首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alfredson DA  Korolik V 《Plasmid》2003,50(2):152-160
A small cryptic plasmid, pCJ419, was identified in a human clinical isolate of Campylobacter jejuni, cloned and sequenced. pCJ419 is a circular molecule of 4013 bp with a G+C content of 27.1%. The products of four open reading frames (ORFs) share significant sequence similarity with putative proteins from known C. jejuni and Campylobacter coli plasmids. ORF-1 encodes a putative mobilisation protein (Mob). ORF-2 and ORF-3 encode proteins that have high identity to putative RepA and RepB proteins, respectively, of known C. jejuni and C. coli plasmids. ORF-4 encodes a protein that has high identity to a hypothetical protein of unknown function, Cjp32, previously described in a pVir plasmid of C. jejuni. Tandem repeating 22-bp sequences typical of a plasmid replication origin (ori) were identified upstream of the DNA sequences encoding putative replication initiation proteins. An Escherichia coli-Campylobacter shuttle cloning vector, pGU0202, was constructed using plasmid pMW2 that harbours a Campylobacter-derived kanamycin resistance gene [aph(3')-III]. The sequences encoding pCJ419 mob, RepA and RepB proteins were inserted upstream of aph(3')-III resulting in a stable construct of 6174 bp that was used to transform both E. coli and Campylobacter.  相似文献   

2.
Six previously published polymerase chain reaction (PCR) assays each targeting different genes were used to speciate 116 isolates previously identified as Campylobacter jejuni using routine microbiological techniques. Of the 116 isolates, 84 were of poultry origin and 32 of human origin. The six PCR assays confirmed the species identities of 31 of 32 (97%) human isolates and 56 of 84 (67%) poultry isolates as C. jejuni. Twenty eight of 84 (33%) poultry isolates were identified as Campylobacter coli and the remaining human isolate was tentatively identified as Campylobacter upsaliensis based on the degree of similarity of 16S rRNA gene sequences. Four of six published PCR assays showed 100% concordance in their ability to speciate 113 of the 116 (97.4%) isolates; two assays failed to generate a PCR product with four to 10 isolates. A C. coli-specific PCR identified all 28 hippuricase gene (hipO)-negative poultry isolates as C. coli although three isolates confirmed to be C. jejuni by the remaining five assays were also positive in this assay. A PCR-restriction fragment length polymorphism assay based on the 16S rRNA gene was developed, which contrary to the results of the six PCR-based assays, identified 28 of 29 hipO-negative isolates as C. jejuni. DNA sequence analysis of 16S rRNA genes from four hipO-negative poultry isolates showed they were almost identical to the C. jejuni type strain 16S rRNA sequences ATCC43431 and ATCC33560 indicating that assays reliant on 16S rRNA sequence may not be suitable for the differentiation of these two species.  相似文献   

3.
We have recently developed a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for identifying Campylobacter jejuni, C. coli and C. fetus. In the present study, the applicability of this assay was evaluated with 34 Campylobacter-like organisms isolated from poultry in Thailand for species identification and was compared with other assays including API Campy, 16S rRNA gene sequence, and hippuricase (hipO) gene detection. Of the 34 strains analyzed, 20, 10 and 1 were identified as C. jejuni, C. coli, and Arcobacter cryaerophilus, respectively, and 3 could not be identified by API Campy. However, 16S rRNA gene analysis, showed that all 34 strains are C. jejuni/coli. To discriminate between these 2 species, the hipO gene, which is specifically present in C. jejuni, was examined by PCR and was detected in 20 strains, which were identified as C. jejuni by API Campy but not in the remaining 14 strains. Collective results indicated that 20 strains were C. jejuni whereas the 14 strains were C. coli. When the cdt gene-based multiplex PCR was employed, however, 19, 20 and 19 strains were identified as C. jejuni while 13, 14 and 13 were identified as C. coli by the cdtA, cdtB and cdtC gene-based multiplex PCR, respectively. Pulsed-field gel electrophoresis revealed that C. jejuni and C. coli strains analyzed are genetically diverse. Taken together, these data suggest that the cdt gene-based multiplex PCR, particularly cdtB gene-based multiplex PCR, is a simple, rapid and reliable method for identifying the species of Campylobacter strains.  相似文献   

