首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deweese JE  Burgin AB  Osheroff N 《Biochemistry》2008,47(13):4129-4140
The ability to cleave DNA is critical to the cellular and pharmacological functions of human type II topoisomerases. However, the low level of cleavage at equilibrium and the tight coupling of the cleavage and ligation reactions make it difficult to characterize the mechanism by which these enzymes cut DNA. Therefore, to establish a system that isolates topoisomerase II-mediated DNA scission from ligation, oligonucleotide substrates were developed that contained a 3'-bridging phosphorothiolate at the scissile bond. Scission of these substrates generates a 3'-terminal -SH moiety that is a poor nucleophile relative to the normal 3'-terminal -OH group. Consequently, topoisomerase II cannot efficiently ligate phosphorothiolate substrates once they are cleaved. The characteristics of topoisomerase IIalpha-mediated cleavage of phosphorothiolate oligonucleotides were identical to those seen with wild-type substrates, except that no ligation was observed. This unidirectional accumulation of cleavage complexes provided critical information regarding coordination of the protomer subunits of topoisomerase IIalpha and the mechanism of action of topoisomerase II poisons. Results indicate that the two enzyme subunits are partially coordinated and that cleavage at one scissile bond increases the degree of cleavage at the other. Furthermore, anticancer drugs such as etoposide and amsacrine that strongly inhibit topoisomerase II-mediated DNA ligation have little effect on the forward scission reaction. In contrast, abasic sites that increase levels of cleavage complexes without affecting ligation stimulate the forward rate of scission. Phosphorothiolate substrates provide significant advantages over traditional "suicide substrates" and should be valuable for future studies on DNA scission and the topoisomerase II-DNA cleavage complex.  相似文献   

2.
Cline SD  Jones WR  Stone MP  Osheroff N 《Biochemistry》1999,38(47):15500-15507
Topoisomerase II is the target for several anticancer drugs that "poison" the enzyme and convert it to a cellular toxin by increasing topoisomerase II-mediated DNA cleavage. In addition to these "exogenous topoisomerase II poisons," DNA lesions such as abasic sites act as "endogenous poisons" of the enzyme. Drugs and lesions are believed to stimulate DNA scission by altering the structure of the double helix within the cleavage site of the enzyme. However, the structural alterations that enhance cleavage are unknown. Since abasic sites are an intrinsic part of the genetic material, they represent an attractive model to assess DNA distortions that lead to altered topoisomerase II function. Therefore, the structure of a double-stranded dodecamer containing a tetrahydrofuran apurinic lesion at the +2 position of a topoisomerase II DNA cleavage site was determined by NMR spectroscopy. Three major features distinguished the apurinic structure ( = 0.095) from that of wild-type ( = 0.077). First, loss of base stacking at the lesion collapsed the major groove and reduced the distance between the two scissile phosphodiester bonds. Second, the apurinic lesion induced a bend that was centered about the topoisomerase II cleavage site. Third, the base immediately opposite the lesion was extrahelical and relocated to the minor groove. All of these structural alterations have the potential to influence interactions between topoisomerase II and its DNA substrate.  相似文献   

3.
DNA topoisomerases II are nuclear enzymes that have been identified recently as targets for some of the most active anticancer drugs. Antitumor topoisomerase II inhibitors such as teniposide (VM-26) produce enzyme-induced DNA cleavage and inhibition of enzyme activity. By adding to such reactions distamycin, a compound whose effects on DNA have been extensively characterized, we investigated the effects of drug binding upon topoisomerase II-mediated DNA cleavage induced by VM-26. We have found a correspondence between distamycin binding (determined by footprinting analysis) and topoisomerase II-mediated cleavage of SV40 DNA (determined by sequencing gel analysis). Distamycin binding potentiated the cleavage of specific sites in the near proximity of distamycin-binding sites (within at least 25 base pairs), which indicates that DNA secondary structure is involved in topoisomerase II-DNA interactions. That distamycin potentiated cleavage only at sites that were recognized in the absence of distamycin and suppressed cleavage directly at distamycin-binding sites indicates that topoisomerase II recognizes DNA on the basis of primary sequence. In addition, distamycin stimulated topoisomerase II-mediated DNA relaxation and antagonized the inhibitory effect of VM-26. These results show that the DNA sequence-specific binding of distamycin produces local and propagated effects in the DNA which markedly affect topoisomerase II activity.  相似文献   

