 2633 sites of crossing over in 1098 individual autosomes. Based on these data, we estimated the total length of the genetic map of the domestic cat to be 2176 centimorgans. Positive correlation between the length of SC and the number of recombination sites common for mammalians was also found in the domestic cat. It was shown that this species was characterized by the highest density of recombination and the lowest interference in mammals.  相似文献   

17.
Studies performed on human trisomic 21 oocytes have revealed that during meiosis, the three homologues 21 synapse and, in some cases, achieve what looks like a trivalent. This implies that meiotic recombination takes place among the three homologous chromosomes 21, and to some extent, crossovers form between them. To see how meiotic recombination is in the presence of an extra chromosome 21, we analyzed the distribution of three recombination markers (γH2AX, RPA, and MLH1) on trisomic 21 oocytes at pachynema and, in particular, on chromosomes 21. Results clearly show how the presence of an extra chromosome 21 alters meiotic recombination progression, leading to the presence of a higher number of early recombination markers at pachynema. Moreover, the distribution on these chromosomes 21 of some of these markers is different in aneuploid oocytes. Finally, there is a substantial increase in the number of MLH1 foci, a marker of most crossovers in mammals, which is related to the number of synapsed chromosomes in pachynema. Thus, bivalents 21 had fewer MLH1 foci than partial or total trivalents, suggesting a close relationship between synapsis and crossover designation. All of the data presented suggest that the presence of an extra chromosome alters meiotic recombination globally in aneuploid human oocytes.  相似文献   

18.
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single‐copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination‐poor region is preferentially marked by a heterochromatin‐typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin‐typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.  相似文献   

19.
Human male recombination maps for individual chromosomes   总被引:21,自引:0,他引:21       下载免费PDF全文
Meiotic recombination is essential for the segregation of chromosomes and the formation of normal haploid gametes, yet we know very little about the meiotic process in humans. We present the first (to our knowledge) recombination maps for every autosome in the human male obtained by new immunofluorescence techniques followed by centromere-specific multicolor fluorescence in situ hybridization in human spermatocytes. The mean frequency of autosomal recombination foci was 49.8+/-4.3, corresponding to a genetic length of 2,490 cM. All autosomal bivalents had at least one recombination focus. In contrast, the XY bivalent had a recombination focus in 73% of nuclei, suggesting that a relatively large proportion of spermatocytes may be at risk for nondisjunction of the XY bivalent or elimination by meiotic arrest. There was a very strong correlation between mean length of the synaptonemal complex (SC) and the number of recombination foci per SC. Each bivalent presented a distinct distribution of recombination foci, but in general, foci were near the distal parts of the chromosome, with repression of foci near the centromere. The position of recombination foci demonstrated positive interference, but, in rare instances, foci were very close to one another.  相似文献   

20.
Synaptonemal complex (SC) spreads from bird oocytes and spermatocytes show the complete chromosome complement and can be observed at the light microscope using immunostaining of the proteins that compose the lateral elements. To investigate the use of avian SC spreads as substrates for fluorescent in situ hybridization (FISH) in combination with immunostaining, we applied two single-copy sequences to chicken oocyte spreads. Signals for both target sequences were consistently observed on the short arm of bivalent 1 in a large number of nuclei. Based on previous data about the size of chromosome 1 and from measurements on probed SC spreads, an estimate of the physical distance in Mb between each sequence and the telomere was calculated. The crossover frequencies along SC 1 obtained by immunolocalization of MLH1 foci during pachytene were used to calculate the distances in cM to the target sequences and to compare this cytogenetic SC map with the consensus linkage map for GGA1. The combination of SC-FISH and immunostaining could be generally applied to obtain high-resolution mapping of single-copy sequences in birds and, coupled with MLH1 crossover maps, it could be a reliable approach to obtain genetic distances between markers to test the genetic linkage maps generated from molecular markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号