4.
5.
In this study, a Helicobacter pylori-Escherichia coli shuttle vector was constructed for transferring DNA into H. pylori. The smallest cryptic plasmid (1.2 kb), pHP489, among those harbored by 77 H. pylori isolates was selected as a base replicon for constructing vectors. HindIII-digested pHP489 was ligated with a kanamycin resistance gene [aph(3')-III], which originated from Campylobacter jejuni, to produce the recombinant plasmid pHP489K. pHP489K was efficiently transformed into and stably maintained in H. pylori strains. The shuttle vector pBHP489K (3.6 kb) was constructed by the recombination of pHP489, ColE1, and aph(3')-III sequences. pBHP489K was reciprocally transformed into and maintained in both H. pylori and E. coli. Introduction of the shuttle vector clone DNA (pBHP489K/AB; 6.7 kb), containing the ureA and ureB genes of H. pylori, into urease-negative mutants of H. pylori led to the restoration of their urease activity. The transformants were confirmed to contain the incoming plasmid DNA. pBHP489K satisfied the requirements for an H. pylori-E. coli shuttle vector, implying that it might be a useful vector for investigating pathogenicity and restriction-modification systems of H. pylori.  相似文献   

6.
Genome maps of Campylobacter jejuni and Campylobacter coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
D E Taylor  M Eaton  W Yan    N Chang 《Journal of bacteriology》1992,174(7):2332-2337
Little information concerning the genome of either Campylobacter jejuni or Campylobacter coli is available. Therefore, we constructed genomic maps of C. jejuni UA580 and C. coli UA417 by using pulsed-field gel electrophoresis. The genome sizes of C. jejuni and C. coli strains are approximately 1.7 Mb, as determined by SalI and SmaI digestion (N. Chang and D. E. Taylor, J. Bacteriol. 172:5211-5217, 1990). The genomes of both species are represented by single circular DNA molecules, and maps were constructed by partial restriction digestion and hybridization of DNA fragments extracted from low-melting-point agarose gels. Homologous DNA probes, encoding the flaAB and 16S rRNA genes, as well as heterologous DNA probes from Escherichia coli, Bacillus subtilis, and Haemophilus influenzae, were used to identify the locations of particular genes. C. jejuni and C. coli contain three copies of the 16S and 23S rRNA genes. However, they are not located together within an operon but show a distinct split in at least two of their three copies. The positions of various housekeeping genes in both C. jejuni UA580 and C. coli UA417 have been determined, and there appears to be some conservation of gene arrangement between the two species.  相似文献   

7.
The incidence of the virulence-associated genes cdtA, cdtB, cdtC, cadF, dnaJ, racR, and pldA has been investigated in Campylobacter jejuni and Campylobacter coli collected from raw chicken and beef from retailers in Tehran, Iran, and from hospitalized children (age, ≤14 years) suffering from diarrhea. Campylobacter spp. were collectively identified by morphological and biochemical methods. Campylobacter jejuni and C. coli were discriminated from other Campylobacter spp. by amplification of a specific conserved fragment of the 16S rRNA gene. The distinction between C. jejuni and C. coli was subsequently made by molecular determination of the presence of the hipO gene in C. jejuni or the ask gene in C. coli. Fragments of the studied virulence-associated genes, cdtA, cdtB, cdtC, cadF, racR, dnaJ, and pldA, were amplified by PCR and subjected to horizontal gel electrophoresis. A total of 71 isolates of C. jejuni and 24 isolates of C. coli from meat were analyzed, while the numbers of isolates from the hospitalized children were 28 and 9, respectively. The unequal distribution of C. jejuni and C. coli in the samples has also been reported in other studies. Statistical analyses by the use of the two-tailed Fisher's exact test of the occurrence of the virulence genes in the isolates of different origins showed that the occurrence of the dnaJ gene was consistently significantly higher in all C. jejuni isolates than in C. coli. The occurrence of the other virulence markers did not differ significantly between species in the majority of the isolates. The PCR results also showed that the occurrence of the virulence markers in the analyzed isolates was much lower than in other studies, which may be caused by a divergent genomic pool of our isolates in comparison with others.  相似文献   

8.
Campylobacter species, primarily Campylobacter jejuni and Campylobacter coli, are regarded as a major cause of human gastrointestinal disease, commonly acquired by eating undercooked chicken. We describe a PCR-ELISA for the detection of Campylobacter species and the discrimination of C. jejuni and C. coli in poultry samples. The PCR assay targets the 16S/23S ribosomal RNA intergenic spacer region of Campylobacter species with DNA oligonucleotide probes designed for the specific detection of C. jejuni, C. coli, and Campylobacter species immobilized on Nucleo-Link wells and hybridized to PCR products modified with a 5' biotin moiety. The limit of detection of the PCR-ELISA was 100-300 fg (40-120 bacterial cells) for C. jejuni and C. coli with their respective species-specific oligonucleotide probes and 10 fg (4 bacterial cells) with the Campylobacter genus-specific probe. Testing of poultry samples, which were presumptive positive for Campylobacter following culture on the Malthus V analyzer, with the PCR-ELISA determined Campylobacter to be present in 100% of samples (n = 40) with mixed cultures of C. jejuni/C. coli in 55%. The PCR-ELISA when combined with culture pre-enrichment is able to detect the presence of Campylobacter and definitively identify C. jejuni and C. coli in culture-enriched poultry meat samples.  相似文献   