4.
DNA adducts are mutagenic and clastogenic. Because of their harmful nature, lesions are recognized by many proteins involved in DNA repair. However, mounting evidence suggests that lesions also are recognized by proteins with no obvious role in repair processes. One such protein is topoisomerase II, an essential enzyme that removes knots and tangles from the DNA. Because topoisomerase II generates a protein-linked double-stranded DNA break during its catalytic cycle, it has the potential to fragment the genome. Previous studies indicate that abasic sites and other lesions that distort the double helix stimulate topoisomerase II-mediated DNA cleavage. Therefore, to further explore interactions between DNA lesions and the enzyme, the effects of exocyclic adducts on DNA cleavage mediated by human topoisomerase IIalpha were determined. When located within the four-base overhang of a topoisomerase II cleavage site (at the +2 or +3 position 3' relative to the scissile bond), 3,N(4)-ethenodeoxycytidine, 3,N(4)-etheno-2'-ribocytidine, 1,N(2)-ethenodeoxyguanosine, pyrimido[1,2-a]purin-10(3H)-one deoxyribose (M(1)dG), and 1,N(2)-propanodeoxyguanosine increased DNA scission approximately 5-17-fold. Enhanced cleavage did not result from an increased affinity of topoisomerase IIalpha for adducted DNA or a decreased rate of religation. Therefore, it is concluded that these exocyclic lesions act by accelerating the forward rate of enzyme-mediated DNA scission. Finally, treatment of cultured human cells with 2-chloroacetaldehyde, a reactive metabolite of vinyl chloride that generates etheno adducts, increased cellular levels of DNA cleavage by topoisomerase IIalpha. This finding suggests that type II topoisomerases interact with exocyclic DNA lesions in physiological systems.  相似文献   

5.
Abasic sites are the most commonly formed DNA lesions in the cell and are produced by numerous endogenous and environmental insults. In addition, they are generated by the initial step of base excision repair (BER). When located within a topoisomerase II DNA cleavage site, "intact" abasic sites act as topoisomerase II poisons and dramatically stimulate enzyme-mediated DNA scission. However, most abasic sites in cells are not intact. They exist as processed BER intermediates that contain DNA strand breaks proximal to the damaged residue. When strand breaks are located within a topoisomerase II DNA cleavage site, they create suicide substrates that are not religated readily by the enzyme and can generate permanent double-stranded DNA breaks. Consequently, the effects of processed abasic sites on DNA cleavage by human topoisomerase IIalpha were examined. Unlike substrates with intact abasic sites, model BER intermediates containing 5'- or 3'-nicked abasic sites or deoxyribosephosphate flaps were suicide substrates. Furthermore, abasic sites flanked by 5'- or 3'-nicks were potent topoisomerase II poisons, enhancing DNA scission approximately 10-fold compared with corresponding nicked oligonucleotides that lacked abasic sites. These findings suggest that topoisomerase II is able to convert processed BER intermediates to permanent double-stranded DNA breaks.  相似文献   

6.
Cytosine arabinoside (araC) is an important drug used for the treatment of human leukemias. In order to exert its cytotoxic effects, araC must be incorporated into chromosomal DNA. Although specific DNA lesions that involve base loss or modification stimulate nucleic acid cleavage mediated by type II topoisomerases, the effects of deoxyribose sugar ring modification on enzyme activity have not been examined. Therefore, the effects of incorporated araC residues on the DNA cleavage/religation equilibrium of human topoisomerase IIalpha and beta were characterized. AraC lesions were position-specific topoisomerase II poisons and stimulated DNA scission mediated by both human type II enzymes. However, the positional specificity of araC residues differed from that previously reported for other cleavage-enhancing DNA lesions. Finally, additive or synergistic increases in DNA cleavage were observed in the presence of araC lesions and etoposide. These findings broaden the range of DNA lesions known to alter topoisomerase II function and raise the possibility that this enzyme may mediate some of the cellular effects of araC.  相似文献   