9.
AIM: Campylobacter species are significantly implicated in human gastrointestinal infections. Of 20 species of Campylobacter, C. jejuni, C. coli and C. lari have been considered as the most important causative agents of human infections. In order to better understand the occurrence and epidemiology of these thermophilic Campylobacter species, an improved and rapid detection method is warranted. A novel triplex polymerase chain reaction (PCR) assay was developed based on the variable 16S-23S rDNA internal transcribed spacer (ITS) region to identify and discriminate between these species in water samples. METHODS AND RESULTS: Campylobacter species-specific primers for C. jejuni, C. coli and C. lari derived from highly variable sequences in the ITS region were used. Specificity of the newly designed primers and PCR conditions were verified using other species of Campylobacter as well as 31 different negative control species. The assay was further validated with 97 Campylobacter cultures from water samples. CONCLUSIONS: The assay was found to be simple, easy to perform, and had a high sensitivity, specificity and reproducibility. It enabled simultaneous detection and differentiation of multiple Campylobacter species in water samples. SIGNIFICANCE AND IMPACT OF STUDY: Use of the newly developed PCR assay, coupled with a previously developed rapid DNA template preparation step, will enable improved detection capabilities for Campylobacter species in environmental matrices.  相似文献   

10.
A novel kanamycin phosphotransferase gene, aphA-7, was cloned from a 14-kb plasmid obtained from a strain of Campylobacter jejuni and the nucleotide sequence of the gene was determined. The presumed open reading frame of the aphA-7 structural gene was 753 bp in length and encoded a protein of 251 amino acids with a calculated weight of 29,691 Da. A 29-kDa protein was demonstrated in Escherichia coli maxicells containing the cloned aphA-7 gene. A ribosomal binding site corresponding to 5 of 8 bases of the 3' end of the E. coli 16S rRNA was 8 bp upstream of the start codon. Sequences corresponding to the -35 and -10 regions of the consensus promoter sequences of E. coli were upstream of the presumed initiation codon of the gene. The DNA sequence was most closely related to the aphA-3 gene from Streptococcus faecalis, showing 55.4% sequence similarity. There was 45.6% identity at the amino acid level between the aphA-3 and the aphA-7 proteins. Of the three conserved regions noted previously in phosphotransferase genes, the aphA-7 amino acid sequence was identical to the six conserved amino acids in motif 3, but differed in one of the five conserved amino acids in motif 1 (if gaps are permitted) and 3 of the 10 conserved residues in motif 2. The 32.8% G + C ratio in the open reading frame of the aphA-7 kanamycin resistance gene, which is similar to that of the C. jejuni chromosome, suggests that the aphA-7 may be indigenous to Campylobacters.  相似文献   

11.
AIMS: To develop a real-time (rt) PCR for species differentiation of thermophilic Campylobacter and to develop a method for assessing co-colonization of pigs by Campylobacter spp. METHODS AND RESULTS: The specificity of a developed 5' nuclease rt-PCR for species-specific identification of Campylobacter jejuni, Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and of a hipO gene nucleotide probe for detection of C. jejuni by colony-blot hybridization were determined by testing a total of 75 reference strains of Campylobacter spp. and related organisms. The rt-PCR method allowed species-specific detection of Campylobacter spp. in naturally infected pig faecal samples after an enrichment step, whereas the hybridization approach enhanced the specific isolation of C. jejuni (present in minority to C. coli) from pigs. Conclusions: The rt-PCR was specific for Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis and the colony-blot hybridization approach provided an effective tool for isolation of C. jejuni from pig faecal samples typically dominated by C. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Species differentiation between thermophilic Campylobacter is difficult by phenotypic methods and the developed rt-PCR provides an easy and fast method for such differentiation. Detection of C. jejuni by colony hybridization may increase the isolation rate of this species from pig faeces.  相似文献   