7.
Chlorella virus PBCV-1 topoisomerase II is the only functional type II enzyme known to be encoded by a virus that infects eukaryotic cells. However, it has not been established whether the protein is expressed following viral infection or whether the enzyme has any catalytic features that distinguish it from cellular type II topoisomerases. Therefore, the present study characterized the physiological expression of PBCV-1 topoisomerase II and individual reaction steps catalyzed by the enzyme. Results indicate that the topoisomerase II gene is widely distributed among Chlorella viruses and that the protein is expressed 60-90 min after viral infection of algal cells. Furthermore, the enzyme has an extremely high DNA cleavage activity that sets it apart from all known eukaryotic type II topoisomerases. Levels of DNA scission generated by the viral enzyme are approximately 30 times greater than those observed with human topoisomerase IIalpha. The high levels of cleavage are not due to inordinately tight enzyme-DNA binding or to impaired DNA religation. Thus, they most likely reflect an elevated forward rate of scission. The robust DNA cleavage activity of PBCV-1 topoisomerase II provides a unique tool for studying the catalytic functions of type II topoisomerases.  相似文献   

8.
K D Bromberg  N Osheroff 《Biochemistry》2001,40(28):8410-8418
A common DNA religation assay for topoisomerase II takes advantage of the fact that the enzyme can rejoin cleaved nucleic acids but cannot mediate DNA scission at suboptimal temperatures (either high or low). Although temperature-induced DNA religation assays have provided valuable mechanistic information for several type II enzymes, high-temperature shifts have not been examined for human topoisomerase IIalpha. Therefore, the effects of temperature on the DNA cleavage/religation activity of the enzyme were characterized. Human topoisomerase IIalpha undergoes two distinct transitions at high temperatures. The first transition occurs between 45 and 55 degrees C and is accompanied by a 6-fold increase in the level of DNA cleavage at 60 degrees C. It also leads to a loss of DNA strand passage activity, due primarily to an inability of ATP to convert the enzyme to a protein clamp. The enzyme alterations that accompany the first transition appear to be stable and do not revert at lower temperature. The second transition in human topoisomerase IIalpha occurs between 65 and 70 degrees C and correlates with a precipitous drop in the level of DNA scission. At 75 degrees C, cleavage falls well below amounts seen at 37 degrees C. This loss of DNA scission appears to result from a decrease in the forward rate of DNA cleavage rather than an increase in the religation rate. Finally, similar high-temperature alterations were observed for yeast topoisomerase II and human topoisomerase IIbeta, suggesting that parallel heat-induced transitions may be widespread among type II topoisomerases.  相似文献   

9.
Beyond the normal DNA transactions mediated by topoisomerase II, we have recently demonstrated that the cleavage activity of the two human topoisomerase II isoforms is several-fold stimulated if a ribonucleotide rather than a deoxyribonucleotide is present at the scissile phosphodiester in one strand of the substrate. Here we show that ribonucleotides exert a position-specific effect on topoisomerase II-mediated cleavage without altering the sequence specificity of the enzyme. Ribonucleotides located within the 4 bp cleavage stagger stimulate topoisomerase II-mediated cleavage, whereas ribonucleotides located outside the stagger in general have an inhibitory effect. Results obtained from competition experiments indicate that the position-specific effect of ribonucleotides on topoisomerase II activity is caused by altered substrate interaction. When cleavage is performed with substrates containing one ribonucleotide in both strands or several ribonucleotides in one strand the effect of the individual ribonucleotides on cleavage is not additive. Finally, although topoisomerase II recognizes substrates with longer stretches of ribonucleotides, an RNA/DNA hybrid where one strand is composed entirely of RNA is not cleaved by the enzyme. The positional effect of ribonucleotides on topoisomerase II-mediated cleavage shares many similarities to the positional effect exerted by either abasic sites or base mismatches, demonstrating a general influence of DNA imperfections on topoisomerase II activity.  相似文献   

10.
McClendon AK  Osheroff N 《Biochemistry》2006,45(9):3040-3050
Collisions with DNA tracking systems are critical for the conversion of transient topoisomerase-DNA cleavage complexes to permanent strand breaks. Since DNA is overwound ahead of tracking systems, cleavage complexes most likely to produce permanent strand breaks should be formed between topoisomerases and positively supercoiled molecules. Therefore, the ability of human topoisomerase IIalpha and IIbeta and topoisomerase I to cleave positively supercoiled DNA was assessed in the absence or presence of anticancer drugs. Topoisomerase IIalpha and IIbeta maintained approximately 4-fold lower levels of cleavage complexes with positively rather than negatively supercoiled DNA. Topoisomerase IIalpha also displayed lower levels of cleavage with overwound substrates in the presence of nonintercalative drugs. Decreased drug efficacy was due primarily to a drop in baseline (i.e., nondrug) cleavage, rather than an altered interaction with the enzyme-DNA complex. Similar results were seen for topoisomerase IIbeta, but the effects of DNA geometry on drug-induced scission were somewhat less pronounced. With both topoisomerase IIalpha and IIbeta, intercalative drugs displayed greater relative cleavage enhancement with positively supercoiled DNA. This appeared to result from negative effects of high concentrations of intercalative agents on underwound DNA. In contrast to the type II enzymes, topoisomerase I maintained approximately 3-fold higher levels of cleavage complexes with positively supercoiled substrates and displayed an even more dramatic increase in the presence of camptothecin. These findings suggest that the geometry of DNA supercoils has a profound influence on topoisomerase-mediated DNA scission and that topoisomerase I may be an intrinsically more lethal target for anticancer drugs than either topoisomerase IIalpha or IIbeta.  相似文献   

11.
It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3'-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme.  相似文献   

12.
Clerocidin, a diterpenoid with antibacterial and antitumor activity, stimulates in vitro DNA cleavage mediated by mammalian and bacterial topoisomerase (topo) II. Different from the classical topoisomerase poisons, clerocidin-stimulated breaks at guanines immediately preceding the sites of DNA cleavage are not resealed upon heat or salt treatment. To understand the mechanism of irreversible trapping of the topo II-cleavable complex, we have investigated the reactivity of clerocidin per se towards DNA. We show here that the drug is able to nick negatively supercoiled plasmids. DNA cleavage by clerocidin in enzyme-free medium is due to the ability of the drug to form covalent adducts with guanines. Indeed, clerocidin was able to specifically react with short oligonucleotides when the guanines were unpaired and exposed as in bulges or in the single-strand form. The clerocidin epoxy group attacks the nitrogen at position 7 of guanines, leading to strand scission at the modified site. Our findings also demonstrate that trapping of topoisomerases by clerocidin is specific for type II enzymes. The guanine-alkylating ability of clerocidin suggests an unprecedented mechanism of topo II poisoning, according to which the enzyme renders the drug reactive toward DNA by distorting the double-helical structure of the nucleic acid at the cleavage site.  相似文献   

13.
TAS-103 is a novel antineoplastic agent that is active against in vivo tumor models [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. This drug is believed to be a dual topoisomerase I/II-targeted agent, because it enhances both topoisomerase I- and topoisomerase II-mediated DNA cleavage in treated cells. However, the relative importance of these two enzymes for the cytotoxic actions of TAS-103 is not known. Therefore, the primary cellular target of the drug and its mode of action were determined. TAS-103 stimulated DNA cleavage mediated by mammalian topoisomerase I and human topoisomerase IIalpha and beta in vitro. The drug was less active than camptothecin against the type I enzyme but was equipotent to etoposide against topoisomerase IIalpha. A yeast genetic system that allowed manipulation of topoisomerase activity and drug sensitivity was used to determine the contributions of topoisomerase I and II to drug cytotoxicity. Results indicate that topoisomerase II is the primary cellular target of TAS-103. In addition, TAS-103 binds to human topoisomerase IIalpha in the absence of DNA, suggesting that enzyme-drug interactions play a role in formation of the ternary topoisomerase II.drug.DNA complex. TAS-103 induced topoisomerase II-mediated DNA cleavage at sites similar to those observed in the presence of etoposide. Like etoposide, it enhanced cleavage primarily by inhibiting the religation reaction of the enzyme. Based on these findings, it is suggested that TAS-103 be classified as a topoisomerase II-targeted drug.  相似文献   

14.
The DNA cleavage reaction of topoisomerase II is central to the catalytic activity of the enzyme and is the target for a number of important anticancer drugs. Unfortunately, efforts to characterize this fundamental reaction have been limited by the low levels of DNA breaks normally generated by the enzyme. Recently, however, a type II topoisomerase with an extraordinarily high intrinsic DNA cleavage activity was isolated from Chlorella virus PBCV-1. To further our understanding of this enzyme, the present study characterized the site-specific DNA cleavage reaction of PBCV-1 topoisomerase II. Results indicate that the viral enzyme cleaves DNA at a limited number of sites. The DNA cleavage site utilization of PBCV-1 topoisomerase II is remarkably similar to that of human topoisomerase IIalpha, but the viral enzyme cleaves these sites to a far greater extent. Finally, PBCV-1 topoisomerase II displays a modest sensitivity to anticancer drugs and DNA damage in a site-specific manner. These findings suggest that PBCV-1 topoisomerase II represents a unique model with which to dissect the DNA cleavage reaction of eukaryotic type II topoisomerases.  相似文献   