12.
While characterizing the intestinal bacterial community of broiler chickens, we detected epsilon-proteobacterial DNA in the ilea of 3-day-old commercial broiler chicks (J. Lu, U. Idris, B. Harmon, C. Hofacre, J. J. Maurer, and M. D. Lee, Appl. Environ. Microbiol. 69:6816-6824, 2003). The sequences exhibited high levels of similarity to Campylobacter jejuni and Campylobacter coli sequences, suggesting that chickens can carry Campylobacter at a very young age. Campylobacter sp. was detected by PCR in all samples collected from the ilea of chicks that were 3 to 49 days old; however, it was detected only in the cecal contents of chickens that were at least 21 days old. In order to determine whether the presence of Campylobacter DNA in young chicks was due to ingestion of the bacteria in food or water, we obtained commercial broiler hatching eggs, which were incubated in a research facility until the chicks hatched. DNA sequencing of the amplicons resulting from Campylobacter-specific 16S PCR performed with the ileal, cecal, and yolk contents of the day-of-hatching chicks revealed that Campylobacter DNA was present before the chicks consumed food or water. The 16S rRNA sequences exhibited 99% similarity to C. jejuni and C. coli sequences and 95 to 98% similarity to sequences of other thermophilic Campylobacter species, such as C. lari and C. upsaliensis. The presence of C. coli DNA was detected by specific PCR in the samples from chicks obtained from a commercial hatchery; however, no Campylobacter was detected by culturing. In order to determine whether the same strains of bacteria were present in multiple levels of the integrator, we cultured Campylobacter sp. from a flock of broiler breeders and their 6-week-old progeny that resided on a commercial broiler farm. The broiler breeders had been given fluoroquinolone antibiotics, and we sought to determine whether the same fluoroquinolone-resistant strain was present in their progeny. The isolates were typed by pulsed-field gel electrophoresis, which confirmed that the parental and progeny flocks contained the same strain of fluoroquinolone-resistant C. coli. These data indicate that resistant C. coli can be present in multiple levels of an integrated poultry system and demonstrated that molecular techniques or more sensitive culture methods may be necessary to detect early colonization by Campylobacter in broiler chicks.  相似文献   

13.
A shuttle cloning vector (pIL550) has been constructed which can be mobilized from Escherichia coli to Campylobacter jejuni, Campylobacter coli, and Campylobacter fetus by complementation with the transfer functions of an IncP plasmid in trans, with a frequency of 10(-4) transconjugants per donor. We also present evidence for a DNA modification system in C. jejuni.  相似文献   

14.
Miller WG  Heath S  Mandrell RE 《Plasmid》2007,57(2):108-117
Three small, cryptic plasmids from the multi-drug-resistant (MDR) Campylobacter coli strain RM2228 and one small, cryptic plasmid from the MDR Campylobacter jejuni strain RM1170 were sequenced and characterized. pCC2228-1 has some similarity to Firmicutes RepL family plasmids that replicate via a rolling-circle mechanism. pCC2228-2 is a theta-replicating, iteron-containing plasmid (ICP) that is a member of the same incompatibility (Inc) group as previously described Campylobacter shuttle vectors. The other two ICPs, pCC2228-3 and pCJ1170, represent a second novel Inc group. Comparison of the four plasmids described in this study with other characterized plasmids from C. jejuni, C. coli, C. lari, and C. hyointestinalis suggests that cryptic plasmids in Campylobacter may be classified into as many as nine Inc groups. The plasmids characterized in this study have several unique features suitable for the construction of novel Campylobacter shuttle vectors, e.g., small size, absence of many common multiple-cloning site restriction sites, and Inc groups not represented by current Campylobacter shuttle plasmids. Thus, these plasmids may be used to construct a new generation of Campylobacter shuttle vectors that would permit transformation of environmental Campylobacter isolates with an existing repertoire of native plasmids.  相似文献   

15.
SYNOPSIS: Twenty Campylobacter jejuni and 16 Campylobacter coli strains isolated from humans and food/animals, including 17 isolates resistant to erythromycin, were analyzed. A combined mismatch amplification mutation assay-PCR technique was developed to detect the mutations A 2074 C and A 2075 G in the 23S rRNA gene associated with erythromycin resistance. All high-level erythromycin-resistant strains examined by DNA sequencing carried the transition mutation A 2075 G, whereas no isolate carried the A 2074 C mutation. No mutations were found among the susceptible and low-level erythromycin-resistant strains.  相似文献   