15.
Despite the importance of topoisomerase II-mediated DNA ligation to the essential physiological functions of the enzyme, the mechanistic details of this important reaction are poorly understood. Because topoisomerase II normally does not release cleaved DNA molecules prior to ligation, it is not known whether all of the nucleic acid specificity of its cleavage/ligation cycle is embodied in DNA cleavage or whether ligation also contributes specificity to the enzyme. All currently available ligation assays require that topoisomerase II cleave the initial DNA substrate before rejoining can be monitored. Consequently, it has been impossible to examine the specificity of DNA ligation separately from that of scission. To address this issue, a cleavage-independent topoisomerase II DNA ligation assay was developed. This assay utilizes a nicked oligonucleotide whose 5'-phosphate terminus at the nick has been activated by covalent attachment to the tyrosine mimic, p-nitrophenol. Human topoisomerase IIalpha and enzymes with active-site mutations that abrogated cleavage activity ligated the activated nick by catalyzing the direct attack of the terminal 3'-OH on the activated 5'-phosphate. Results with different DNA sequences indicate that human topoisomerase IIalpha possesses an intrinsic nucleic acid specificity for ligation that parallels its specificity for DNA cleavage.  相似文献   

16.
Bromberg KD  Burgin AB  Osheroff N 《Biochemistry》2003,42(12):3393-3398
Several important antineoplastic drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. These compounds act by two distinct mechanisms. Agents such as etoposide inhibit the ability of topoisomerase II to ligate enzyme-linked DNA breaks. Conversely, compounds such as quinolones have little effect on ligation and are believed to stimulate the forward rate of topoisomerase II-mediated DNA cleavage. The fact that there are two scissile bonds per double-stranded DNA break implies that there are two sites for drug action in every enzyme-DNA cleavage complex. However, since agents in the latter group are believed to act by locally perturbing DNA structure, it is possible that quinolone interactions at a single scissile bond are sufficient to distort both strands of the double helix and generate an enzyme-mediated double-stranded DNA break. Therefore, an oligonucleotide system was established to further define the actions of topoisomerase II-targeted drugs that stimulate the forward rate of DNA cleavage. Results indicate that the presence of the quinolone CP-115,953 at one scissile bond increased the extent of enzyme-mediated scission at the opposite scissile bond and was sufficient to stimulate the formation of a double-stranded DNA break by human topoisomerase IIalpha. These findings stand in marked contrast to those for etoposide, which must be present at both scissile bonds to stabilize a double-stranded DNA break [Bromberg, K. D., et al. (2003) J. Biol. Chem. 278, 7406-7412]. Moreover, they underscore important mechanistic differences between drugs that enhance DNA cleavage and those that inhibit ligation.  相似文献   

17.
McClendon AK  Dickey JS  Osheroff N 《Biochemistry》2006,45(38):11674-11680
Previous studies with human and bacterial topoisomerases suggest that the type II enzyme utilizes two distinct mechanisms to recognize the handedness of DNA supercoils. It has been proposed that the ability of some type II enzymes, such as human topoisomerase IIalpha and Escherichia coli topoisomerase IV, to distinguish supercoil geometry during DNA relaxation is mediated by elements in the variable C-terminal domain of the protein. In contrast, the ability of human topoisomerase IIalpha and topoisomerase IIbeta to discern the handedness of supercoils during DNA cleavage suggests that residues in the conserved N-terminal or central domain of the protein are involved in this process. To test this hypothesis, the ability of Paramecium bursaria chlorella virus-1 (PBCV-1) and chlorella virus Marburg-1 (CVM-1) topoisomerase II to relax and cleave negatively and positively supercoiled plasmids was assessed. These enzymes display a high degree of sequence identity with the N-terminal and central domains of eukaryotic topoisomerase II but naturally lack the C-terminal domain. While PBCV-1 and CVM-1 topoisomerase II relaxed under- and overwound substrates at similar rates, they were able to discern the handedness of supercoils during the cleavage reaction and preferentially cut negatively supercoiled DNA. Preferential cleavage was not due to a change in site specificity, DNA binding, or religation. These findings are consistent with a bimodal recognition of DNA geometry in which topoisomerase II uses elements in the C-terminal domain to sense the handedness of supercoils during DNA relaxation and elements in the conserved N-terminal or central domain during DNA cleavage.  相似文献   

18.
A consensus sequence for cleavage by vertebrate DNA topoisomerase II.   总被引:30,自引:13,他引:17       下载免费PDF全文
Topoisomerase II, purified from chicken erythrocytes, was reacted with a large number of different DNA fragments and cleavages were catalogued in the presence and absence of drugs that stabilize the cleavage intermediate. Cleavages were sequenced to derive a consensus for topoisomerase II that predicts catalytic sites. The consensus is: (sequence; see text) where N is any base and cleavage occurs at the indicated mark between -1 and +1. The consensus accurately predicts topoisomerase II sites in vitro. This consensus is not closely related to the Drosophila consensus sequence, but the two enzymes show some similarities in site recognition. Topoisomerase II purified from human placenta cleaves DNA sites that are essentially identical to the chicken enzyme, suggesting that vertebrate type II enzymes share a common catalytic sequence. Both viral and tissue specific enhancers contain sites sharing strong homology to the consensus and endogenous topoisomerase II recognizes some of these sites in vivo.  相似文献   

19.
Greenberg MM  Weledji YN  Kroeger KM  Kim J 《Biochemistry》2004,43(48):15217-15222
Abasic lesions are unable to form Watson-Crick hydrogen bonds with nucleotides. Nonetheless, polymerase and repair enzymes distinguish between various oxidized abasic lesions, as well as from nonoxidized abasic sites (AP). The C2-AP lesion is produced when DNA is exposed to gamma-radiolysis. Its effects on polymerases and repair enzymes are unknown. A recently reported method for the chemical synthesis of oligonucleotides containing C2-AP at a defined site was utilized for studying the activity of Klenow exo(-) and repair enzymes on templates containing the lesion. The C2-AP lesion has a similar effect on Klenow exo(-) as do AP and C4-AP sites. Deoxyadenosine is preferentially incorporated opposite C2-AP, but extension of the primer past the lesion is strongly blocked. C2-AP is incised less efficiently by exonuclease III and endonuclease IV than are other abasic lesions. Furthermore, although a Schiff base between C2-AP and endonuclease III can be chemically trapped, the location of the 3'-phosphate alpha with respect to the aldehyde prevents beta-elimination associated with the lyase activity of type I base excision repair enzymes. The interactions of the C2'-oxidized abasic site with Klenow exo(-) and repair enzymes suggest that the lesion will be mutagenic and that it will be removed by strand displacement synthesis and flap endonuclease processing via a long patch repair mechanism.  相似文献   

20.
TAS-103 is a novel anticancer drug that kills cells by increasing levels of DNA cleavage mediated by topoisomerase II. While most drugs that stimulate topoisomerase II-mediated DNA scission (i.e., topoisomerase II poisons) also inhibit the catalytic activity of the enzyme, they typically do so only at concentrations above the clinical range. TAS-103 is unusual in that it reportedly inhibits the catalytic activity of both topoisomerase I and II and does so at physiologically relevant concentrations [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. Without a topoisomerase activity to relieve accumulating torsional stress, the DNA tracking systems that promote the action of TAS-103 as a topoisomerase II poison would be undermined. Therefore, the effects of TAS-103 on the catalytic activity of topoisomerase I and II were characterized. DNA binding and unwinding assays indicate that the drug intercalates into DNA with an apparent dissociation constant of approximately 2.2 microM. Furthermore, DNA strand passage assays with mammalian topoisomerase I indicate that TAS-103 does not inhibit the catalytic activity of the type I enzyme. Rather, the previously reported inhibition of topoisomerase I-catalyzed DNA relaxation results from a drug-induced alteration in the apparent topology of the nucleic acid substrate. TAS-103 does inhibit the catalytic activity of human topoisomerase IIalpha, apparently by blocking the DNA religation reaction of the enzyme. The lack of inhibition of topoisomerase I catalytic activity by TAS-103 explains how the drug is able to function as a topoisomerase II poison in treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号