16.
The polymerase chain reaction (PCR) after a short enrichment culture was used to detect Campylobacter spp. in chicken products. After the 16S rRNA gene sequence of Campylobacter jejuni was determined and compared with known sequences from other enterobacteria, a primer and probe combination was selected from the region before V3 and the variable regions V3 and V5. With this primer set and probe, 426-bp fragments from C. jejuni, Campylobacter coli, and Campylobacter lari could be amplified. The detection limit of the PCR was 12.5 CFU. Chicken samples inoculated with 25 CFU of Campylobacter spp. per g were PCR positive after an 18-h enrichment, which resulted in 500 CFU/ml of culture broth. This PCR-culture assay was compared with the conventional method on naturally infected chicken products. Both methods detected the same number of positive and negative samples; however, the results of the PCR-culture assay were available within 48 h.  相似文献   

17.
The polymerase chain reaction (PCR) after a short enrichment culture was used to detect Campylobacter spp. in chicken products. After the 16S rRNA gene sequence of Campylobacter jejuni was determined and compared with known sequences from other enterobacteria, a primer and probe combination was selected from the region before V3 and the variable regions V3 and V5. With this primer set and probe, 426-bp fragments from C. jejuni, Campylobacter coli, and Campylobacter lari could be amplified. The detection limit of the PCR was 12.5 CFU. Chicken samples inoculated with 25 CFU of Campylobacter spp. per g were PCR positive after an 18-h enrichment, which resulted in 500 CFU/ml of culture broth. This PCR-culture assay was compared with the conventional method on naturally infected chicken products. Both methods detected the same number of positive and negative samples; however, the results of the PCR-culture assay were available within 48 h.  相似文献   

18.
The aim of this investigation was to exploit the vast comparative data generated by comparative genome hybridization (CGH) studies of Campylobacter jejuni in developing a genotyping method. We examined genes in C. jejuni that exhibit binary status (present or absent between strains) within known plasticity regions, in order to identify a minimal subset of gene targets that provide high-resolution genetic fingerprints. Using CGH data from three studies as input, binary gene sets were identified with "Minimum SNPs" software. "Minimum SNPs" selects for the minimum number of targets required to obtain a predefined resolution, based on Simpson's index of diversity (D). After implementation of stringent criteria for gene presence/absence, eight binary genes were found that provided 100% resolution (D=1) of 20 C. jejuni strains. A real-time PCR assay was developed and tested on 181 C. jejuni and Campylobacter coli isolates, a subset of which have previously been characterized by multilocus sequence typing, flaA short variable region sequencing, and pulsed-field gel electrophoresis. In addition to the binary gene real-time PCR assay, we refined the seven-member single nucleotide polymorphism (SNP) real-time PCR assay previously described for C. jejuni and C. coli. By normalizing the SNP assay with the respective C. jejuni and C. coli ubiquitous genes, mapA and ceuE, the polymorphisms at each SNP could be determined without separate reactions for every polymorphism. We have developed and refined a rapid, highly discriminatory genotyping method for C. jejuni and C. coli that uses generic technology and is amenable to high-throughput analyses.  相似文献   

19.
Abstract A combined polymerase chain reaction and restriction endonuclease (RE) enzyme assay was developed to discriminate between Campylobacter coli and Campylobacter jejuni . Amplimers of the FlaA gene obtained by PCR were digested with Alu I and Hin fI to distinguish C. coli from C. jejuni . With Alu I digestion C. jejuni -specific bands were observed at 110, 140 and 160 bp and C. coli -specific bands at 293 and 147 bp. C. jejuni -specific bands of 349 and 109 bp were found by Hin fI digestion but Hin fI did not digest the Fla A amplimer of C. coli . This combined technique is fast and easy to perform, and distinguishes the two campylobacters unequivocally.  相似文献   

20.
The flgE gene encoding the flagellar hook protein of Campylobacter coli VC167-T1 was cloned by immunoscreening of a genomic library constructed in lambdaZAP Express. The flgE DNA sequence was 2,553 bp in length and encoded a protein with a deduced molecular mass of 90,639 Da. The sequence had significant homology to the 5' and 3' sequences of the flgE genes of Helicobacter pylori, Treponema phagedenis, and Salmonella typhimurium. Primer extension analysis indicated that the VC167 flgE gene is controlled by a sigma54 promoter. PCR analysis showed that the flgE gene size and the 5' and 3' DNA sequences were conserved among C. coli and C. jejuni strains. Southern hybridization analyses confirmed that there is considerable sequence identity among the hook genes of C. coli and C. jejuni but that there are also regions within the genes which differ. Mutants of C. coli defective in hook production were generated by allele replacement. These mutants were nonmotile and lacked flagellar filaments. Analyses of flgE mutants indicated that the carboxy terminus of FlgE is necessary for assembly of the hook structure but not for secretion of FlgE and that, unlike salmonellae, the lack of flgE expression does not result in repression of flagellin expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号